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Abstract: Leaf inclination is one of the most important components of the ideal architecture, which
effects yield gain. Leaf inclination was shown that is mainly regulated by brassinosteroid (BR) and
auxin signaling. Here, we reveal a novel regulator of leaf inclination, auxin transporter OsPIN1b. Two
CRISPR-Cas9 homozygous mutants, ospin1b-1 and ospin1b-2, with smaller leaf inclination compared
to the wild-type, Nipponbare (WT/NIP), while overexpression lines, OE-OsPIN1b-1 and OE-OsPIN1b-2
have opposite phenotype. Further cell biological observation showed that in the adaxial region,
OE-OsPIN1b-1 has significant bulge compared to WT/NIP and ospin1b-1, indicating that the increase
in the adaxial cell division results in the enlarging of the leaf inclination in OE-OsPIN1b-1. The
OsPIN1b was localized on the plasma membrane, and the free IAA contents in the lamina joint
of ospin1b mutants were significantly increased while they were decreased in OE-OsPIN1b lines,
suggesting that OsPIN1b might action an auxin transporter such as AtPIN1 to alter IAA content and
leaf inclination. Furthermore, the OsPIN1b expression was induced by exogenous epibrassinolide
(24-eBL) and IAA, and ospin1b mutants are insensitive to BR or IAA treatment, indicating that the
effecting leaf inclination is regulated by OsPIN1b. This study contributes a new gene resource for
molecular design breeding of rice architecture.
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1. Introduction

Lamina joint inclination (leaf inclination/angle) between the lamina and vertical culm
is an important agronomic trait in rice (Oryza sativa L.), which is considered to reflect the
status of rice cultivation and grain yield [1]. In rice, leaf erectness has an important effect
on the capture of sunlight and CO2 diffusion efficiency. The reduction in leaf inclination
enables a single leaf to capture sunlight on both sides, and reduces mutual shielding of
leaves, improves light transmittance, and has stronger solar absorption efficiency, which is
more suitable for high-density planting [2]. The lamina joint is a ring-shaped tissue outside
the joint of the leaf blade and leaf sheath, which influences orientation of extension and leaf
inclination, and provides mechanical strength for the shape of leaf inclination. The cells on
the adaxial side of the lamina joint play an essential role in adjusting leaf inclination [3,4].
For instance, the increased growth of cells on the adaxial side of the lamina joint in ili1-D
causes an enlarged lamina inclination phenotype [5]. Conversely, CYC U4;1 promotes leaf
erectness by controlling the abaxial sclerenchyma cell proliferation [6].
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By previous report, BR biosynthesis or signaling transduction contributes significantly
to regulating the leaf inclination. Deficient mutant of OsDWARF4, a rate-limiting gene in
BR biosynthesis, displayed erect leaf inclination phenotype and enhanced grain yields [2].
The increased leaf erectness phenotypes also were found in several loss of function mutants
of BR biosynthesis-related genes, including brassinosteroid-deficient dwarf1 (brd1, deficiency
of OsDWARF), ebisu dwarf (d2, deficiency of D2/CYD90D2), and dwarf11 (d11, deficiency of
D11/CYP724B1) [7,8]. Furthermore, BR signaling defective mutant, d61, was also similar
to mutant of rice BRASSINOSTEROID INSENSITIVE 1 (OsBRI1 encodes a putative BR
receptor kinase), which have erect leaves [4]. The lamina joint bending of RNAi mutant of
the transcription factor OsBZR1 involved in the BR signaling pathway, was reduced [9].

In addition to brassinosteroid (BR), auxin signaling also plays a crucial role in con-
trolling leaf inclination, which may be closely related to differential cell elongation in
adaxial and abaxial in the lamina joint [6,10–12]. In auxin signaling, auxin early response
genes, including the OsIAA, OsGH3, and OsSAUR family were reported to be related to
regulating leaf inclination. OsIAA1-overexpressed plant increased the lamina joint bending
and reduced the plant height [11,13–16]. Further study demonstrated that an EMBRYONIC
FLOWER 1-like (EMF1-like) protein encoded by dwarf and small grain size 1 (DS1), physi-
cally interacted with OsARF11 to positively co-regulate plant height and leaf angle [17].
Recent study indicated that the auxin-induced expression of ILA1 gene is dependent on
OsARF6 and OsARF17 binding to the promoter region of ILA1 [18]. Loss-of-function dou-
ble osarf6 osarf17 mutants displayed reduced secondary cell wall thickness of lamina joint
sclerenchyma cells due to the decreased expression level of ILA1, affecting the support
weight of the flag leaf blade, finally an enlarged flag leaf angle and reduced grain yield
under dense planting conditions. As the major biosynthetic pathway of indole-3-acetic acid
(IAA), the indole-3-pyruvate (IPA) pathway, is catalyzed by the TRYPTOPHAN AMINO-
TRANSFERASE of ARA-BIDOPSIS (TAA) and YUCCA (YUC) families. FISH BONE (FIB)
encodes a homologue of the TAA protein, which plays a negative role in leaf inclination [19].
Loss-function of FIB leads to decreased IAA levels and altered auxin polar transport activity,
resulting in increased leaf inclination and smaller leaves.

In addition, polar auxin transport (PAT) regulates auxin distribution, which is largely
dependent on the three protein families, including influx carrier AUXIN/LIKE AUXIN
(AUX/LAX), efflux carrier PIN-FORMED (PIN), and bidirectional carrier ATP-binding
cassette family B (ABCB)/P-glycoprotein (PGP) [20–25]. The PIN proteins play crucial roles
in direction and rate of auxin flow [26]. However, the biological function of auxin trans-
porters regulating leaf inclination is not yet reported. In Arabidopsis thaliana, PIN1 is the first
reported auxin efflux carrier, and the atpin1 pin-formed inflorescence and defective devel-
opment of vascular tissue [20,27–30]. Among the twelve members of PIN in rice, OsPIN1 is
composed of four members, OsPIN1a, OsPIN1b, OsPIN1c, and OsPIN1d [31]. It was reported
that OsPIN1b functions in regulating tillering, adventitious root emergence, and seminal
roots elongation [32,33]. OsPIN2-mediated auxin transport from the shoot to the root-shoot
junction, resulted in the reduced plant height, the increased tiller numbers, and the in-
creased tiller angle [34]. OsPIN5b is located in endoplasmic reticulum (ER) and involves in
intracellular auxin transport to regulate tiller number, panicles length, and yield [35,36].
OsPIN9 was involved in the development of tiller bud [37]. OsPIN3t (OsPIN10a/OsPIN3a)
was connected with auxin polar transport and drought response [31,38,39]. In this study,
we revealed that the homozygous ospin1b mutants have smaller lamina inclination, whereas
OsPIN1b overexpression lines have larger lamina inclination compared to WT/NIP. Addi-
tionally, OsPIN1b responded to BR and auxin signaling, suggesting that OsPIN1b plays a
role in regulating lamina inclination under crosstalk between both signaling.

2. Results
2.1. Identification of ospin1b Mutants and OsPIN1b Overexpression Lines

By previous reports, OsPIN1b showed that it regulates root, shoot inflorescence de-
velopment, and tillering [32,33]. However, the other roles of OsPIN1b in growth and
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development of rice remain unknown. In order to investigate thoroughly the biological
function of OsPIN1b, we constructed two independent mutant lines of ospin1b, ospin1b-
1, and ospin1b-2 by the CRISPR-Cas9 genome editing system. Two specific guide RNA
(gRNA) sequences were designed in the first exon, acting as gene edit targets (Supplemen-
tary Figure S1A). The gRNA1 targeting sequence deleted one cytosine “C” at 418 bp of
OsPIN1b open reading frame in ospin1b-1, while it inserted one cytosine “C” at 491 bp in
the targeting sequence of gRNA2, and resulted in the variation in amino acid sequence and
premature termination of translation. For ospin1b-2, in gRNA1 targeting sites inserted one
adenine “A” at 418 bp, and inserted one thymine “T” at 494 bp in the targeting sequence
of gRNA2, which leaded to similar consequences with ospin1b-1 (Figure 1A, Supplemen-
tary Figure S1B–D). Furthermore, OsPIN1b overexpression lines were constructed using
pCAMBIA1300-sGFP (Figure 1B), and two homozygous OE-OsPIN1b-1 and OE-OsPIN1b-2,
which have a 1.5-fold and 2.5-fold expression level compared to OsPIN1b of WT/NIP by
RT-qPCR analysis (Figure 1E), were used in subsequent studies. By statistical analysis, the
leaf inclinations in ospin1b mutants were reduced ~30%, while in OsPIN1b, overexpression
lines were increased ~140% compared to WT/NIP (Figure 1C,D). These results suggest that
OsPIN1b might contribute to regulating leaf inclination.
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Figure 1. Characterization of ospin1b mutants and OsPIN1b overexpression lines. (A) Construction
of two ospin1b mutants by CRISPR-Cas9. Gray boxes, black lines, and white boxes represent exons,
introns, and untranslated region, respectively; + and H indicates the insertion sites in ospin1b mutants,
− and H indicates the deletion site in ospin1b mutants. ATG and TGA presents start codon and stop
codon. (B) Structure of OsPIN1b overexpression vector pCAMBIA1300-sGFP. (C,D) Phenotypes and
statistics analysis of the leaf inclination in the second leaf of WT/NIP, ospin1b mutants, and OsPIN1b
overexpression lines for 3-week-old seedling. The angle between the red lines represents the leaf
inclination. The statistical data are mean ± SD (n = 3) and * indicates the significant difference among
WT/NIP, ospin1b, and OE-OsPIN1b (** p < 0.01; Student’s t-test). Scale bar = 5 cm. (E) qRT-PCR
analysis of OsPIN1b expression in WT/NIP and OsPIN1b overexpression lines. Three independent
biological replicas were performed here. OsACTIN was used as an internal control. The data are
mean ± SD (n = 3) and * indicates the significant differences between WT/NIP and OE-OsPIN1b
(* p < 0.05, ** p < 0.01; Student’s t-test).

2.2. Characterization of Complementary ospin1b Lines

To further confirm the relationship between OsPIN1b and leaf inclination phenotype
in rice, the complementary ospin1b lines, C-ospin1b-1 and C-ospin1b-2, were constructed by
transforming 35S:OsPIN1b-sGFP into ospin1b-1 or ospin1b-2. Compared with the ospin1b
mutants, the flag leaf inclination of C-ospin1b-1 or C-ospin1b-2 were significantly increased
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(Figure 2A,B), indicating that OsPIN1b rescued the phenotype of less leaf inclination of
ospin1b-1 or ospin1b-2. The results further provide genetic evidence for OsPIN1b controlling
leaf inclination.
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Figure 2. Identification of complementary ospin1b lines. (A,B) The phenotype and statistics analysis
of flag leaf inclination in WT/NIP, ospin1b-1, ospin1b-2, complementary ospin1b lines for 4-month-old,
C-ospin1b-1, and C-ospin1b-2. The angle between the red lines represents the flag leaf inclination.
The statistical data are mean ± SD (n = 3) and ** indicates significant differences between WT/NIP,
ospin1b-1, ospin1b-2, C-ospin1b-1, and C-ospin1b-2 (** p < 0.01; Student’s t-test). Scale bar = 10 cm.

2.3. OsPIN1b Constitutively Expressed in Each Tissue Including Lamina Joint

To further investigate whether OsPIN1b is involved in lamina joint development to
regulate leaf inclination, the expression pattern of OsPIN1b was observed using ProOsPIN1b-
GUS transgenic rice lines. GUS staining results show that OsPIN1b is expressed in each
tissue, including roots, stem, leaf, leaf sheath, flower, and seed (Figure 3A–G); qRT-PCR
results also showed that OsPIN1b was widely expressed in each organ or tissue, which
was consistent with GUS staining. Additionally, the expression level of OsPIN1b was
significantly increased in leaf and young panicle (Figure 3H). Furthermore, OsPIN1b was
expressed in lamina joint from one to four weeks (Figure 3I), suggesting that OsPIN1b
might be involved in the regulation of each stage of leaf inclination in rice.

2.4. OsPIN1b Localized on Plasma Membrane and OsPIN1b Reduced the Free IAA Accumulation

In Arabidopsis, hydrophilic analysis of PIN demonstrates that there is a fairly high
degree of similarity in both transmembrane hydrophobic domains located at the N- and
C-terminus of the proteins, while high differentiation in the central hydrophilic region [40].
Additionally, previous research established that OsPIN proteins have a similar structure
to AtPIN [31]. To investigate the function of OsPIN1b, we performed transmembrane
structural domain prediction of OsPIN1b. The results show that OsPIN1b possesses a
central segment with a long hydrophilic loop and two transmembrane hydrophobic regions
in the N-terminal and C-terminus of the protein, which are consistent with the structure of
a PIN carrier protein (Supplementary Figure S2). To further confirm whether OsPIN1b is
located on the plasma membrane, 35S: OsPIN1b-sGFP and the plasma membrane marker
pm-rbCD3-1008 were transiently co-expressed and transformed into the leaf epidermal cells
of Nicotiana benthamiana and rice protoplasts [41]. Both experiments indicate that OsPIN1b
is actually localized on the plasma membrane (Figure 4A,B). Taken together, these results
suggest that OsPIN1b might have an auxin transport function similar to AtPIN1, which
was characterized as a first putative auxin export carrier [29].
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Figure 3. Expression pattern of OsPIN1b gene. GUS staining in each tissue of ProOsPIN1b: GUS
transgenic rice. Ten biological replicas were analyzed for each tissue. Scale bars = 1 mm. (A) Mat-
uration region of primary root, (B) elongation zone, meristem zone, and root cap of primary root,
(C) stem, (D) leaf, (E) transverse section of leaf sheath, (F) floral organ, (G) the germinated seed for
3 days. (H) qRT-PCR analysis of relative expression level of OsPIN1b in different tissues of WT/NIP.
R: root; S: stem; L: leaf; R-S: root-stem junction; FL: flag leaf; YP: Young panicle. OsACTIN was used
as an internal control. The data are mean ± SD (n = 3) and asterisks indicate significant differences in
different tissues (* p < 0.05, ** p < 0.01; Student’s t-test). (I) qRT-PCR analysis of relative expression
level of OsPIN1b in lamina joint at different stages of WT/NIP from one to four weeks. The three
independent biological repeats were performed in the qRT-PCR analysis. OsACTIN was used as an
internal control. The data are mean ± SD (n = 3) and asterisks indicate the significant differences in
different stages (** p < 0.01; Student’s t-test).

In order to explore if OsPIN1b affects the leaf inclination through altering of OsPIN1b-
mediated IAA contents, we analyzed free IAA contents in the lamina joints of WT/NIP,
ospin1b mutants, and OsPIN1b overexpressed lines at one week of the seedling stage. The
IAA content of lamina joint of ospin1b-1 and ospin1b-2 was increased by 32 and 220%,
respectively, compared with the WT/NIP, while the IAA content in lamina joint of OE-
OsPIN1b-1 and OE-OsPIN1b-2 were decreased compared with WT/NIP (Figure 4C). The
results suggest that the OsPIN1b functions in decreasing the free IAA accumulation in
lamina joint, which is similar with OsARF19 [42].

2.5. OsPIN1b Enhances Adaxial Cell Division of Pulvinus to Increase Leaf Inclination

Increasing evidences show that the altered pulvinus development effects leaf inclina-
tion [4,43]. In order to reveal how OsPIN1b controls leaf inclination on the cell level, the
flag leaf inclination and the adaxial and abaxial surface of pulvinus were observed and
measured in WT/NIP, ospin1b-1, ospin1b-2, OE-OsPIN1b-1, and OE-OsPIN1b-2. The results
show that the flag leaf inclination of the mutant ospin1b-1 and ospin1b-2 was smaller, and the
length of the adaxial side of pulvinus in ospin1b-1 or ospin1b-2 was shorter, whereas flag leaf
inclination and adaxial length of pulvinus showed opposite phenotypes in OE-OsPIN1b,
compared to in WT/NIP (Figure 5A–C). To further confirm the pulvinus morphology, the
adaxial side of pulvinus in WT/NIP, ospin1b-1 and OE-OsPIN1b-1 were observed using
scanning electron microscopy. As showed in Figure 5D, the adaxial region of OE-OsPIN1b-1
has significant bulge compared to WT/NIP and ospin1b-1. These results further support
that the enlarging leaf inclination in OE-OsPIN1b-1 is due to the increase in the adaxial
cell division of its pulvinus. By previous reports, the asymmetric proliferation and expan-
sion of adaxial and abaxial cell of pulvinus leaded the variation in leaf inclination, which
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were induced by BR or IAA frequently, suggesting that OsPIN1b-mediated leaf inclination
variation might also be associated with BR or IAA [5,6,42,44].
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sGFP fusion construct and plasma membrane marker pm-rbCD3-1008 were simultaneously co-
expressed in Nicotiana benthamiana epidermal cells (upper) and rice protoplasts (lower). From left to
right, represents green fluorescence of 35S:OsPIN1b-sGFP, red fluorescence of membrane marker pm-
rbCD3-1008, bright-field images, and yellow merged fluorescence, respectively. Scale bars = 10 µm.
(C) Auxin contents in lamina joints of 7-day-old WT/NIP, ospin1b-1, ospin1b-2, OE-OsPIN1b-1, and
OE-OsPIN1b-2. The three biological repeats were used in these experiments. The data are mean ± SD
(n = 3) and asterisks indicate the significant differences in the above-mentioned lines (** p < 0.01;
Student’s t-test).

2.6. BR or Auxin Induces OsPIN1b Expression, and the Expression of the Genes Related Both
Signaling Reduces in ospin1b Mutants

BR and auxin are the two important phytohormones affecting leaf inclination by
previous report. Most of the mutants related auxin signaling with altered leaf inclination
also showed BR response. To clarify whether OsPIN1b regulating leaf inclination is also
involved in BR and auxin signaling, first, the expression level of OsPIN1b in WT/NIP
seedlings were tested with the different time under these phytohormones treatments. The
results show that OsPIN1b was induced by BR and IAA, indicating that the expression of
OsPIN1b in rice might be regulated by these signaling pathways (Figure 6A). Then, the
expression levels of the five genes related BR and auxin signaling or biosynthesis, OsBRI1,
D2, D11, OsARF19, and OsIAA1 were detected in WT/NIP, ospin1b, and OE-OsPIN1b.
OsBRI1, a membrane-bound receptor kinase, with leucine rich repeat (LRR) perceives
BR signaling [45–48]. Compared to wild-type, loss-of-function mutants of OsBRI1, d61-1
and d61-2 are insensitive to BR, with erect leaves and dwarf culms [4,49]. Shrinking leaf
inclination phenotypes were observed in deletion mutants of BR biosynthesis genes D2
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(CYP90D2) and D11 (CYP724B1) [8,50]. Compared with the wild type, the OsBRI1, D2
and D11 expression levels in the lamina joint of ospin1b mutants was significantly down-
regulated, and the opposite trend was observed in OsPIN1b overexpression lines (Figure 6B),
suggesting that OsPIN1b regulating leaf inclination was involved in BR signaling. In
addition, the expressions of the auxin early response gene OsIAA1 and OsARF19 encoding
auxin response factor, which was included in auxin signaling (Figure 6B), was significantly
up-regulated in OsPIN1b overexpression lines; and their overexpression lines with increased
leaf inclination [14,42] were consistent of OE-OsPIN1b lines, implying that OsPIN1b might
also participate in the auxin signal transduction pathway.
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Figure 5. OsPIN1b regulates pulvinus. (A) Pulvinus of flag leaf of WT/NIP, ospin1b-1, ospin1b-2,
OE-OsPIN1b-1, and OE-OsPIN1b-2. (B) The statistics analysis of flag leaf inclination in WT/NIP,
ospin1b-1, ospin1b-2, OE-OsPIN1b-1, and OE-OsPIN1b-2 lines. The data are mean ± SD (n = 3). The
data are mean ± SD (n = 3) and asterisk indicates the significant differences (** p < 0.01; Student’s
t-test). (C) The statistics analysis of the adaxial and abaxial side of pulvinus length in of WT/NIP,
ospin1b-1, ospin1b-2, OE-OsPIN1b-1, and OE-OsPIN1b-2. Scale bar =1 mm. The data are mean ± SD
(n = 3) and asterisk indicates the significant differences (** p < 0.01; Student’s t-test). (D) The adaxial
surface of the pulvinus in WT/NIP, ospin1b-1 and OE-OsPIN1b-1 by SEM. The red box indicates cells
on the adaxial surface of the pulvinus in WT/NIP, ospin1b and OE-OsPIN1b. Scale bar = 1 mm.
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Figure 6. OsPIN1b regulates leaf inclination by activating BR and auxin signaling. (A) qRT-RCR
analysis of the OsPIN1b expression under BR and IAA treatments with different time. The data are
mean ± SD (n = 3), ** indicate significant difference at p < 0.01 (Student’s t-test). (B) The expression
level of genes related to biosynthesis and signal transduction of BR and auxin in rice lamina joints of
WT/NIP, ospin1b-1, ospin1b-2, OE-OsPIN1b-1, and OE-OsPIN1b-2 by qRT-RCR. OsACTIN was used as
an internal control. The data are mean ± SD (n = 3), * indicates significant difference at p < 0.05, and
** indicates statistical significance at p < 0.01 (Student’s t-test).

2.7. The Decreased Sensitivity to BR and IAA in ospin1b Mutants

To further understand if OsPIN1b controls leaf inclination through the BR and auxin
pathway, the lamina inclinations of the WT/NIP, ospin1b mutants and OE-OsPIN1b lines
were measured under BL, IAA, and BL + IAA treatments, respectively. Phenotypic obser-
vation showed that under BL treatment, leaf inclination of WT/NIP, ospin1b mutants and
OE-OsPIN1b lines were more enlarged than control, with the increasing in BL concentration
(Figure 7A). In particular, leaf inclination of WT/NIP increased by 264%, ospin1b mutants
increased by 173%, and OE-OsPIN1b increased by 460% under 1 µM of BL concentration
compared with non-BL treatment (Figure 7B). These results suggest that the sensitivity of
ospin1b mutants to BR was reduced in terms of leaf inclination, which was caused by the loss
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of OsPIN1b function. On the other hand, the leaf inclination of WT/NIP, ospin1b mutants,
and OE-OsPIN1b lines were effectively increased with the increase in IAA concentration
(Figure 7C). Under 100 µM IAA, the mean leaf inclination of WT/NIP, ospin1b mutants, and
OE-OsPIN1b lines were increased by nearly 102%, 88%, and 129%, respectively, compared
with each untreated sample (Figure 7D). The leaf inclination of ospin1b mutants also showed
that the decrease in sensitivity to IAA. Furthermore, the leaf inclination of each line to
the application of both BL and IAA was much larger than single BL or IAA (Figure 7E,F).
Distinctly, after applied 1 + 100 µM of BL and IAA together, the leaf inclinations were
increased nearly 629% and 738% in WT/NIP and OE-OsPIN1b, while the increase is less
than 540% in ospin1b mutants. Overall, these results suggest that OsPIN1b might participate
in crosstalk between BR and auxin signaling in regulating leaf inclination.
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Figure 7. Variation in leaf inclination by BR and IAA treatments. (A) Leaf inclination response
to 24-eBL treatment in WT/NIP, ospin1b-1, ospin1b-2, OE-OsPIN1b-1, and OE-OsPIN1b-2 for 7-day-
old seedling. (B) The statistical analysis of (A). (C) Leaf inclination response to IAA treatment.
(D) The statistical analysis of (C). (E) Leaf inclination response to 24-eBL + IAA treatment. The
concentrations of BL + IAA from top to bottom were 0 + 0, 0.01 + 1, 0.1 + 10, and 1 + 100 µM,
respectively. (F) The statistical analysis of (E). The data in (B,D,F) are mean ± SD (n = 10 independent
plants). Scale bars = 1 cm.

In addition, according to a previous BR sensitivity report, coleoptile elongation and
root length were promoted by BR treatment in rice [4]. Hence, we compared the length
of coleoptiles and roots in WT/NIP, ospin1b, and OE-OsPIN1b lines under BR treatment
(Supplementary Figure S3). All lines increased the coleoptile length and shortened the
root length, and showed a dose-dependent pattern under 24-eBL treatment. However, the
ospin1b mutants was less sensitive to 24-eBL than WT/NIP or the OsPIN1b overexpression
lines, especially in their roots in response to BR. Taken together, the above data further
confirm that the other biofunctions of OsPIN1b are also related to BR signaling.

3. Discussion
3.1. OsPIN1b Plays a Positive Role in Enlarging Leaf Inclination via Regulating Auxin Transport
in Rice

The distribution and level of auxin in plant tissues play an important role in plant
growth and development [51]. As an auxin transporter, the PIN family mainly facili-
tates auxin distribution and flow direction [26–28,52,53]. The loss of function of auxin



Plants 2023, 12, 409 10 of 15

transporters may lead to abnormal plant phenotypes [54]. This study revealed that the
IAA content in lamina joint of ospin1b-1 and ospin1b-2 was significantly increased, while
decreased in OE-OsPIN1b lines (Figure 4C). The leaf inclination in ospin1b mutants was
reduced, while in OsPIN1b, overexpression lines were increased compared to WT/NIP
(Figure 1C,D). The above results imply that OsPIN1b positively regulates leaf inclination
through altering auxin transport. Previous studies of auxin transporters in rice mostly
focused on root development and tiller, our study demonstrated that OsPIN1b also plays
a role in regulating rice leaf inclination [24,25,33]. Recently, the Gmpin1abc and Gmpin1bc
mutant edited by CRISPR-Cas9 showed a compact architecture with smaller petiole angles
than wild-type plants, which is similar with our results [55].

3.2. OsPIN1b Participates in Adaxial Cell Enlargement of Lamina Joint through Complex
Regulatory Mechanism of Auxin and BR

In our study, the enlarging of OE-OsPIN1b leaf inclination is caused by the increasing
in adaxial cell numbers in the lamina joint, while the phenotype in the ospin1b mutant
line was opposite (Figure 5C). Previous studies showed that BR and IAA both regulate
leaf inclination by changing the unbalanced development between the adaxial and abaxial
cells of the lamina joint. In rice, INCLINATION1 (ILI1) and ILI1 binding bHLH (IBH1)
antagonistically regulate the adaxial cell elongation in lamina joint by interacting with
OsBZR1, a transcription factor involved in BR signaling [5]. The U-type cyclin CYC U4;1
was highly expressed in the lamina joint. The proliferation of sclerenchyma cells at the
abaxial side of lamina joint is regulated by the BR regulation pathway, which leads to the
erect leaves [6]. Leaf inclination1 (LC1) encodes an indole-3-acetate (IAA) amide synthetase
OsGH3-1, whose functional gain mutant lc1-D exaggerated leaf angles due to increased cell
elongation on the paraxial surface of the lamina joint [16]. Over-expression lines of auxin
response factor 19 (OsARF19) in rice, shows an enlarged lamina inclination due to increased
adaxial cell division [42]. These reports are similar to the OsPIN1b results, suggesting that
they have a certain correlation in regulating lamina inclination through altering adaxial
cell division.

OsPIN1b can be significantly induced by BR and IAA (Figure 6A). It is proven that
phytohormone BR and IAA are the key reasons for OsPIN1b affecting leaf inclination. Fur-
thermore, we analyzed the expression of BR or IAA biosynthesis and signal transduction-
related genes in each transgenic line of OsPIN1b, and found that the expression of these
genes was significantly inhibited in the mutants, but induced in the OsPIN1b overexpress-
ing line, which was consistent with the insensitive response of ospin1b to BR and auxin
(Figures 6B and 7A–F). This is similar to the previous research that the BR signal transduc-
tion receptor BRI1 positively regulates the leaf inclination of rice, and the leaf inclination
increases in the overexpression line of auxin response factor OsARF19 [4,42]. In addition,
previous studies found that auxin stimulates the response of BR by increasing the levels
of the brassinosteroid receptor BRI1 [11]. OsARF19 increases leaf inclination by positive
regulation of OsGH3-5 and OsBRI1 [42]. Aiming at regulation of leaf inclination, OsARF4
(auxin response factor 4) plays a role between auxin and BR signaling pathways [56]. In this
study, 24-eBL greatly promoted the leaf inclination, while IAA slightly enlarged the leaf
inclination with the increase in their concentration (Figure 7A–F). BR induced much higher
leaf inclination than IAA, and a synergistic effect was observed between BR and IAA, which
accords with our results [12,43]. These results prove that crosstalk occurs between auxin
and BR during OsPIN1b, regulating lamina joint development and leaf inclination.

3.3. ospin1b Reduced the Plant Height and Leaf Inclination and Formed the Ideal Plant
Architecture

Rice is one of the most important food crops, feeding more than half of the world’s
population. With the steady growth of population, human demand for rice will increase
rapidly, which requires the cultivation of excellent rice varieties with ideal plant configu-
ration. Just as the first “green revolution”, the grain yield was significantly improved by
planting lodging-resistant wheat and rice semi-dwarf varieties [57]. Thus, crop plants with
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desirable architecture, such as lodging-resistant semi-dwarf varieties are able to produce
much higher grain yields. Leaf angle is one of the most important plant architecture pa-
rameters affecting light interception, photosynthetic efficiency, and planting density [1,2].
Our research found that ospin1b lines reduced leaf inclination (Figures 1C,D and 5A,B) and
decreased plant height (Figure S4), which is similar to the optimized architecture of rice.
Thus, our study provides a novel perspective on the mechanism that auxin regulates the
leaf inclination.

4. Materials and Methods
4.1. Plant Materials and Growth Conditions

Rice seeds of wild-type, mutant, and transgenic lines were submerged (soaked) in
water for 3 days in darkness of 37 ◦C, then the most uniformly germinated seeds were
scattered on a floating net. Rice seedlings were cultured in nutrient solution (pH 5.5) [58]
and grown under a 12/12 h light/dark cycle in a greenhouse of chamber at 28 ◦C/22 ◦C
for 30 days.

For exogenous phytohormone treatments of OsPIN1b expression, 7-day-old WT/NIP
rice seedlings were treated with different exogenous phytohormone (10 µM of IAA, 10 µM
of 24-eBL, epibrassinolide). For the sensitivity test of BR, the WT/NIP, ospin1b mutants, and
OsPIN1b-overexpression lines were cultured in nutrient solution (pH 5.5) supplemented
with 0.01, 0.1, 1 µM 24-eBL for 7 days in a greenhouse at 26 ◦C for 24 h dark per day,
respectively. The length of root and coleoptile per line was measured and photographed.

4.2. Construction and Identification of ospin1b Mutants

CRISPR-Cas9-mediated genome editing technology was used to obtain ospin1b mutant
lines. Cas9/gRNA target site selection and vector construction were conducted according
to previous reports [59]. The OsPIN1b-pRGEB32 vector was introduced into Agrobacterium
strain EHA105 and transformed into WT/NIP calli, as described previously [60]. Homozy-
gous ospin1b mutants were screened by PCR analysis of the Cas9 label and DNA sequencing
of the OsPIN1b specific editing site. The primer sequences used for plasmid construction
and mutant identification are listed in Table S1.

4.3. Construction and Transformation of Binary Vectors

The open reading frame of OsPIN1b was amplified from the cDNA of WT/NIP, and the
2.6 kb promoter of the OsPIN1b was amplified from WT/NIP genomic DNA. 35S:OsPIN1b-
sGFP and ProOsPIN1b:GUS vectors were constructed as described previously [25]. These
vectors were introduced into Agrobacterium strain EHA105 and transformed into WT/NIP
calli. Primer sequences are listed in Table S1.

4.4. Subcellular Localization of OsPIN1b

The full-length coding region of OsPIN1b was inserted into a binary pCAMBIA1300
vector, which was labeled with synthetic green fluorescent protein (sGFP). The 35S:OsPIN1b-
sGFP and plasma membrane marker pm-rbCD3-1008 were co-transfected into the Nicotiana
bentamiana epidermal cells by Agrobacterium transformation and the isolated rice pro-
toplasts by polyethylene glycol/calcium transfection and incubated overnight [61]. The
fluorescent signals of the expressed proteins were observed by two-photon fluorescence mi-
croscopy (Zeiss LSM710; Carl Zeiss, Oberkochen, Germany), as described previously [24].

4.5. β- Glucuronidase (GUS) Staining

Each tissue (seeds germinated, 3 d; roots, 7 d; stems and leaves, 14 d; flowers, and
2 month of ProOsPIN1b:GUS transgenic rice were incubated in GUS staining buffer for
2 h at 37 ◦C, and then these tissues were soaked in 95% ethanol to remove chlorophyll
and surface dye. Images of GUS-stained tissues were observed by stereomicroscope (Leica
MZ95 microscope, Leica, Wetzlar, Germany).
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4.6. RNA Extraction, RT-PCR, and Real-Time Quantitative RT-PCR (qRT-PCR) Analyses

Total RNA was extracted from various tissues of rice WT/NIP seedlings, lamina joint
of different periods, and different exogenous phytohormone-treated plants; seedlings of
wild-type, ospin1b mutant, and OE-OsPIN1b by using the TIANGEN RNAprep pure Plant
Kit (TIANGEN BIOTECH, Beijing, China) according to the manufacturer’s protocol. RNA
was quantified using a spectrophotometer (NaNoDrop 1000; Thermo Scientific, United
States). Total RNA (2 µg) was used to synthesize cDNA by using Hifair® II1 st Strand
cDNA Synthesis SuperMix for qPCR (gDNA digester plus), and qRT-PCR was conducted
using Hieff® qPCR SYBR Green Master Mix (No Rox) (Yeasen Biotechnology, Shanghai,
China) in a LightCycler® 480 (Roche, Basel, Switzerland). The cycle conditions were as
follows: 95 ◦C for 5 min, one cycle; 95 ◦C for 10 s, 58 ◦C for 20 s, and 72 ◦C for 20 s, 40 cycles;
qRT-PCR was performed using three independent experiments with biological triplicates
for each sample. OsACTIN (Os03g50885) was used as an internal control to calculate the
fold change in expression. The primer sequences used for qRT-PCR are listed in Table S2.

4.7. Exogenous Hormone Response Assay

Epibrassinolide (24-eBL, designated as BL; Solarbio Science and Technology, Beijing,
China) was dissolved in DMSO, and indoleacetic acid (IAA; Sigma, Darmstadt, Germany)
was in ethanol, to proper concentrations as storage solutions. For the hormone treatments
of leaf inclination, WT/NIP, ospin1b mutants, and OsPIN1b-overexpression lines were
cultured in darkness for 7 days in a exogenous hormone-free nutrient solution, and then the
lamina joints were cut with a length of about 3 cm and soaked in ddH2O containing 0, 0.01,
0.1, and 1 µM 24-eBL (0, 1, 10, and 100 µM IAA; 0 + 0, 0.01 + 1, 0.1 + 10, and 1 + 100 µM
24-eBL + IAA) for 3 days under same conditions, respectively. The leaf inclination in each
group was measured and photographed. All experiments were independently repeated
three times.

4.8. Scanning Electron Microscopy (SEM)

Scanning electron microscopy was performed as described previously [44]. About
1 cm lamina joints of flag leaf of a two-month plant were excised from WT/NIP, ospin1b
mutants and overexpression lines of rice. Samples were observed with an S-3000N scanning
electron microscope (Hitachi, Tokyo, Japan).

4.9. Endogenous IAA Contents Analysis by HPLC

The lamina joints (about 1 cm in length, 100 mg) of 7-day-old seedlings were ground to
powder in liquid nitrogen. Extracting IAA and measuring its content refer to the previous
research [62] using a Rigol L3000 high-performance liquid chromatograph with a C18
reversed-phase chromatographic column (250 mm × 4.6 mm, 5 µm). These Samples were
analyzed by HPLC-electrospray ionization-tandem mass spectrometry at Suzhou Keming
Biotechnology Company (Suzhou, China).

4.10. Accession Numbers

Sequence data from this article can be found in the NCBI Database or Rice Genome
Annotation Project under the following accession numbers: OsPIN1b, LOC_Os02g50960; Os-
BRI1, LOC_Os01g52050; D2, LOC_Os01g10040; D11, LOC_Os04g39430; OsARF19,
LOC_Os06g48950; OsIAA1, LOC_Os01g08320; and OsACTIN, LOC_Os03g50885.

4.11. Primer Sequences

The primers used are shown in Tables S1 and S2.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants12020409/s1, Figure S1: Construction of ospin1b mutants
via CRISPR-Cas9 system; Figure S2: Structure analysis of OsPIN1b protein; Figure S3: Sensitivity test
of BR; Table S1: Primers Used for Vector Construction; Table S2: Primers Used for qRT-PCR Analysis.

https://www.mdpi.com/article/10.3390/plants12020409/s1
https://www.mdpi.com/article/10.3390/plants12020409/s1
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