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Abstract: Brassinosteroids (BRs) are key phytohormones involved in the regulation of major processes
of cell metabolism that guide plant growth. In the past decades, new evidence has made it clear that
BRs also play a key role in the orchestration of plant responses to many abiotic and biotic stresses.
In the present work, we analyzed the impact of foliar treatment with 24-epicastasterone (ECS) on
the endogenous content of major phytohormones (auxins, salicylic acid, jasmonic acid, and abscisic
acid) and their intermediates in soybean leaves 7 days following the treatment. Changes in the
endogenous content of phytohormones have been identified and quantified by LC/MS. The obtained
results point to a clear role of ECS in the upregulation of auxin content (indole-3-acetic acid, IAA) and
downregulation of salicylic, jasmonic, and abscisic acid levels. These data confirm that under optimal
conditions, ECS in tested concentrations of 0.25 pM and 1 uM might promote growth in soybeans
by inducing auxin contents. Benzoic acid (a precursor of salicylic acid (SA)), but not SA itself, has
also been highly accumulated under ECS treatment, which indicates an activation of the adaptation
strategies of cell metabolism to possible environmental challenges.
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1. Introduction

Plant hormones are biologically active compounds produced by their cells, which
have a relatively complex structure and affect certain chemical molecules in the process of
their metabolism [1]. In recent years, research on the role of the representatives of a rather
large class of steroid hormones, brassinosteroids, in the regulation of cell metabolism at the
level of signaling systems has been developing at a rather rapid rate [2-7].

BRs, as a unique class of plant hormones, are involved in the regulation of plant growth
and development [3,8], in particular, under the influence of stress factors [9,10]. Changes in
the concentration of endogenous BRs [11-13] play an important role in the adaptation of
plant metabolism. Exogenous BRs have been shown to increase growth [14], respiration
rate [15], and plant resistance, in particular, under drought conditions [16] and pathogen
attack [17]. BRs have a strong impact on photosynthesis and the membrane properties
under acclimation to temperature stress [14]. BRs interact with the signaling pathways of
other phytohormones [18], in particular those of abscisic acid (ABA) [19], cytokinins [20],
auxins [21-23], gibberellins (GCs) [24,25], jasmonic acid (JA) [26], ethylene [27], salicylic
acid (SA) [28] and other plant hormones [29-31].

The experimental data have also shown that exogenous BRs have a strong impact on
endogenous BR biosynthesis. 24-epibrassinolide (EBL) at a low concentration 0.01-1 uM
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could increase the BR content in the leaves of barley plants [9]. Furthermore, EBL has
effectively ameliorated endogenous BR level and plant growth suppressed by a specific
inhibitor of BR biosynthetic reactions—brassinazole [9]. These studies point to complex
interactions between different types of BRs and other phytohormones important for the
fine-tuning of plant metabolism. To analyze the cross-interaction of brassinosteroids with
other plant hormones, genetic approaches using transgenic plants and the exogenous effect
of brassinosteroids on them have been widely applied [3,27,32]. Considerably less attention
is paid to determining changes in hormone content in vivo in plants under the exogenous
action of brassinosteroids [33]. The effects of BRs on plant cell metabolism have been
described in numerous publications, but knowledge of its molecular mechanisms remains
poorly studied. Further research opens up prospects for a more efficient use of BRs as an
environmentally conscious regulator of plant growth and productivity [34].

The goal of the present study is to analyze the effect of exogenous 24-epicastasterone
(ECS) treatment on the endogenous content of key phytohormones, in particular auxins
(indole-3-acetic acid (IAA)), abscisic, salicylic, and jasmonic acid content in soybean leaves.
ECS is a natural brassinosteroid phytohormone that attracts our attention mainly because
it is a direct biosynthetic precursor of EBL [35], it is widely distributed in plants [36], and
it plays an important role in the regulation of shoots and leaf growth [37]. Establishing
the exogenous influence of ECS on changes in the content of other hormones is another
level of analysis that can provide information that will help shed more light on the complex
network of crosstalk between BRs and other hormones.

2. Results and Discussion
2.1. Interaction of Brassinosteroids with Auxins in Plant Cells

Auxins are strong inducers of plant cell metabolic reprogramming, causing the rapid
acceleration of their growth and development, acting locally or through distinct signaling.
Yet, auxins have some inhibiting role in roots growth. IAA is one of the major and most
common auxins produced by plants, which stimulates plant growth [38,39].

In our research, we detected the levels of IAA, phenylacetic acid (PAA), and IAA
ester with aspartate (IAA-Asp) in soybean leaf tissues. The levels of auxins under control
conditions were measured to be around 221.9 pmol/g FW for IAA, 48.5 pmol/g FW for
TAA-Asp, and 497.1 pmol/g FW for PAA. The treatment of soybean plants with ECS
solution (0.25 uM, or 1 uM) caused a strong increase in IAA content (Figure 1). In contrast,
no significant changes in IAA-Asp and PAA content have been observed in soybean leaf
tissues treated with the indicated concentrations of ECS (Figure 1). PAA is a natural
auxin [40] found in a number of plants [41], but to date, information on its distribution
metabolism and function in plants is still limited, and our data on the response of PAA
content to the effects of ECS on plants is a contribution to the study of its role in plants
(Figure 1). According to our results, the content of PAA in soybean leaves exceeded more
than twice the content of IAA (Figure 1); a higher content of PAA compared to IAA was also
found in a number of other plants, and among the possible explanations is higher activity
and mobility in the tissues of IAA compared to PAA [41]. A significant increase in the
content of IAA was earlier shown in rice treated with EBL under salinity conditions. These
changes correlated with enhanced plant growth under salt stress action [42]. In contrast,
no induction of IAA content by EBL was reported under optimal growth conditions [43].
In another report, brassinolide (BL)—another type of BR—promoted auxin content in
Arabidopsis roots but inhibited auxin signaling [43]. Moreover, the inhibition of BR signaling
in the outer tissues of roots results in a meristem insensitivity to both BRs and auxin [43].
In our study, exogenous ECS under optimal conditions stimulated IAA content (Figure 1).
This might point to the importance of the particular BR species and concentrations used
in evoking dissimilar responses in different plant species. However, we observed no
significant changes in IAA-Asp or PAA content; our data are the first observation of
IAA-Asp and PAA levels in response to BR.
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Figure 1. Influence of ECS treatment on endogenous content of auxins-indole-3-acetic acid (IAA),
IAA ester with aspartate (IAA-Asp), and phenylacetic acid (PAA) in soybean leaf tissues. Plants have
been sprayed twice with ECS on the 21st and 28th days after planting. On the 35th day after planting,
soybean leaves were harvested to determine the phytohormone content. Error bars indicate standard
error of the mean (SE). * p < 0.05 (Student’s t-test).

One of the key interactions between BRs and auxins can be seen in their mutual effect
on the regulation of gene expression. BRs can regulate the expression of the AtYUC9 gene
involved in auxin biosynthesis [43], while auxins can modulate the expression of genes
involved in BR biosynthesis [44,45]. BRs and auxins also interact at the cellular level. BRs
can promote the transport of auxins by modulating the expression of auxin transporters
PINFORMED3 (PIN3) and PIN4 in Arabidopsis [46], and auxin responsive genes such as
IAA1S8, IAA30, and Auxin Response Factor12 in wheat [47], while auxins can affect BR
signaling by regulating the expression of BR receptors [48].

Via the Genevestigator array data analysis, we could see that the expression level of
several genes involved in auxin biosynthesis and signaling is modified in response to ECS
or BL treatment in soybean (Glycine max) [49] (Table 1). The expression of soybean genes
encoding FLAVIN-CONTAINING MONOOXYGENASE increased under ECS treatment
(Table 1). Treatment with ECS (12 h), propiconazole (an inhibitor of BR biosynthesis), or
combined treatment overall decreased the expression of genes coding auxin transporters
or auxin signaling components in the roots of soybean (Table 1). In contrast, BL treatment
in leaves strongly induced the same genes (Table 1). This indicates that the hormone
concentration, its type, and the site of treatment have a strong impact on the outcome of
gene expression.

Table 1. Analysis of Genevestigator array data of BR inhibitor propiconazole, ECS, and BL impact
on the expression of genes involved in auxin and jasmonate biosynthesis and signaling in soybeans
(Glycine max). Values are shown as the fold change of gene expression.

Propiconazole/  Propiconazole/  ECS/ Propiconazole + Propiconazole + Propiconazole +
Untreated Untreated Untreated ECS/Propiconazole BL/Propiconazole BL/Propiconazole
Seedlings *A Roots Rk ROOtS bk N ok bk Rkt

Auxin biosynthesis genes

Flavin-containing

monooxygenase 1.02 2 1.42 —1.95 —1.02 1.02
(GLYMA_10G128700) *

Flavin-containing

monooxygenase 1.01 1.16 1.37 —-1.21 —1.02 —1.01

(GLYMA_20G080000) *
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Table 1. Cont.

Propiconazole/  Propiconazole/  ECS/ Propiconazole + Propiconazole + Propiconazole +
Untreated Untreated Untreated ECS/Propiconazole BL/Propiconazole BL/Propiconazole
Seedlings 4% Roots AN Roots L KN B A N2k

Auxin transport genes

NPH3 domain-

containing protein 1 -1.6 —2.02 —-1.31 2.3 1.33
(GLYMA_14G102500) *

NPH3 domain-

containing protein —2.23 —-1.25 —1.06 1.16 3.56 222

(GLYMA_17G223000) *

Protein PIN-LIKES 3
(GLYMA_03G113600) *

-1.36 —8.51 —-12.89 -1.21 3.15 2.38

Auxin efflux
carrier component 1.13 —2.07 —-1.77 1.3 1.77 1.02
(GLYMA_03G126000) *

Auxin signaling genes

Auxin-induced protein

(GLYMA_03G167400) * 11 125 -1.01 1.02 2.07 2.86
Auxin response factor

(GLYMA_12G171000) * —-1.09 —2.99 —2.86 1.33 1.88 —2.17
Auxin response factor 359 ooy 103 L84 158 1o

(GLYMA_12G174100) *

Jasmonate biosynthesis genes

Jasmonic acid-amido
synthetase JAR1 —1.46 —1.57 —1.64 1.19 —1.37 —-1.21
(GLYMA_07G057900) *

Jasmonic acid-amido
synthetase JAR1 4.63 —1.23 —1.37 1.25 —7.85 —4
(GLYMA_16G026900) *

* GLYMA_10G128700, Panther name: INDOLE-3-PYRUVATE MONOOXYGENASE YUCCA3-RELATED, Uniprot
protein: [1ILAM2; GLYMA_20G080000, Panther name: INDOLE-3-PYRUVATE MONOOXYGENASE YUCCA3-
RELATED, Uniprot protein: IINEK1; GLYMA_07G057900, Panther name: JASMONIC ACID-AMIDO SYN-
THETASE JAR1, Uniprot protein: AOAOR4J3L2; GLYMA_03G167400, Panther name: AUXIN-RESPONSIVE
PROTEIN IAA10-RELATED, Uniprot protein: AOAOROKKHO; GLYMA_03G126000, Panther name: AUXIN
EFFLUX CARRIER COMPONENT 1, Uniprot protein: K7ZKEN1; GLYMA_12G171000, Panther name: AUXIN
RESPONSIVE FACTOR 4, Uniprot protein: AOAOROH664; GLYMA_12G174100, Panther name: AUXIN RE-
SPONSE FACTOR 10-RELATED, Uniprot protein: I1LTKO; GLYMA_16G026900, Panther name: JASMONIC
ACID-AMIDO SYNTHETASE JAR1, Uniprot protein: AOAOROFK]1; GLYMA_03G113600, Uniprot protein: I1JMS6;
GLYMA_17G223000, Panther name: BTB/POZ DOMAIN-CONTAINING PROTEIN NPY1, Uniprot protein:
K7MND2; GLYMA_14G102500, Panther name: BTB/POZ DOMAIN-CONTAINING PROTEIN NPY1, Uniprot
protein: K7M604. Genevestigator database experiment microarray IDs—GM-00305, GM-00128. ** seedlings
treated with propiconazole 5 uM for 10 days. *** roots treated with propiconazole 0.1 uM for 2.5 days. **** roots
treated with propiconazole 0.01 nM for 12 h. ***** roots treated with propiconazole 0.1 uM for 2 d + ECS 0.01 nM
for 12 h against roots treated with propiconazole 0.1 uM for 2 d. ****** seedlings treated with propiconazole
5 uM for 10 d + BL 1 uM for 1 h against seedlings treated with propiconazole 5 uM. ******* seedlings treated with
propiconazole 5 uM for 10 d + BL 1 uM for 8 h against seedlings treated with propiconazole 5 utM.

Auxins are involved in the metabolism reprogramming of plant cells, causing the
acceleration of their growth and development [50,51]. The overexpression of PIN-LIKES
auxin transporters in imp mutants strongly influences BR signaling, possibly by changing
local auxin levels [52]. Auxins and BRs stimulate growth and affect the elongation of the
hypocotyl, but the hormone crosstalk mechanism implicated in this process is not fully
clear [39,53]. BRs also stimulate auxin levels important for the induction of lateral roots
grown under low nitrogen stress by inducing the AtYUC5, AtYUC?7, and AtYUCS auxin
biosynthetic genes. In the BR signaling mutants bsk3,4,7,8, and bzr1, the expression of the
above-mentioned YUC genes was not upregulated by low nitrogen conditions anymore.
Interestingly, in bzr1-1D mutant plants, which have a stabilized variant of the BR-dependent
transcription factor BRASSINAZOLE RESISTANT 1 (BZR1), the auxin genes AtYUC7 and
AtYUCS were upregulated constantly, independently of low nitrogen conditions [22]. This
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clearly points to a close relation between BR and auxin biosynthesis at the genes level.
Interactions between BRs and auxins play a pivotal role in the regulation of several other
key aspects of plant growth and development [52,54-56].

Our results on the ECS-dependent upregulation of IAA levels in soybean leaves
are consistent with many published research articles about BRs role in the regulation of
IAA signaling [32] in plant cells. It has been shown that an exogenous BR under low
temperatures induces the content of endogenous IAA in cucumber seedlings, while the
inhibitor of BR synthesis, brassinazole, decreased levels of IAA [33].

2.2. Interaction of Brassinosteroids with Plant Cell Stress Hormones
2.2.1. Interaction of Brassinosteroids with Abscisic Acid

The results of microarray studies indicate that BRs and ABA provide a general regu-
lation of the expression of hundreds of different genes involved in metabolic regulation;
however, not many of them have overlapped [57,58]. At the same time, the key molecu-
lar mechanisms and components of signaling systems involved in these phytohormone
interactions require further studies.

In the present study, we analyzed the contents of abscisic acid and its inactive
metabolite, dihydrophaseic acid (DPA), in soybean leaves. The ABA level of the con-
trol plants was 3138.5 pmol/g FW, its glucose ester (ABA-GE)—1501 pmol/g FW, and
DPA—3826.5 pmol/g FW (Figure 2). An exogenous treatment with ECS decreased the
ABA and ABA-GE levels in soybean leaves (Figure 2). We did not observe any significant
changes in the DPA levels of the treated plants (Figure 2). BRs have previously been shown
to reduce ABA accumulation, resulting in the inhibition of stomatal closure induced by
ABA [59]. The foliar application of EBL significantly reduced the level of abscisic acid in
rice plants under stress or optimal conditions [42]. Moreover, freezing conditions in tolerant
barley lines themselves promote the endogenous level of homocastaterone (BR type) and
decrease the ABA level [13]. BRs and ABA antagonistically regulate many key develop-
mental processes such as germination and seed maturation [60,61]. The BR biosynthetic
mutant, det2-1, and the BR signaling mutant, bri1-1, are more sensitive to the ABA inhibition
of seed germination than the wild-type. These earlier observations also pointed out that
the germination rate in the mentioned mutants was not affected [62]. However, further
investigations with BR mutants det2-1 and bri1-301 have found a strong reduction in seed
germination in mutant and wild-type lines by exogenous ABA [58]. The overexpression of
the BR receptor BRI1 strongly increased the germination rate of seeds treated with ABA [53].
The involvement of BRI1-associated receptor kinase 1 (BAK1) in the regulation of ABA
signaling during seed germination and primary root growth has been shown in Arabidop-
sis [63]. Moreover, the inhibited germination of wild-type and det2-1 lines, but not that of
bri1-301, by ABA can be rescued by BL treatment [58]. It is known that the effects of ABA in
seeds are associated mainly with the prevention of premature germination [64]. In contrast,
BRs attenuate the effect of ABA and promote seed germination as well as vegetative growth
and the development of plants [19,65]. BRs antagonize ABA-mediated responses in plants
through a family of transcription factors, BZR1, which can reduce the expression of the
main ABA-signaling component, ABA INSENSITIVE 5 (ABI5) [65]. Furthermore, it has
been found that BZR1 directly binds to the E-box sequences in the AtABA2 promoter region,
decreasing the level of endogenous ABA in A. thaliana [19]. Treatment with brassinazole
(Brz), a biosynthetic inhibitor of BR synthesis, increased AtABA2 expression, an effect that
can be attenuated by the exogenous use of BL [19]. The results of the studies performed by
J. Moon and colleagues and our results on the use of ECS in soybeans (Figure 2) indicate a
key role of BRs in the regulation of ABA levels in plants [19].
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Figure 2. The effect of ECS on abscisic acid (ABA) and its metabolite levels: ABA-glucose ester
(ABA-GE) and dihydrophaseic acid (DPA). Plants were sprayed twice with ECS on the 21st and
28th days after planting. On the 35th day after planting, soybean leaves were harvested to deter-
mine their phytohormone content. Error bars indicate standard error of the mean (SE). * p < 0.05
(Student’s t-test).

At the whole-plant level, BRs and ABA can act also synergistically depending on the
specific physiological process. For example, under salt stress, EBL positively regulates
the expression of ABA biosynthesis genes (OsNCED1, OsNCED2, OsNCED3, OsNCED4,
OsNCED), and OsZEPI) and two catabolic genes, OsBG2 and OsABAox3. in rice [36].
Owing to these specific cell processes, ABA regulates the response to environmental stresses
(for complete review see [66]). ABA, through the transcriptional factor ABSCISIC ACID
INSENSITIVES (ABI3), slightly induces the BR biosynthesis regulatory gene OsGSR1, which
evidences ABA’s role in the stimulation of BR production [67]. Moreover, ABA promotes
the expression of key BR biosynthesis genes AtDWF4 and AtCPD, but for effective ABA-BR
crosstalk, the BIN2 signaling component is required [58]. Interestingly, while ABI3 promotes
BR biosynthesis in Arabidopsis, the BR-regulated transcription factor BES1 can directly bind
another ABA transcription factor, ABSCISIC ACID INSENSITIVES5 (ABI5), which reduces
ABI5-regulated genes and suppresses the ABA response [68]. This suggests that BR-ABA
antagonism and synergism on the level of hormone biosynthesis and signaling can be
achieved by different transcription factors but the conditions that impact these processes
require further elucidation. Seed germination is an essential stage of plant development
that is regulated by various endogenous signaling systems in terms of its interaction with
environmental factors [69].

2.2.2. Effect of 24-Epicastasterone on Salicylic and Benzoic Acids Levels

In the soybean plants exposed to ECS, the content of SA decreased while the content
of BzA increased significantly, and in both cases, there was not a significant difference
between the studied ECS concentrations (Figure 3). Recent studies on hormone levels under
optimal conditions observed that freezing-tolerant barley lines accumulate significant levels
of SA but not BRs (homocastasterone was analyzed in the paper). In contrast, under cold
stress conditions, tolerant lines accumulate more homocastasterone, while the SA content
significantly drops [13]. These data are consistent with our results (Figure 3) and might
point to BRs” and SA’s role in adaptation processes to abiotic stresses.
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Figure 3. The effect of ECS on the level of salicylic (SA) and benzoic (BzA) acid in soybean leaf tissues.
Plants have been sprayed twice with ECS on the 21st and 28th days after planting. On the 35th day
after planting, soybean leaves were harvested to determine the phytohormone content. Error bars
indicate standard error of the mean (SE). * p < 0.05 (Student’s t-test).

The BR and SA signaling networks are known to be, at least in part, interconnected.
BRs can act synergistically and promote SA signaling by inactivating BR-INSENSITIVE 2
(BIN2) in Arabidopsis. BIN2 was shown to phosphorylate the TGA4 transcriptional factor
(TF), which leads to its destabilization and prevents its functional interaction with NRP1
in mediating SA-regulated gene expression [70]. Furthermore, EBL has been shown re-
cently to induce SALICYLIC ACID-BINDING PROTEIN2 in wheat [47]. Moreover, because
clade I TGAs (a group comprising TGA4) have a role in regulating SA biosynthesis by
promoting the expression of SARD1 and CBP60g [71], BRs, via the reported BIN2 phospho-
rylation of TGA4, can thus act in SA biosynthesis control. Moreover, in Arabidopsis lines
overexpressing BAK1, an increase in endogenous SA accumulation was reported, suggest-
ing that at least some components of the BR signaling cascade have a role in controlling
SA accumulation [72].

BRs can also act antagonistically with SA. Based on the published data, the effect of BRs
in controlling SA accumulation differs between plant species. Rice plants treated with BL
could accumulate less SA during brown planthopper infestation; this effect was attributed
to the downregulation of SA biosynthesis genes—OsPAL and OsICS1 [71]. However, the
latest data indicate that the phenylalanine ammonia-lyase (PAL) pathway does not directly
lead to SA biosynthesis but has an important role in its regulation. [73]. Furthermore,
BL was shown to reduce the SA content in tobacco [74]. The Bskl plants, which are
deficient in BR-SIGNALING KINASE1 (BSK1), accumulated less SA following an infection
with G. cichoracearum powdery mildew or Pseudomonas syringae pv tomato DC3000). In
addition, the bskl mutant’s resistance to pathogens was compromised [75]. These data
suggest that pathogen-induced SA accumulation relies on some components of the BR
signaling cascade. SA can be produced via the isochorismate synthase (ICS) pathway (for
review see [76]). In different plant species, the two pathways contribute unequally to SA
biosynthesis. In Arabidopsis, most SA is produced via the ICS pathway independently of
BzA accumulation [77]. In soybeans, both pathways, ICS and PAL, contribute equally
to stress-induced SA accumulation [78]. The fact that an increase in BzA following ECS
treatment is not translated into SA accumulation may imply that BA2H is inactivated.
More so, this is because the pool of active SA in plants depends not only on the activity
of SA biosynthetic pathways but also on the rate of SA conversion to inactive metabolites
(for review, see [76]). Recently, important results for understanding the pathways of SA
synthesis in plants were obtained by Wu and colleagues [73], who used stable isotopes
(13C4-Phe and 'Cg-BzA) to investigate the pathways of SA biosynthesis in Arabidopsis.
They provided evidence that SA can be formed from benzoic acid, yet independently of the
phenylalanine ammonia-lyase (PAL) pathway [73].
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Our data on the accumulation of BzA (Figure 3) may evidence an important step in
BR-SA crosstalk via the regulation of SA/BzA levels. Our results suggest that ECS induces
an increase in BzA levels in soybeans, possibly via the inactivation of BA2H. Later, a BzA
pool may enable a rapid conversion to SA and the activation of SA signaling. How SA
biosynthesis is regulated by BRs remains to be established.

2.2.3. Interaction of Brassinosteroids with Jasmonates (Jasmonic Acids and Jasmonic
Acid-Isoleucine Levels)

In the present study, we analyzed the content of JA and a JA conjugate with isoleucine
(JA-Ile). The amino acid conjugate of isoleucine with JA is one of the common forms of
JA in plant cells [79]. The content of JA in the control variant was determined in soybean
leaves to be at the level of 65.03 pmol/g of FW and the JA-Ile content—59,636 pmol/g FW.
Under the exogenous treatment of plants with 0.25 uM of ECS, a decrease in the JA and
JA-Ile content was recorded. Higher concentrations of ECS (1 uM) did not lead to a further
decrease in the levels of JA and JA-Ile (Figure 4).

o

*

[

_‘
pmol/g FW
o658 8583834388
—

JA JA-Tleu

ECS 0.25 uM mECS 1M Control ECS 0.25 uM BECS1uM

(a) (b)

Figure 4. The effect of ECS on the level of (a) jasmonic acid (JA) and (b) the conjugate with isoleucine
amino acid (JA-Ile) in soybean leaf tissues. Plants were sprayed twice with ECS on the 21st and
28th days after planting. On the 35th day after planting, soybean leaves were harvested to deter-
mine the phytohormone content. Error bars indicate standard error of the mean (SE). * p < 0.05
(Student’s t-test).

An analysis of array data on the genes involved in jasmonate biosynthesis also revealed
genes with modified expression in response to ECS or BL treatment [49] (Table 1). Genes
that encode JASMONIC ACID-AMIDO SYNTHETASE JARI1 are highly suppressed in
soybeans via treatment with exogenous ECS and BL (Table 1). In contrast, propiconazole
(a BR-biosynthesis inhibitor) decreased their expressions (Table 1). JAR1 catalyzes the
formation of JA conjugates with amino acids. These results are consistent with our data
on ECS’s influence on the JA and JA-Ile levels (Figure 4). It has been shown previously
that BR biosynthesis or BR signaling mutants show a higher accumulation of JA-precursor
12-oxo-phytodienoic acid [80], pointing to a BR-JA antagonism in the regulation of JA
content. Furthermore, JA inhibits root growth and the expression of the BR biosynthetic
gene AtDWF4 and lowers the endogenous BR content, while exogenously added BRs can
attenuate JA’s inhibitory effects on root growth [81]. These data are also consistent with the
results that we obtained (Figure 4).

Some studies point to a concentration-dependent interconnection between BR and
JA antagonism/synergism switches in different parts of the plant. For example, high
levels of exogenously applied EBL in rice shoots have been demonstrated to induce the
expression of the JA biosynthetic gene OsAOS2 and the signaling gene OsJAmyb in plant
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roots. This has also been connected with the decreased activity of the BR biosynthetic
OsDwarf and signaling OsBRI1 genes. In contrast, low exogenous levels of EBL inhibited
the OsAOS2/Os]Amyb genes. These changes in the JA and BR gene activities correlated
with increased nematode resistance in plant roots, while the low exogenous concentration
of EBL decreased plant resistance to nematode attack [80]. A major portion of BR-JA
antagonism depends on the common component of the BR and JA pathways—BIN2 ki-
nase. BIN2 kinase negatively regulates BR signaling by inactivating the BR-dependent
transcriptional factors BRI1-EMS-SUPPRESSOR1 (BES1) and BZR1. On the other hand,
BIN2 positively regulates JA signaling by phosphorylating and promoting the degradation
of JAZ proteins and repressors of JAZ signaling. BR treatment represses BIN2 activity
and the JA signal pathway. Gain-of-function mutations of BIN2 promote JA signaling and
also stimulate JA accumulation [82]. The rice BIN2 homolog OsGSK2 has been shown to
interact directly with a JA repressor protein, OsJAZ4, and positively regulate JA signaling
and antiviral defense against rice black-streaked dwarf virus (RBSDV). BIN2 kinase is also
a part of BR-JA synergism. OsGSK2 kinase can not only stimulate JA-signaling but also
act as a negative regulator through interaction with the JA transcription factor OsMYC2.
OsMYC2 phosphorylation by OsGSK2 leads to OsMYC2 degradation and a reduction in
the JA-mediated defense response against rice stripe virus (RSV). It has been shown that
RSV suppresses BR endogenous levels to elevate the accumulation of OsGSK2 [83]. So,
at least in the case of plant responses to RSV, BRs and JA can act synergistically in the
inhibition of the OsGSK2 kinase by BR. This inhibition promotes OsMYC2 activity and
JA-dependent defense responses.

All the discussions above evidence an important role of BR-JA crosstalk in the reg-
ulation of plant cell metabolism. A cross-interaction between the JA and BR signaling
pathways might be involved in the tight balancing between plant growth and resistance.
The data we obtained suggest a BR-JA antagonism in soybean plant leaves under optimal
conditions in response to treatment with exogenous ECS (Figure 4).

2.3. Effect of 24-Epicastasterone on Soybean Seed Weight

In our study, we evaluated the effect of exogenous ECS on soybean seed productivity
as a long-term effect of ECS cross-hormonal interactions. We measured that the average
weight of 100 seeds from the control plants corresponded to around 17.5 g, while the
treatment of soybean plants with an ECS content of 0.25 or 1 uM led to an increase in the
seed weight to almost 19 g for 100 seeds, an increase of about 8.5% (Figure 5). Thus, the
observed changes in the content of key soybean hormones induced by ECS treatment are
linked with an increase in soybean seed productivity.

*
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Figure 5. Influence of ECS treatment on average weight of soybean seeds. Plants were sprayed twice
with ECS on the 21st and 28th days after planting. A batch of 100 seeds was measured. Error bars
indicate standard error of the mean (SE). * p < 0.05 (Student’s t-test).
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3. Materials and Methods
3.1. Plant Materials and Growth Conditions

Soybean seeds (Glycine max L. cv. Terek) were obtained from the experimental station
of Poltava State Agricultural University (Ukraine). Seeds were sterilized by being soaked
in a 2.8% sodium hypochlorite (NaClO) solution for 5 min and then rinsed three times with
autoclaved distilled water for 2 min each, germinated on sterile filter paper, and placed
in 3 L plastic vessels filled with a growth substrate mixture—Polissya soil (70%), washed
sand (0.5-2.0 mm) (15%), and agroperlite (15%).

Plants were grown at a constant temperature of 25 °C in an artificial climate chamber
(14 h light: 10 h dark) under white light, which was provided by a continuous wide-spectrum
LED (Philips) at a 250 pmol m~2 s ~! intensity. The leaves of soybean plants grown in a
vegetation experiment were sprayed twice with ECS solutions (0.25 or 1 M) on the 21st
and 28th days after planting the seedlings. On the 35th day after sowing, the soybean
leaves were sampled from one tier of ten different plant vessels, mixed within each variant,
quickly crushed, and four samples of 100 mg of leaf tissue were selected and frozen in
liquid nitrogen for further determination of phytohormone content.

3.2. Treatment of Soybeans with ECS Solutions

ECS powder was synthetized in the laboratory of Volodymyr Khripach, an expert in
the synthesis of different BR types and many of their derivatives. The ECS was dissolved in
EtOH to obtain a 0.5 mM stock solution. The stock was diluted with distilled water to obtain
the 0.25 and 1 uM final solutions used for soybean treatments. The ECS concentrations
of 0.1 and 0.25 uM were chosen based on preliminary experiments with BR effects on
soybeans and the available published data on BR usage on different species. The leaves
of soybean plants grown in a vegetation experiment in plastic vessels were sprayed twice
with ECS solutions (0.25 or 1 uM) on the 21st and 28th days after planting the seedlings
using a hand sprayer; control plants were sprayed with a solvent, EtOH, diluted with water
as ECS stock. The EtOH concentration in the final ECS solutions or control treatments did
not exceed 0.01%.

3.3. Hormone Extraction and Quantification

Frozen samples (100 mg FW) were homogenized with liquid nitrogen in a mortar and
pestle. The phytohormones were extracted with a cold (—20 °C) methanol/water/formic
acid mixture (15/4/1, v/v), as described in [84]. Internal isotope-labeled standards (10 pmol
per sample) were added for hormone analysis: '3Cg-IAA (Cambridge Isotope Laboratories,
Tewksbury, MA, USA); 2H,-SA (Sigma-Aldrich, St. Louis, MO, USA); 2H;-PA, 2H3-DPA,
2Hs-ABA-GE (NRC-PBI, Saskatoon, SK, Canada); and 2H¢-ABA, 2Hs-JA, and others (Ol-
chemim, Olomouc, Czech Republic). The extracts were passed through reversed-phase
cation exchange SPE columns (Oasis-MCX, Waters, Milford, MA, USA) in a mixed mode
(mixed phase—cation exchange). The hormone fraction containing ABA, IAA, SA, and JA
was eluted with methanol. Hormone metabolites were analyzed using HPLC (Ultimate
3000, Dionex, Sunnyvale, CA, USA) coupled to a hybrid triple quadrupole/linear ion trap
mass spectrometer (3200 Q TRAP, Applied Biosystems, Waltham, MA, USA). The quan-
tification of hormones was carried out using the isotope dilution method with multilevel
calibration curves (R? > 0.99). Data processing was carried out with Analyst 1.5 software
(Applied Biosystems).

3.4. Estimation of Average Weight of Soybean Seeds

To evaluate the effect of the ECS treatment on the average weight of soybean seeds,
plants were harvested by hand and pods were separated from each plant. The pods were
dried in an oven at 35 °C for 24 h to maintain homogeneous seed moisture, as described by
Poudel [85]. A batch of 100 seeds was measured in one sample. Five biological samples per
variant were analyzed.
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3.5. Statistical Analysis

p values were calculated with a two-tailed Student’s f-test using Excel 2016 software.
The sample size and number of independent biological repeats for each type of analysis are
provided above.

4. Conclusions

The study of the ways of hormonal signaling in the regulation of plant metabolism is
being carried out today with the use of a wide range of modern methodological approaches.
The analysis of the effect of exogenous brassinosteroids on the content of key hormones in
plant tissues is aimed at further improving the knowledge of the mechanisms of hormonal
cross-interactions in the regulation of the metabolism of biological compounds in plant
cells. A more complete picture of the molecular mechanisms underlying such interactions
of phytohormones is an important task necessary to evaluate the complex and extensive
network of hormonal signals in plants, as well as its spatial and temporal features. This
process is complex and dynamic and requires further research at different levels of the
organization of living systems, both in model plants and in important crops.
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