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Abstract: Crop breeding must achieve higher rates of genetic gain in grain yield (GY) and yield
stability to meet future food demands in a changing climate. Optimal contributions selection (OCS)
based on an index of key economic traits should increase the rate of genetic gain while minimising
population inbreeding. Here we apply OCS in a global spring oilseed rape (canola) breeding program
during three cycles of S0,1 family selection in 2016, 2018, and 2020, with several field trials per cycle
in Australia and Canada. Economic weights in the index promoted high GY, seed oil, protein in meal,
and Phoma stem canker (blackleg) disease resistance while maintaining plant height, flowering time,
oleic acid, and seed size and decreasing glucosinolate content. After factor analytic modelling of
the genotype-by-environment interaction for the additive effects, the linear rate of genetic gain in
GY across cycles was 0.059 or 0.087 t ha−1 y−1 (2.9% or 4.3% y−1) based on genotype scores for the
first factor (f1) expressed in trait units or average predicted breeding values across environments,
respectively. Both GY and yield stability, defined as the root-mean-square deviation from the regres-
sion line associated with f1, were predicted to improve in the next cycle with a low achieved mean
parental coancestry (0.087). These methods achieved rapid genetic gain in GY and other traits and
are predicted to improve yield stability across global spring canola environments.

Keywords: genetic gain; overall performance; grain yield; yield stability; canola; rapeseed; Brassica
napus; pedigree BLUP; estimated breeding values; optimal contributions selection

1. Introduction

The rate of gain in grain yield (GY) in the world’s major grain crops ranges from 0.9 to
1.6% y−1 and should at least double to meet the expected global demand for grain crops in
2050 [1–3]. In some regions, GY is stagnating or declining due to climate change [2,4]. Plant
breeders face a major challenge to accelerate genetic gain in GY during the forthcoming
period of global population growth and climate change [1,5], and new methods of rapid
breeding should involve wide-scale phenotyping, accurate selection, and international
exchange of elite varieties [6].

One potential method of accelerating genetic gain in self-pollinating crops is the use
of rapid cycles of early-generation recurrent selection [7]. Such methods were attempted
previously and were successful for one or a few traits [8] but fell out of favour due to
their lack of application to commercial crop breeding, where multiple traits were under
selection. The aim of this study was to field-test stochastic models of early-generation
recurrent selection in a self-pollinating crop [9,10], which showed great promise for high
genetic gain in multiple economic traits. This field validation of genetic gain occurred
within a commercial spring oilseed rape (canola) breeding program.
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Genetic gain in plant breeding programs can be assessed by a variety of methods [11]
and the most common method is the evaluation of released varieties in historical variety
trials [1]. Genetic gains in crop breeding programs have been estimated in stochastic
models [9,10,12] or in ex post facto analysis of recurrent selection programs in crops such as
maize, oats, barley and rice [5,11,12], but rarely are genetic trends measured within active
crop breeding programs.

Assessment of genetic gain may be based on linear mixed models [13,14], but these are
subject to bias in estimating genetic and non-genetic (environmental) trends [15]. Bias can
be avoided by fitting fixed regression terms for genetic and non-genetic trends [16]. The
predicted breeding value (PBV) of an individual is influenced by the environment in which
the phenotype is measured, and a trend in the environment over time may be confounded
with a trend in PBV [17]. Measures on relatives in highly connected ancestral pedigrees
help to avoid this possibility. Garrick [18] used multiplicative mixed models (MMM) to
partition phenotypic trends into genetic and environmental components. If the genetic
trend and environmental trends are in opposite directions, or the genetic trend persists after
incorporating a year effect, this supports the existence of a genetic trend over years [19,20].

Variety-by-environment interaction effects will also influence genetic gain over time
and may be accounted for in MMM with factor analytic (FA) modelling of the variety-by-
environment effects. Stefanova and Buirchell [21] used MMM-FA analysis of historical
variety trials of GY in narrow-leafed lupins and showed that the variety scores for the first
factor (f1) of an FA(2) model were a measure of variety performance and scores for the
second factor (f2) were a measure of variety stability across the environments. Scores for
f1 and f2 were expressed in trait units in Figures 3 and 4 of Stefanova and Buirchell [21].
The rate of genetic gain in GY over 31 years from the release of ‘Unicrop’ to ‘Mandelup’
was 17 kg ha−1 y−1 based on f1 scores expressed in trait units in Figure 4 of Stefanova
and Buirchell [21]. However, when based on the average variety predicted means across
environments, the estimate increased to 20 kg ha−1 y−1 in Figure 3 of Stefanova and
Buirchell [21].

Smith and Cullis [22] used a similar approach to measure overall performance (OP)
across environments, which was based on f1 scores in MMM-FA models expressed in trait
units. OP was equivalent to a generalised main effect of variety performance when the
scale differed across environments [22]. Variety stability, also expressed in trait units, was
the root-mean-square deviation (RMSD) from the regression line associated with f1. OP
and RMSD were deemed to be the two main drivers in the selection process [22].

In this study, we compare two methods of estimating rates of genetic gain for GY
and other traits in an actively evolving spring oilseed rape breeding program based on
MMM-FA models: the average predicted breeding values (PBV) across environments, and
OP. For the first time in crop breeding, we use RMSD as a measure of yield stability in
a selection index. Our estimate of genetic trends across cycles is based on an individual
model (or animal model) and depends on sufficient depth and connectedness of pedigrees
across cycles [20]. We accumulate data across cycles and estimate heritability and genetic
correlation between traits at the end of each cycle. In previous studies, the average accuracy
of breeding values for a low heritability trait was high (r > 0.80) in non-inbred lines based
on an individual model [23].

Knowledge of current genetic trends in the breeding program allows timely decisions
to be made to optimise the program, such as rapid responses to changes in technology,
markets, or the environment [24]. For example, the weighting on heat stress tolerance
among other traits such as GY and disease resistance in the economic index can be adjusted
to meet future anticipated increases in global temperatures [10].

Optimal contributions selection (OCS) was first used in self-pollinating crops in
stochastic models of the additive effects in rapid cycles of early generation selection [9,10,25].
OCS in MateSel [26] includes a crossing plan which optimises parental contributions and
balances genetic gain for the index under a number of possible constraints or weightings
on factors that affect genetic diversity, inbreeding rate and inbreeding level [27,28]. Impor-
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tantly, MateSel permits the breeder to predict the genetic gain for each trait and achieved
parental coancestry in the next cycle. This allows for timely adjustments in the breeding
program for changes in future desired gains, such as adjustments to weightings on traits in
the economic index or changes to selection targets.

In S0,1 family selection, the S0-derived S1 family provides an estimate of the breeding
value of the S0 individual for selection purposes [20]. In stochastic models, rapid cycles
of S0,1 family selection (two years per cycle) with OCS and optimised mating designs
improved the rate of long-term genetic gain and reduced the rate of population inbreeding
compared to truncation selection and random mating among selected parents [10]. For
practical reasons, the S0,1 family seeds are grown in plots in field trials, and the agronomic
and harvested grain traits recorded on these plots are used to predict the breeding value
of the S0 individuals. Accurate PBV (r > 0.80) were generated on S0 individuals for GY,
disease resistance, agronomic traits, and seed quality in stochastic models of S0,1 family
selection based on a deep and highly interconnected pedigree [9,10].

In this field study, depending on seed availability, each S0,1 family was grown in
replicated plots at multiple sites and in multiple regions; we grew concurrent field trials
of the same S0,1 families in Australia and Canada (Figure 1). We included data for GY
and several major economic traits including flowering time, plant height, seed quality
traits, and resistance to Phoma stem canker or blackleg disease caused by Leptosphaeria
maculans. Resistance to blackleg disease is important for secure production of oilseed rape
in Australia, Canada, and Europe [29,30].
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2018CA1 at Sun Valley, Manitoba, Canada) and (b) in Australia (trial code 2018AU2 trial at Ruther-
glen, Victoria, Australia). For trial codes, see Table 1. 

 

  

Figure 1. Concurrent 2018 field trials of S0,1 families of spring canola located (a) in Canada (trial
code 2018CA1 at Sun Valley, Manitoba, Canada) and (b) in Australia (trial code 2018AU2 trial at
Rutherglen, Victoria, Australia). For trial codes, see Table 1.

Augmented S0,1 family selection exploits complex relationships between genotypes
within and between cycles [10] to generate accurate PBV in an individual model analysis
with phenotypic and relationship data from all cycles of selection [17]. As a side bonus, the
method also results in near-homozygous lines after two or three cycles that are ready for
commercial evaluation [10]. Genomic relationship information can be added at any time
and combined with pedigree relationship information in single-step genomic prediction [31].
New germplasm can be added to the program in any cycle. In some crops, it may be
necessary to bulk seeds from single S0 plants over 2 selfing generations (S0,2 bulks) to
generate sufficient seed for phenotyping [20], such as in common bean [32].
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Table 1. (a) Cycle number, trial code, trial location and country of each trial site, the number of
plots, ranges, rows, genotypes (including number tested in a single replicate) in each trial, and
(b) connectivity of genotypes across trials in the study. Genotypes defined as S0 were tested in field
trials as S0,1 bulks; likewise F2 genotypes were tested as F2,3 bulks, S2 genotypes were tested as S2,3

bulks, and so on. State abbreviations (Australia): Western Australia (WA), Victoria (VIC). Province
abbreviation (Canada): Manitoba (MB).

(a)

Number of Genotypes in Trial

Cycle Trial Code Trial Location Country Ranges Rows Plots Total Single
Replicate S0 S1 S2 S4 F2 F3

1 2014AU1 West Dale, WA Australia 24 89 2136 1557 1080 668 250 0 0 577 52
2 2016AU1 York, WA Australia 24 68 1632 1175 898 511 0 569 0 11 55
2 2016AU2 Rutherglen, VIC Australia 24 68 1632 1174 899 511 0 568 0 11 55
3 2018AU1 York, WA Australia 24 88 2112 1919 1769 1565 0 151 166 13 0
3 2018AU2 Rutherglen, VIC Australia 24 88 2112 1912 1771 1566 0 151 166 13 0
3 2018CA1 Sun Valley, MB Canada 24 88 2112 1919 1772 1566 0 151 166 13 0
4 2020AU1 Williams, WA Australia 24 40 960 674 436 653 0 0 0 0 0
4 2020AU2 Wonwondah, VIC Australia 24 38 912 625 386 604 0 0 0 0 0
4 2020CA1 Sun Valley, MB Canada 24 34 816 555 308 528 0 0 0 0 0

(b)

Connectivity of Genotypes across Trials

Cycle Trial Code 2014AU1 2016AU1 2016AU2 2018AU1 2018AU2 2018CA1 2020AU1 2020AU2 2020CA1

1 2014AU1 1556 3 3 2 2 2 1 1 1
2 2016AU1 3 1175 886 13 13 13 5 5 5
2 2016AU2 3 886 1174 13 13 13 5 5 5
3 2018AU1 2 13 13 1911 1911 1911 4 4 4
3 2018AU2 2 13 13 1911 1912 1912 4 4 4
3 2018CA1 2 13 13 1911 1912 1919 4 4 9
4 2020AU1 1 5 5 4 4 4 674 625 548
4 2020AU2 1 5 5 4 4 4 625 625 548
4 2020CA1 1 5 5 4 4 9 548 548 555

In this study, we use MMM-FA analysis of multi-environment trials across cycles to
assess the rate of genetic gain for GY and several economic traits inside an active global
spring oilseed rape (canola) breeding program during three cycles of augmented S0,1 family
selection. We compare the rate of genetic gain in GY across cycles by two methods, OP and
average PBV across environments. For the first time in crop breeding, we include yield
stability across global environments based on RMSD in the economic index. This study
also represents the first major attempt to integrate spring oilseed rape germplasm across
the southern and northern hemispheres.

2. Materials and Methods
2.1. Terminology

We use the traditional definitions in crop breeding of ‘F1’ as progeny of crosses
between near-homozygous founder varieties, and ‘S0’ as progeny of crosses between
heterozygous parent plants. F1 progeny are heterozygous and genetically uniform, and
segregation occurs in the F2 generation after self-pollination. S0 progeny are non-inbred and
therefore heterozygous and heterogeneous, that is, each S0 progeny is a unique genotype
and segregation occurs in the S0 for multiple traits. Each plant in the ancestral pedigree
is a unique genotype and has a relationship with every other genotype in the pedigree,
whether the genotype is derived from crossing or selfing (Figure 2). S0,1 represents the
selfed progeny from an S0 plant [20].
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Figure 2. Two cycles of augmented S0,1 family selection showing genotypes in the pedigree. In cycle 1,
inbred founder parents from Australia (AU) were crossed with parents from Europe (EU) or Canada
(CA), and their F1 progeny were intercrossed to generate S0 and F2 progeny (circles). Individual S0

and F2 progeny were selfed and the self-seed was sown in S0,1 and F2,3 plots in cycle 1 field trials
(rectangles). Phenotypic data from S0,1 and F2,3 plots in cycle 1 field trials were used to calculate the
predicted breeding value of S0 and F2 progeny. Crossing in cycle 2 was based on remnant S0,1 or
F2,3 seed of superior S0 and F2 progeny. A similar process occurred in cycle 2, with phenotypic data
from S0,1 and S2,3 plots used to assess the predicted breeding value of S0 and S2 progeny genotypes,
respectively. From cycle 2 onwards, selection was based on an economic index composed of all traits,
and mating designs were derived from optimal contributions selection.

In this study, the term ‘cycle’ refers to a cycle of recurrent selection, that is, the
generation interval (L) as used in the breeder’s equation [20]. One cycle in this study takes
two years, which includes the time taken to cross the parent plants, self the S0 to generate
S0,1 families, phenotype the S0,1 families in the field trials and the laboratory, and select
parents for crossing to begin the new cycle (Figure 2). One or more selfing generations
may occur within a cycle. In this study, S0,1 family selection [20] is augmented by taking
forwards S2 self progeny of parent plants in addition to S0 cross progeny for phenotyping
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in the next cycle (in field plots of S2,3 or S0,1 families), and this increases the number of
collateral relatives and pedigree linkages across cycles of selection (Figure 2).

2.2. Founder Population, Crossing and Selfing to Begin Cycle 1

The founder population included 32 southern hemisphere (SH) elite spring canola lines
from Australia (AU1 to AU32) and 32 northern hemisphere (NH) elite spring canola lines
from Canada (CA1 to CA16) and Europe (EU1 to EU16) which were intercrossed in 32 pair-
wise combinations (SH × NH) in 2012. Crossing occurred in glasshouses at The University
of Western Australia Field Station, Shenton Park, Western Australia. Their F1 progeny
were intercrossed from January to June 2013 in 16 combinations (F1 × F1). For example,
the F1 of AU2 × EU2 was intercrossed with the F1 of CA5 × AU5 to generate S0 progeny
D1 (Figure 2, Online Resource S1). All female parents were selected for triazine tolerance
and therefore the breeding population was uniformly tolerant of triazine herbicides due
to the cytoplasmic control of this trait [33]. This avoided any potential bias in the project
stemming from segregation among progeny for herbicide tolerance.

In cycle 1, S0 and F2 progeny were grown in the field in Chile from October 2013 to
February 2014 where selfing occurred inside pollination bags on single plants. S0,1 and F2,3
families were returned to Australia where they were sown in the cycle 1 field trial in May
2014 (Figure 2). Recurrent selection cycles continued every two years and 70 new migrants
(35 from SH and 35 from NH) were added during cycles 2, 3 and 4 as F1 progeny of the
crosses SH × NH (Online Resource S2).

2.3. Cycles of Augmented S0,1 Family Selection

The cycle 1 field trial (trial code 2014AU1) was grown in Western Australia from May
to November 2014 and included 668 S0,1 families derived from F1 × F1 matings augmented
with 577 F2,3 families derived from F2 seed harvested from each F1 parent plant (Table 1). In
addition, several S1,2 and F3,4 families were evaluated in 2014 (Table 1). Remnant seeds of
S0,1, F2,3, S1,2, and F3,4 families were stored for potential future use as parents to begin cycle
2. Crossing to begin cycle 2 was among selections from cycle 1 progeny which performed
well for GY and grain quality traits in trial 2014AU1, and 170 matings were made by the
breeder to combine different pedigrees in male and female parents. Crossing decisions to
begin cycles 3, 4, and 5 were based on optimal contributions selection (OCS) as described
below in Section 2.8 ‘Optimal Contributions Selection and Crossing’.

The process of augmented S0,1 family selection continued in two-year cycles with
phenotyping of S0,1 and S2,3 families in multiple field trials in Australia and Canada in
cycles 2 (2016), 3 (2018) and 4 (2020) (Table 1, Online Resource S2). There were two field
trials in cycle 2, three in cycle 3, and three in cycle 4. Trials in Canada were located at
Sun Valley, Manitoba (trial codes 2018CA1 and 2020CA1), and in Australia were located
in canola cropping zones near Perth, Western Australia (trial codes 2014AU1, 2016AU1,
2018AU1, and 2020AU1) and in northern Victoria (trial codes 2016AU2, 2018AU2 and
2020AU2). Sites identified as AU2 were ‘disease nurseries’ sown on straw of the previous
year’s canola crop to promote high levels of Phoma stem canker (blackleg) disease (Table 1a).
Connectivity of genotypes, that is, the occurrence of the same genotypes in different trials,
was high across trials within cycles but low across trials between cycles (Table 1b).

2.4. Pedigree Structure and Relationships

As required for pedigree analysis in ASReml-R v4 [34], each genotype was described
in the pedigree file with the name of the genotype, the names of its male and female parents
and its level of selfing (‘fgen’). This was preceded in the file by rows which showed the
same information for each parent. The pedigree included ancestors of founder varieties
and control varieties. For most genotypes, fgen was the default value of zero because
selfing was explicitly described in the pedigree file (the male and female parents were
identical). For most inbred ancestral varieties fgen was set at 5 and for those derived from
doubled haploids fgen was set at 10. The pedigree file was converted into an additive
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genetic relationship matrix and an inverse relationship matrix was formed for analysis in
ASReml-R v4 [34]. The pedigree was highly interconnected within and across four cycles
as a result of selfing and crossing in augmented S0,1 family selection (Figure 2, Online
Resource S1).

Inbreeding coefficients (F) (Online Resource S3) and coefficients of coancestry ( f )
(Online Resource S4) were calculated from the additive genetic relationship matrix (A-
matrix). F was calculated as the A-value on the diagonal of the A-matrix minus 1, and f
was calculated as 1

2 the A-value of the 2 parent genotypes.

2.5. Field Trials and Phenotyping

S0 and S2 genotypes were evaluated as S0,1 or S2,3 families in field plots (Figure 2)
with one or two replicates per site and at multiple trial sites per cycle depending on seed
availability. Phenotypes of the S0,1 or S2,3 families were used to predict the breeding value
of the S0 and S2 individuals for selection purposes [20], as described below in Section 2.6
‘Data Analysis’. Historical triazine tolerant cultivars were also included in some trials as
controls with one or two replicates per site, with name and year of release: Karoo (1996),
ATR Beacon (2002), ATR Stubby (2003), Bravo TT (2004), Tornado TT (2004), Banjo TT (2005),
Crusher TT (2010), ATR Gem (2011), ATR Stingray (2011), Sturt TT (2012), ATR Wahoo
(2013), ATR Bonito (2013), and ATR Mako (2015) [35].

Partially replicated field trials [36] were designed in DiGGer (available from http:
//nswdpibiom.org/austatgen/software/, accessed 9 January 2023) with the default spatial
model at sites in Australia and Canada (Table 1). Each site was grown under natural rainfall
with date of sowing and agronomic treatments similar to commercial canola production in
the region. Each field plot was 6-m long and six rows wide (1.8 m centre-to-centre) and
sown with 3 g seed per plot. Plots were cut back to 4 m prior to harvest. Control cultivars
and S0,1 and S2,3 families with sufficient seed were replicated at each site (Table 1). The
proportion of plots at a site composed of single-replicate genotypes varied from 37.7% to
83.9% over the four cycles (Table 1).

During the growing season at some sites, plots were scored for days to 50% flowering
(DTF) and plant height at maturity (PlHt, cm). At disease nursery sites (AU2), plots were
also scored for blackleg resistance at maturity. The blackleg (BL) disease resistance score
was based on the number of plants that were visibly dead or lodging as a result of blackleg
disease in the plot at pod filling stage, and BL scores ranged from 1 (very susceptible, no
plants survived blackleg disease) to 9 (very resistant, all plants survived) (Figure 3). Two
assessors scored each plot and the average of their scores was recorded as the BL score on
the plot.

Field trial plots were harvested by small plot harvester and the weight of harvested
seed per plot was converted to grain yield per hectare (GY, t ha−1). Harvested grain from
each plot was stored in a dry environment and one hundred seeds were randomly extracted
from harvest bags to measure 100 seed weight (SW100, g).

Samples of harvested seed from each plot (5 g) were assessed by near-infrared ra-
diation spectroscopy for moisture content (%), seed oil (Oil, % of seed, adjusted to 6%
moisture), protein in meal (ProM, % of meal, adjusted to 10% moisture), glucosinolates
(GSL, µmole g−1), and oleic acid (OL, % of total fatty acids) after pre-calibration against
standard seed samples with known levels of moisture, Oil, ProM, GLS, and OL [37].

2.6. Data Analysis

The statistical models follow those of previous authors [21,38–42] as shown in Online
Resource S5 and explained below.

http://nswdpibiom.org/austatgen/software/
http://nswdpibiom.org/austatgen/software/
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2.6.1. Preliminary Single Site Analysis

Univariate single-site analyses were conducted in ASReml-R v4 [34] which produces
residual maximum likelihood (REML) estimates of the variance parameters [43] and best
linear unbiased predictions (BLUP) [44] of the random effects. Univariate analyses were
general linear mixed models which followed the structural specifications presented in
Gilmour et al. [45] (Online Resource S5).

The spatial variation of each trait within each trial was assessed following the mixed
model approach described by Gilmour et al. [46] and Stefanova et al. [47]. Trends along
rows and columns were assessed in an autoregressive residual model (AR1 × AR1) and
significant linear row and column trends and/or random row and column effects were
fitted to the model following Stefanova and Buirchell [21] and Beeck et al. [38]. The effects
of local spatial trends were assessed using a plot of residuals, the sample variogram, row
and column faces of the empirical variogram, and REML likelihood ratio tests (LRT) [47].

‘Genotype’ was considered a random genetic effect since large numbers of progeny
genotypes were randomly assigned to field trials, there was no prior selection by the
breeder, and the goal was to rank progeny genotypes for relative performance. Random
effects were assessed for significance by the Z-test of variance components and fixed effects
were assessed by the significance of the Wald statistic.

Finally, the additive genetic relationship matrix was added to the model to estimate
the additive and nonadditive genetic effects (Online Resource S5). The subsequent improve-
ment in the model was assessed by REML LRT, Akaike information criterion (AIC) [48],
and Bayesian information criterion (BIC) [49]. Possible outliers were assessed and removed.

2.6.2. Base Univariate Model Across-Sites

The base model univariate analysis across-sites was a MMM and included the additive
genetic relationship matrix and significant fixed and random terms from the single site
analysis but ignored covariances between sites, following Stefanova and Buirchell [21]
and Beeck et al. [38]. ‘Site’ was considered a fixed effect. The main effect of ‘Genotype’
was excluded and ‘Genotype × Site’ was included as a random effect since the goal was
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to rank genotypes for relative performance at each site (Online Resource S5). Significant
spatial terms from the single-site analyses were transferred to the base model. Variance
components were estimated for additive and nonadditive genetic effects at each site and
narrow-sense heritability for each trait at each site was calculated as the ratio of the additive
variance component divided by the sum of additive, nonadditive, and error variance
components. The average accuracy of the additive effects (ri) was calculated for the i-th
individual for each trait at each site, following Gilmour et al. [45] for the animal model.

2.6.3. Factor Analytic Modelling of Each Trait across Sites

Across-sites analysis of each trait proceeded with an MMM-FA model (Online Re-
source S5) following the approach in Stefanova and Buirchell [21] and Beeck et al. [38]
where ‘Site’ was considered a fixed effect and ‘Genotype × Site’ a random effect. MMM-FA
included the additive genetic relationship matrix and significant fixed and random spatial
terms from the base model. Both additive and non-additive genetic effects were assessed in
the MMM-FA when significant [38]. Analysis proceeded sequentially in ASReml-R from
the base model to first-order factor FA(1), second-order factor FA(2), and so on until the
optimum MMM-FA model was chosen based on a non-significant or trivial improvement in
the REML LRT, AIC and BIC tests or percentage variance accounted for in the next higher
order model.

The PBV for an individual was calculated by averaging the predicted variety means
across environments based on the optimum MMM-FA model [21].

Genetic correlations of additive effects of genotypes across sites were obtained from
the optimum MMM-FA model.

2.6.4. Genotype Overall Performance and Stability

The average PBV for an individual across environments was a measure of genotype
performance across environments based on the optimum MMM-FA model, following the
approach for variety predicted means across environments [21]. A second measure of
genotype performance across environments was overall performance (OP) which was
based on f1 scores in the optimum MMM-FA model and expressed in trait units. OP was
deemed to be a generalised main effect of variety performance when scale differed across
environments [22].

We compared two measures of stability of genotype performance across environ-
ments: scores for the f2 from the optimum MMM-FA model [21] and the root-mean-square
deviation (RMSD) from the regression line associated with f1 in the optimum MMM-FA
model [22].

2.7. Economic Index

The PBV for each trait from the optimum MMM-FA model for each genotype was
weighted by an economic value and summed across traits to form an economic index
for each genotype in the ancestral pedigree. An example of a hypothetical genotype is
provided in Table 2.

Firstly, the total GY of each genotype was calculated as the sum of the PBV GY of the
genotype and population mean GY, expressed in t ha−1. The total GY of the genotype was
multiplied by the average contemporary market value of harvested grain in US$ t−1 to find
the contribution of the GY of the genotype to the economic index in US$ ha−1 (Table 2).

The economic weight for Oil was based on the bonification rate for oil in Australia
where there is a 1.5% grain price premium (or deduction) for each 1% seed oil above (or
below) the base seed oil content of 42% [50]. The economic weight for +1 unit PBV Oil is
converted into US$ t−1 (US$8.25 t−1) based on grain price US$550 t−1. The contribution
of Oil to the economic index in US$ ha−1 was calculated as the PBV Oil of the genotype
× economic weight for +1% Oil (US$8.25 t−1) × total GY of the genotype (2.343 t ha−1)
(Table 2).
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Table 2. Calculation of economic index based on economic weights for traits to achieve desired genetic gains in a hypothetical genotype in cycle 4. The assumed
grain price is US$550 t−1. The economic weight of a trait for +1 unit predicted breeding value (PBV) is shown as % grain price and in US$ t−1. The contribution of a
trait to the economic index in US$ ha−1 is calculated by multiplying the economic weight for +1 PBV unit (US$ t−1) × PBV of the individual in units of trait × total
GY of individual (t ha−1).

Trait a
Population

Mean
(Units of Trait)

Range of PBV in Population
(Units of Trait) PBV of the

Individual
(Units of Trait)

Total GY of
Individual

(t ha−1)

Grain
Price

(US$ t−1)

Economic Weight for
+1 PBV Unit

Contribution to
Economic Index
of the Individual

(US$ ha−1)

Calculation of Economic Index (US$ ha−1)
(Based on Economic Weight for +1 PBV in US$ t−1)

Min Max % Grain Price US$ t−1

GY 2.020 −0.910 +0.644 +0.322 2.342 550.00 $1288.10 (Total GY of Individual) × (Grain Price)
Oil 44.757 −6.673 +3.686 +1.383 1.50% $8.25 $26.72 (PBV Oil) × (Total GY) × (Econ Wt +1 unit PBV)

ProM 41.088 −4.062 +5.508 +0.554 3.00% $16.50 $21.41 (PBV ProM) × (Total GY) × (Econ Wt +1 unit PBV)
DTF 80.180 −13.507 +15.639 +2.213 −1.00% −$5.50 −$28.51 (PBV DTF) × (Total GY) × (Econ Wt +1 unit PBV)
PlHt 122.675 −29.380 +26.952 +3.561 −0.50% −$2.75 −$22.93 (PBV PlHt) × (Total GY) × (Econ Wt +1 unit PBV)
BL 5.089 −1.996 +2.671 +1.297 2.00% $11.00 $33.41 (PBV BL) × (Total GY) × (Econ Wt +1 unit PBV)

GSL 11.297 −5.637 +16.325 −1.749 −1.50% −$8.25 $33.79 (PBV GSL) × (Total GY) × (Econ Wt +1 unit PBV)
SW100 0.325 −0.030 +0.039 +0.024 0.20% $1.10 $0.06 (PBV SW100) × (Total GY) × (Econ Wt +1 unit PBV)

OL 61.670 −8.132 +8.939 +2.328 0.00% $0.00 $0.00 (PBV OL) × (Total GY) × (Econ Wt +1 unit PBV)
RMSD GY 0.096 0.000 +0.411 +0.215 −20.0% −$110.00 −$55.39 (PBV RMSD GY) × (Total GY) × (Econ Wt +1 unit PBV)
Economic index excluding RSMD GY $1352.06 sum of above excluding RMSD GY (t ha−1)
Economic index including RMSD GY $1296.67 sum of above including RMSD GY (t ha−1)

a Trait abbreviations and units: GY = grain yield (t ha−1), DTF = days to 50% flowering, PlHt = plant height (cm), Oil = seed oil (%) at 6% moisture, ProM = protein in meal (%) at 10%
moisture, GSL = glucosinolates (µmole g−1 seed), OL = oleic acid (%), BL = Phoma (blackleg) disease score from 1 (very susceptible) to 9 (very resistant), SW100 = 100 seed weight (g),
and RMSD GY = root mean standard deviation for GY (t ha−1).
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The economic weights on ProM, DTF, PlHt, GSL, OL, SW100, and BL in the economic
index were subjectively assigned and modified to achieve the desired outcomes in the
next cycle of the optimised mating design. Positive weights were assigned for traits where
genetic gains were desired upwards (ProM, BL, SW100), and negative weights where
genetic gains downwards were desired (DTF, PlHt, GSL), or zero weights where no change
was desired (OL) (Table 2).

2.8. Optimal Contributions Selection and Crossing

The inter-crossing of founders to begin cycle 1 is described above in Section 2.2
‘Founder Population, Crossing and Selfing to Begin Cycle 1’. Crossing to begin cycle 2 was
among selections from cycle 1 progeny which performed well for GY and grain quality
traits in trial 2014AU1, and 170 matings were made by the breeder with an emphasis to
combine different pedigrees in male and female parents (Online Resource S2).

Crossing designs for cycles 3, 4, and 5 were based on OCS in the implementation
platform ‘MateSel’ for the construction of an optimised mating design [26]. The selection
and mate allocation method used previously [9,10,28] involves a function whose key
components relate to genetic gain and genetic diversity. The optimisation of this function
results in OCS. The practical implementation of this method is based on an evolutionary
algorithm, with weightings and constraints easily invoked to ensure practical relevance,
precise control of the response to each trait in the economic index, and other requirements of
progressive breeding programs. MateSel dictates which individuals to select and the actual
mating allocations and/or selfings to be made, based on the breeder’s identification of
candidates for crossing and the maximum permissible number of crosses for each candidate.

MateSel was instructed to design 250 matings (to initiate cycles 3 and 4) and 150 mat-
ings (to initiate cycle 5) (Online Resource S2) from candidates based on a conservative
balance strategy of target 45 degrees or higher, where 0 degrees gives full emphasis to
short term genetic gain in index and 90 degrees gives full emphasis to minimizing parental
coancestry [26]. Each genotype was limited to a maximum of 30 matings which was
normally the maximum number of remnant self seeds. Remnant self seeds of selected
genotypes were sown in the glasshouse as parent plants for crossing, based on the mating
design derived from MateSel.

2.9. Assessment of Genetic Gain

Two types of genetic gain were assessed in this study — genetic gain in the breeding
population over cycles, and genetic gain in historical cultivars included as controls in the
trials over year of release.

The rate of genetic gain in the breeding population was estimated from the linear
regression over cycles of PBV or OP of candidate genotypes in cycles 2, 3, and 4 from the
optimum MMM-FA analysis which included all data from cycles 2, 3, and 4.

The rate of genetic gain in Australian historical cultivars was assessed by regressing
the PBV or OP of historical cultivars based on the optimum MMM-FA analysis over their
year of release. The Australian historical cultivars are listed in Section 2.5 ‘Field Trials and
Phenotyping’ (above).

3. Results
3.1. Environmental Trends over Cycles and Countries

On average, 0.6% of plots at each trial site were invalid for various reasons and were
excluded from the analysis of GY (Online Resource S6).

The predicted site mean GY from the MMM-FA base model varied in Australia and
Canada from site to site and cycle to cycle with no significant environmental trend in
GY over cycles (Figure 4, Online Resource S6). Mean GY across cycles 2, 3, and 4 was
2.02 t ha−1 and fluctuated from 0.33 t ha−1 (trial 2018AU2, affected by late-season drought)
to 3.57 t ha−1 (trial 2020AU1) (Figure 4, Online Resource S6).
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Figure 4. Lack of an environmental trend in site predicted grain yield (GY, t ha−1) ± standard error
in field trials in Australia and Canada across cycles 2 (C2 2016), 3 (C3 2018) and 4 (C4 2020) from
the optimum MMM-FA model of the genotype by environment effects (see Table 2). The slope of
the linear regression of the predicted site mean GY across cycles was not significant (NS). For a
description of trial codes, see Table 1.

The average DTF was 104.1 days in Australia and 44.3 days in Canada, which reflects
the different responses of spring canola to the winter-spring growing season in Australia
and the summer growing season in Canada (Online Resources S6, S7). Following this trend,
the average PlHt was higher in Australia (129.2 cm) than in Canada (103.1 cm) (Online
Resources S6, S7). Average Oil was 46.9% in Australia and 40.4% in Canada, in contrast to
average ProM which was 39.8% in Australia and 43.6% in Canada. The average GSL was
11.3 µmole g−1, the average OL was 61.7%, the average SW100 was 0.325 g and the average
BL score was 5.1 (Online Resources S6, S7). There were no significant environmental trends
over cycles in site mean values of any trait except a very small upward trend in SW100
(Online Resources S6, S7).

3.2. Genetic Relationships of Genotypes within and across Cycles
3.2.1. Connectivity of Genotypes within and across Cycles

The connectivity of genotypes between trials within cycles was high (each S0,1 bulk
was tested at multiple sites within cycles) but low across cycles (between 1 and 9 control
cultivars were common across cycles) (Table 1b). However, the connectivity of the pedigree
across cycles was high as a result of the use of both cross-and-self-sibs, that is, S2 self-
progeny (evaluated as S2,3 families) and S0 cross progeny (evaluated as S0,1 families), and
this increased the accuracy of additive genetic values in the base model (Online Resource S6).
A small portion of the pedigree shows this high level of connectivity between cycles as a
result of selfing and crossing of parent plants (Online Resource S1). The connectivity of
genotypes between cycle 1 and the subsequent cycles was very low (Table 1b), and hence
this cycle was excluded from further analysis.

3.2.2. Inbreeding Coefficients and Coefficients of Coancestry

The inbreeding coefficient (F) of individuals in the pedigree increased as the level of
selfing increased and the coefficient of coancestry ( f ) between genotypes also increased as
selfing increased in parent genotypes. For example, the F-values of individuals A1 and A2
in the pedigree diagram (Online Resource S1) were 0.0 and 0.5, respectively, as expected for
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F1 and F2 progeny of elite homozygous founder lines AU1 × EU1 (Online Resource S3).
Founder lines AU1 and EU1 are assumed to be unrelated because the breeding programs in
the southern hemisphere and northern hemisphere were mostly genetically isolated prior
to 2000 [51]. Cycle 1 genotype C1 is an S0 progeny of the cross between two F1 genotypes
A1 × B with F-value 0.019 (Online Resource S3), which reflects a small level of inbreeding
between the two Australian founder lines AU1 and AU3 or between the European founder
lines EU1 and EU3 prior to their use as founder parents. Self-progeny of C1 increased in
F-value as the level of selfing increased from 0.509 in S1 genotype C2, 0.755 in S2 genotype
C3, through to 0.969 in S5 genotype C6 (Online Resources S1, S3).

The F-values in S0 cross progeny varied greatly between crosses depending on the
level of common ancestors in the parents, but independently of the F-values in the parent
genotypes. Cycle 4 S0 genotype Q (progeny of cross J4 × O3) had an F-value 0.326 due
to several ancestors in common between parents J4 and O3 prior to cycle 4, but cycle 4 S0
genotype P (progeny of cross C6 × O2) had a much lower F-value 0.077 as a result of very
few common ancestors between parents C6 and O2, despite the fact that one parent C6 had
a very high F-value of 0.969 (Online Resources S1, S3).

The coefficient of coancestry ( f ) among full-sib progeny increased as the selfing level
in parent genotypes increased. For example, the f -value of cycle 1 full-sib progeny G1 and
H1 was 0.262 (Online Resource S4), which is close to the expected value of 0.25 because
the parent plants were F1 genotypes and not inbred and not related. The f -value is slightly
elevated due to a small level of inbreeding between the two Australian founder lines AU5
and AU6 or between the Canadian founder lines CA5 and CA6 prior to their use as founder
parents (Online Resources S1, S4). However, the f -value of full-sibs J1 and K in Cycle 2
was higher than expected at 0.389 due to partial inbreeding in their S1 parents E2 and H2
(Online Resource S4).

J1 is a cross progeny and E3 is a self-progeny of their common parent, E2, and J1
and E3 are cross-and-self-sibs with an expected f -value equivalent to full-sibs. The actual
f -value between J1 and E3 was 0.388 due to partial inbreeding in their common S1 parent
E2 (Online Resources S2, S4).

Coefficients of coancestry between offspring of different parents in the population
varied greatly. The f -value between cycle 4 S0 genotypes P and Q (0.262) was relatively high
due to the presence of several common ancestors (especially O1 and J1), but the f -value
between cycle 4 S0 genotypes J1 and I (0.080) was low since they shared no recent common
ancestors (Online Resources S2, S4).

In summary, coefficients of coancestry between genotypes were often higher than
expected due to selfing in parent genotypes, and this was helpful to increase the accuracy
of PBV. Likewise, the presence of cross-and-self-sibs in addition to full-sibs and many other
collateral relatives helped to increase the accuracy of additive genetic values (Online Re-
source S6) and increased pedigree connections across cycles. High coefficients of coancestry
induced by selfing within cycles did not necessarily contribute to population inbreeding
because optimized crossing designs favoured matings between unrelated genotypes with
OCS in MateSel [26].

3.3. Analysis of Sites and Cycles
3.3.1. Base Across-Sites Model

Significant spatial trends fitted in the single-site models were included in the MMM
base model for each trait (Online Resource S6). In the base model, there were significant
additive genetic variance components for GY at all sites except trial 2018AU2, and the
average narrow-sense heritability for GY ranged widely across sites from 0.02 to 0.62 (mean
0.40) (Online Resource S6). Non-additive genetic variance for GY averaged 30.7% of total
genetic variance and was similar in both Australia and Canada. Average narrow-sense
heritability for other traits ranged from 0.44 (BL) to 0.83 (OL) (Online Resource S6).

Average accuracy (ri) of additive genetic values across all individuals and all sites for
GY in the base model was 0.826 in S0 genotypes and 0.843 in S2+ genotypes (an increase of
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0.027). Average ri of additive genetic values in S0 genotypes exceeded 0.8 for all traits and
exceeded 0.9 for DTF and OL (Online Resource S6).

3.3.2. Optimum MMM-FA Models

For GY, the optimum MMM-FA model was FA(2), where the percentage genetic
variance accounted for (%VAF) was 68.3% and there was a trivial increase in %VAF in the
FA(3) model (Table 3). FA(2) was the optimum model for most traits except SW100 and
DTF where the optimum model was FA(1) (Table 3). The average PBV for an individual
across environments was generated from the optimum MMM-FA model for each trait at
the end of cycle 4.

Table 3. Evaluation of MMM-FA models of the genotype × environment interaction effects for
each trait, and number of estimated variance components in each model. The optimum model a

was selected on the basis that it increased percentage genetic variance accounted for (%VAF), and
significantly increased REML log-likelihood (RLL) and decreased Akaike information criterion (AIC)
and Bayesian information criterion (BIC). The base model included information from the additive
genetic relationship matrix and significant fixed and random terms.

MMM-FA Model Number of Estimated Variance Components RLL AIC BIC %VAF

Grain yield (t ha−1)
Base 44 8455.622 −16,823.2 −16,497.2
FA(1) 53 8635.382 −17,164.8 −16,772.1 63.31

FA(2) a 59 8647.610 −17,177.2 −16,740.1 68.33
FA(3) 65 8656.074 −17,182.2 −16,700.5 70.97

Days to 50% flower
Base 25 −11,863.700 23,777.41 23,950.84

FA(1) a 31 −11,642.660 23,347.32 23,562.38 96.22
FA(2) 34 −11,638.730 23,345.45 23,581.33 96.40

Plant height (cm)
Base 24 −15,452.09 30,952.18 31,110.93
FA(1) 29 −15,392.17 30,842.34 31,034.16 31.83

FA(2) a 31 −15,382.06 30,826.13 31,031.18 93.52
Seed oil (%) at 6% moisture

Base 34 −8169.558 16,407.12 16,649.38
FA(1) 41 −7836.272 15,754.54 16,046.69 81.46

FA(2) a 45 −7825.844 15,741.69 16,062.33 94.57
Protein in meal (%) at 10% moisture

Base 33 −7462.394 14,990.79 15,225.92
FA(1) 40 −7189.898 14,459.80 14,744.80 32.24

FA(2) a 44 −7188.877 14,465.75 14,779.26 84.99
Glucosinolates (µmole g−1 seed)

Base 33 −12,630.21 25,326.41 25,561.54
FA(1) 40 −12,121.96 24,323.92 24,608.93 75.34

FA(2) a 44 −12,118.56 24,325.12 24,638.63 94.77
Oleic acid (% of total fatty acids)

Base 22 −5873.146 11,790.29 11,938.68
FA(1) 27 −5556.775 11,167.55 11,349.66 90.85

FA(2) a 29 −5554.522 11,167.04 11,362.64 97.22
Phoma stem canker (blackleg) disease score: 1 (very susceptible) to 9 (very resistant)

Base 16 −3164.365 6360.730 6463.844
FA(1) 20 −3149.209 6338.417 6467.310 74.05

FA(2) a 21 −3149.208 6340.417 6475.754 83.74
100 seed weight (g)

Base 22 19,743.45 −39,442.91 −39,294.51
FA(1) a 27 19,808.11 −39,562.21 −39,380.09 51.93

a Optimum MMM-FA model chosen for assessment of overall performance and predicted breeding values
of genotypes.

Most of the %VAF occurred in FA(1) with minor increases in FA(2), and for most traits,
the loadings for FA(1) were all positive (Online Resource S8). In this case, OP is a “gener-
alised main effect which allows for heterogeneity of scale between environments” [22], and
OP is a valid measure of the overall genetic value of a variety for most traits. The exception
is SW100, where there were negative and positive loadings across sites in FA(1) as a result
of crossover genotype × environment interaction (Online Resource S8).
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3.3.3. Genetic Correlations across Trials

There were moderate to high genetic correlations of additive effects for GY across
trials in Australia and Canada within and between cycles (Figure 5) and high correlation
coefficients across trials for all other traits (Online Resource S9). That is, trials in Canada and
Australia identified similar high-performing and low-performing genotypes for all traits.
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The genetic correlations of GY between sites in Canada and Australia in cycle 2 was
0.80 (2018CA1 vs. 2018AU2) and 0.73 (2018CA1 vs. 2018AU1), and 0.81 between the two
Australian sites in cycle 2 (2018AU1 vs. 2018AU2) (Figure 5, Online Resource S9). Likewise,
the genetic correlations of GY across cycles 3 and 4 in Canada (2018CA1 vs. 2020CA1) was
0.84, between Canada and Australia was 0.84 (2018CA1 vs. 2020AU1) and within Australia
was 0.79 (2018AU1 vs. 2020AU1) (Figure 5, Online Resource S9).

Genetic correlations of GY between the disease nursery sites 2016AU2 and 2020AU2
and other sites in Australia or Canada were low to moderate, whereas genetic correlations
of GY between non-disease sites were much higher (Figure 5, Online Resource S9). This
may result from some BL-susceptible genotypes performing relatively poorly for GY at
disease nursery sites but relatively better at non-disease nursery sites, and vice versa.

3.4. Pairwise Correlations of PBV across Traits

Cluster analysis of pair-wise correlations of PBV across traits from the optimum
MMM-FA model revealed two main groups of traits (Figure 6). GY, BL, Oil, PlHt, and DTF
clustered together as a group of positively correlated traits, and this group tended to be
negatively correlated with a second group of traits including GSL, ProM, OL, and SW100.
DTF was strongly positively correlated with PlHt and late flowering lines tended to have
smaller seeds (Figure 6). GY, Oil, PlHt, and DTF were all positively correlated with BL,
that is, BL-resistant genotypes tended to be high-yielding, later flowering, and taller with
higher seed oil. GSL was negatively correlated with both Oil and GY (Figure 6).
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RMSD values for GY (t ha-1) were perfectly correlated to the absolute value of f2 scores 
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sarily be the case for FA(3) and higher-level models. RMSD is preferred over f2 scores since 
it is scaled in trait units and is applicable to FA models at all levels [22]. 

Figure 6. Cluster analysis of pair-wise correlations of predicted breeding values (PBV) derived
from the optimum MMM-FA model of the genotype × environment effects for each trait. The traits
correspond to grain yield (GY), days to 50% flower (DTF), plant height (PlHt), seed oil (Oil), protein
in meal (ProM), glucosinolates (GSL), oleic acid (OL), phoma stem canker (blackleg) disease score
(BL) and 100 seed weight (SW100). Correlation coefficients are shown as values below the diagonal
and as circles above the diagonal, where the relative size and colour of circles represents the size and
sign of the correlation coefficients as indicated by the colour code on the right-hand side.

3.5. PBV, Overall Performance and Yield Stability for GY

PBV GY and OP GY from the optimum MMM-FA model were closely correlated across
genotypes (r = 0.957), which confirms that both assess average performance of genotypes
although the range of values was wider for PBV GY than for OP GY (Figure 7).

RMSD values for GY (t ha−1) were perfectly correlated to the absolute value of f 2
scores as expected from the FA(2) MMM-FA model for GY [21,22], although this may not
necessarily be the case for FA(3) and higher-level models. RMSD is preferred over f2 scores
since it is scaled in trait units and is applicable to FA models at all levels [22].

3.6. Genetic Gain across Cycles

There was a very high rate of genetic gain in GY in the breeding population of
0.087 t ha−1 y−1 or 4.3% y−1 (expressed as a percentage of the population mean) over
cycles 2, 3, and 4 from 2016 to 2020 as assessed by PBV for candidates for crossing in
each cycle (Figure 8a, Table 4). Genetic gain assessed by OP resulted in a lower slope of
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0.059 t ha−1 y−1 or 2.9% y−1 over cycles 2, 3, and 4 from 2016 to 2020, mostly due to lower
cycle 3 and cycle 4 means in OP (Figure 8b) compared with PBV (Figure 8a).
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Figure 8. Genetic gain per year for grain yield (GY, t ha−1) based on the slope of the linear regression
expressed in t ha−1 y−1 of (a) PBV averaged across environments of candidates in cycle 2 (2016 C2),
cycle 3 (2018 C3) and cycle 4 (2020 C4), and (b) OP values over cycle 2, cycle 3 and cycle 4. Box plots
represent the range of PBV and OP of candidates in each cycle. PBV and OP were obtained from
the optimum MMM-FA model of the genotype × environment interaction effects. Data from cycle 1
(2014 C1) were excluded from the analysis, so C1 is shown in parentheses. Significance of the slope of
the linear regressions: *** p < 0.001.



Plants 2023, 12, 383 18 of 27

Table 4. Genetic gain in predicted breeding values (PBV) and overall performance (OP) across cycles 2, 3 and 4 for each trait and the economic index. PBV and OP
were obtained from the optimum MMM-FA model of the genotype×environment interaction effects (see Table 2). The linear regression coefficient of candidate PBV
and OP across cycles 2 to 4 is shown in units cycle−1, and annual genetic gain from cycles 2 to 4 as units y−1 and as % of the population mean y−1 for each trait.
Italicized values of coefficient and intercept in grey were not significant at p = 0.05.

Trait a Population
Mean Units

Method of
Breeding Value

Assessment

Mean PBV of Candidate Genotypes in each Cycle
(Number of Candidates in each Cycle)

Linear Regression of PBV of Candidate
Genotypes from

Cycles 2 to 4
Annual Genetic Gain from

Cycles 2 to 4b

Cycle 2
(1426)

Cycle 3
(1896)

Cycle 4
(653)

Coefficient Intercept

Units Cycle−1 ± SE Units ± SE
Change in
Coefficient
(units y−1)

Change in
Coefficient

(% y−1)

Index 963.8 US$ ha−1 PBV 857.309 994.828 1106.341 139.910 ± 2.424 593.210 ± 7.008 69.955 7.26
944.6 OP 868.862 961.426 1061.069 95.430 ± 2.316 676.870 ± 6.696 47.714 5.05

GY 2.02 t ha−1 PBV −0.207 0.026 0.113 0.1741 ± 0.0095 −0.5321 ±
0.0033 0.0870 4.31

OP −0.188 −0.04 0.032 0.1172 ± 0.0030 −0.4099 ±
0.0087 0.0585 2.90

DTF 80.2 days PBV 1.872 2.135 0.474 −0.5150 ± 0.0932 3.2127 ± 0.2695 −0.258 −0.32
OP 1.793 1.945 0.343 −0.5580 ± 0.0888 3.1916 ± 0.2568 −0.279 −0.35

PlHt 122.7 cm PBV 0.254 2.923 −1.275 −0.1711 ± 0.1776 1.7305 ± 0.5133 −0.0860 −0.07
OP 0.212 2.927 −1.419 −0.1406 ± 0.1857 1.6337 ± 0.5369 −0.0705 −0.06

Oil 44.8 % PBV −0.996 −0.366 0.070 0.5517 ± 0.0267 −2.0681 ±
0.0772 0.2760 0.62

OP −0.978 −0.421 −0.012 0.4970 ± 0.0261 −1.9479 ±
0.0754 0.2485 0.55

ProM 41.1 % PBV 0.255 0.433 0.995 0.3331 ± 0.0268 −0.4730 ±
0.0776 0.167 0.41

OP 0.256 0.508 1.059 0.3729 ± 0.0264 −0.5380 ±
0.0762 0.187 0.45

GSL 11.3 µmole g−1 PBV 0.314 −0.859 −1.030 −0.7680 ± 0.0452 1.6885 ± 0.1306 −0.384 −3.40
OP 0.290 −0.910 −1.075 −0.7820 ± 0.0444 1.6868 ± 0.1284 −0.391 −3.46

OL 61.7 % PBV −0.194 −0.541 −0.645 −0.2483 ± 0.0433 0.2629 ± 0.1253 −0.124 −0.20
OP −0.181 −0.585 −0.671 −0.2755 ± 0.0431 0.3190 ± 0.1245 −0.138 −0.22

BL 5.1 units PBV −0.283 0.911 1.234 0.8417 ± 0.0151 −1.8255 ±
0.0437 0.421 8.25

OP −0.239 0.739 1.057 0.7114 ± 0.0136 −1.5556 ±
0.0393 0.356 6.97

SW100 0.325 g PBV −0.003 −0.005 −0.006 −0.0019 ± 0.0002 0.0010 ± 0.0005 −0.001 −0.30
OP −0.001 0.001 0.001 0.0008 ± 0.0000 −0.0020 ±

0.0001 0.001 0.15

a Trait abbreviations: GY = grain yield, DTF = days to 50% flowering, PlHt = plant height, Oil = seed oil at 6% moisture, ProM = protein in meal at 10% moisture, GSL = glucosinolates,
OL = oleic acid, BL = Phoma (blackleg) disease score from 1 (very susceptible) to 9 (very resistant), and SW100 = 100 seed weight. b Genetic gain in PBV and OP per year is calculated by
dividing the linear regression coefficient across cycles by 2, and is expressed as units y−1 and as % of population mean y−1.
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The significant genetic gain in GY over cycles (Figure 8) occurred in the absence of
any environmental trend in site mean GY across cycles (Figure 4). Therefore, the estimates
of genetic gain in GY over cycles (Figure 8) were not influenced by environmental trends
and are true genetic trends.

There was a very high rate of genetic gain in the economic index of 7.26% y−1

(US$69.96 ha−1 y−1) as assessed by PBV and 5.05% y−1 (US$47.71 ha−1 y−1) as assessed by
OP over cycles 2, 3 and 4 from 2016 to 2020 (Table 4, Online Resource S10).

Significant genetic gain (or loss) in PBV and OP was found for all traits under selection
in the economic index except PlHt (Table 4, Online Resource S10). There were no environ-
mental trends in site means across cycles for any trait except for a very small environmental
trend upwards in SW100 across cycles (Online Resource S7) which was opposed to the
small genetic trend downwards in SW100 across cycles (Table 4). Therefore, the estimates
of genetic trend in PBV over cycles for all traits are true genetic trends.

The economic weight in the selection index for increasing ProM was double that
for increasing Oil (Table 2) in order to achieve the desired positive gains in both ProM
(+0.167% y−1) and Oil (0.276% y−1) when assessed by PBV. The genetic gain in ProM
assessed by OP (+0.187% y−1) was superior to the assessment by PBV, but the genetic gain
in Oil by OP (0.249% y−1) was inferior to the assessment by PBV (Table 4).

The average BL score in the population began at a low level in cycle 2 but increased
rapidly by +8.3% y−1 as assessed by PBV, and +7.0% y−1 as assessed by OP (Table 4, Online
Resource S10).

3.7. Genetic Gain in Historical Cultivars

The rate of genetic gain in GY in historical cultivars was 0.026 t ha−1 y−1 (1.3% y−1)
over their year of release from 1996 to 2015 as assessed by PBV (Figure 9a), and 0.023 t ha−1

y−1 (1.1% y−1) as assessed by OP (Figure 9b).
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Figure 9. Genetic gain per year for grain yield (GY, t ha−1) in historical cultivars in the trials, based
on the slope of the linear regression across year of release expressed in t ha−1 y−1 of (a) PBV for
GY averaged across environments where the mean standard error of cultivars was 0.133 t ha−1, and
(b) OP for GY. PBV and OP were obtained from the optimum MMM-FA model of the genotype
× environment interaction effects. Significance of the slope of the linear regressions: * p < 0.05.
Abbreviations of historical cultivars and year of release: K (Karoo, 1996), B (ATR Beacon, 2002), Sb
(ATR Stubby, 2003), Br (Bravo TT, 2004), T (Tornado TT, 2004), Ba (Banjo TT, 2005), C (Crusher TT,
2010), G (ATR Gem, 2011), Sy (ATR Stingray, 2011), St (Sturt T, 2012), A (ATR Wahoo, 2013), Bo (ATR
Bonito, 2013), and M (ATR Mako, 2015).

Neither Oil nor ProM changed significantly over the year of release in historical
cultivars, although the trend was towards higher Oil and lower ProM (Online Resource S10).
There were no significant trends in BL, PlHt, and DTF over the year of release, but large
variation between cultivars (Online Resource S10).
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In contrast, the breeding population showed significant genetic gains in PBV over
cycles for most traits, although in the case of GY and BL, the breeding population began
below the average of historical cultivars in cycle 2 and exceeded historical cultivars by
cycle 4 (Figures 8 and 9, Online Resource S10).

3.8. Impact of Genetic Correlations between Traits on Genetic Gain

The strong positive genetic correlations between BL, GY, DTF and PlHt resulted in
the population becoming taller and later flowering in cycles 2 and 3 (Figure 6, Online
Resource S10). This group of traits was negatively correlated with ProM, and therefore the
economic weight for ProM was double that for Oil (Table 2) in order to achieve desired
genetic gains in ProM and Oil and all other traits. It was also necessary to introduce a
negative economic weight against PlHt and DTF in cycles 3 and 4 (Table 2), and as a result,
these began to fall in cycle 4 (Online Resource S10). The negative correlation between GY
and GSL (Figure 6), coupled with the positive genetic gain in GY and Oil, contributed to a
significant decrease in GSL over cycles (Online Resource S10).

3.9. Predictions from OCS in Cycle 5 with and without RMSD GY in the Economic Index

Two scenarios were assessed for the selection of parents and optimised mating design
in MateSel at the end of cycle 4: an economic index excluding RMSD GY, and an economic
index including a negative economic weight on RMSD GY (Table 5). The goal of including
RMSD GY in the index was to improve yield stability (that is, to decrease RMSD GY) in the
population and to evaluate the impact RMSD GY on the genetic gain in GY and other traits.

Table 5. (a) Output from MateSel with two optimal contribution selection (OCS) scenarios for crossing
among cycle 4 parents: the economic index either includes or excludes yield stability, based on the
root mean square deviation (RMSD) from the regression line associated with the first factor in the
optimum MMM-FA model for grain yield (GY). The MateSel output is further explained in Kinghorn
and Kinghorn (31). (b) Predicted response in cycle 5 with and without RMSD GY in the index.

(a) MateSel Output

Without RMSD
GY in index

With RMSD
GY in Index Notes

No. male candidates 653 653
No. female candidates 653 653

No. selected males 44 41 moderate weighting against reciprocal
matings, selfings and duplicates

No. selected females 37 39 moderate weighting against reciprocal
matings, selfings and duplicates

No. matings used 150 150

Target degrees 45 45
conservative strategy to minimise

coancestry and maximise index
at 45 degrees

Achieved degrees 45 45
Achieved parental coancestry 0.0850 0.0867 low achieved parental coancestry
Starting mean candidate index 1140.80 1106.34
Achieved mean progeny index 1307.22 1282.83 aim to increase mean progeny index

Achieved standard deviation progeny index 24.31 26.78
Lowest selected male index 1135.55 1113.01

Lowest selected female index 1121.90 1036.26
Weighting on progeny mean inbreeding (F) −1 −1

Achieved progeny mean inbreeding (F) 0.0093 0.0103 low due to optimised mating scheme

Random mating inbreeding (F) 0.0779 0.0803 predicted F based on random mating
among parents

Maximum inbreeding (F) achieved 0.0788 0.0843 achieved following optimised design
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Table 5. Cont.

(b) Predicted Responses in cycle 5

Without RMSD GY in Index With RMSD GY in Index

Units
Population

Mean across
Cycles 2, 3, 4

Predicted
Response in

Cycle 5
(Units)

Predicted
Response in
Cycle 5 as %
Population

Mean

Predicted
Response in

Cycle 5
(Units)

Predicted
Response in
Cycle 5 as %
Population

Mean

Notes

Economic index US$ ha−1 166.42 176.49 aim to
increase

GY t ha−1 2.017 0.1637 8.12% 0.1696 8.41% aim to
increase

DTF days 80.2 −2.5512 −3.18% −2.1776 −2.72% aim to
decrease

PlHt cm 122.7 −2.9254 −2.38% −2.6353 −2.15% aim to
decrease

Oil % 44.8 0.2626 0.59% 0.2816 0.63% aim to
increase

ProM % 41.1 0.4137 1.01% 0.4426 1.08% aim to
increase

GSL µmole g−1 11.3 −0.6780 −6.00% −0.7987 −7.07% aim to
decrease

OL % 61.7 −0.0923 −0.15% −0.2025 −0.33% aim no
change

BL scale 1−9 5.1 0.1308 2.57% 0.1820 3.57% aim to
increase

SW100 g 0.325 0.0022 0.69% 0.0020 0.60% aim to
increase

RMSD GY t ha−1 0.160 −0.0317 −19.78% −0.0514 −32.15% aim to
decrease

In cycles 3 and 4, RMSD GY ranged widely from close to zero (stable across environ-
ments) to 0.40 t ha−1 (unstable across environments) with no signs of decreasing across
cycles, while PBV GY in the population increased (Figure 10). With a negative economic
weight on RMSD GY in the index and an optimum mating design generated in OCS, the
population mean RMSD GY was predicted to decrease from 0.160 t ha−1 in cycle 4 to
0.109 t ha−1 in cycle 5, equivalent to 32.2% reduction or 16.1% y−1 (Table 5). As a result,
the candidates selected for crossing in cycle 4 in MateSel tended to have lower RMSD
GY (higher yield stability across environments) and higher PBV GY than non-selected
candidates (Figure 10).

The predicted increase in PBV GY from cycle 4 to cycle 5 was 0.164 t ha−1 or 4.1% y−1

relative to the population mean without RMSD GY in the index, and 0.170 t ha−1 or
4.2% y−1 with RMSD GY in the index (Table 5). That is, the inclusion of RMSD GY in the
index had no negative impact on the genetic gain in GY or other traits except for DTF and
PlHt, which had a slower response to selection for earlier and shorter types when RMSD
GY was included in the index (Table 5). Interestingly, even without RMSD GY in the index,
RMSD GY was predicted to decrease by 19.8% in cycle 5, which suggests that high GY is
associated with a more stable GY when selection is based on OCS with optimum mating
designs (Table 5).

There was a small increase in achieved parental coancestry in cycle 5 from 0.085
without RMSD GY to 0.087 when RMSD GY was included in the index (Table 5). This is a
very low level of achieved parental coancestry in cycle 5. We conclude that the inclusion of
RMSD GY in the index did not limit potential genetic gain for GY and other key traits in
cycle 5.

The population mean PBV of both DTF and PlHt was predicted to continue to decline
in cycle 5 (Table 5) in response to negative economic weights in the index (Table 2). Mean
PBV BL in the population was predicted to increase only marginally in cycle 5 (Table 5,
Online Resource S10).
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4. Discussion

A very high rate of genetic gain in GY of 0.087 t ha−1 y−1 (4.3% y−1) was achieved
inside a spring oilseed rape (canola) breeding program based on field testing in Australia
and Canada over three cycles of S0,1 family selection from 2016 to 2020, as assessed by aver-
age predicted breeding values (PBV) for GY in the optimum MMM-FA model (Figure 8a).
The rate of gain assessed by overall performance (OP) based on f1 scores in the optimum
MMM-FA model and expressed in trait units was lower at 0.059 t ha−1 y−1 (2.9% y−1)
(Figure 8b). This very high rate of genetic gain in GY in spring canola was the result of
index selection of multiple economic traits with optimized mating designs based on OCS,
and was predicted to continue with low rates of achieved parental coancestry in cycle 5
(Table 5). This high rate of genetic gain has the potential to continue into the foreseeable
future as anticipated in stochastic models based on this breeding approach [9,10].

Both measures of genetic gain, PBV, and OP, are valid and interesting outcomes of
MMM-FA models, which help to explain the environmental impact on the assessment of
genetic gain. Both PBV and OP support the conclusion that rapid genetic gain in spring
oilseed rape was achieved across two disparate global regions (summer growing season
in Canada; winter-spring growing season in Australia). All the evidence, including high
genetic correlations of additive effects across trials for most traits, suggests that the genetic
gains in this population were realised in both Australia and Canada.

The reasons for the lower rate of genetic gain assessed by OP vs. PBV in this study
are complex but may reflect the relatively low loadings to FA(1) for GY in the optimum
MMM-FA model allocated to disease nursery trials 2018AU2 and 2020AU2 in cycles 3 and 4
(Online Resource S8). At these disease nursery sites, BL-resistant candidates with relatively
high GY may contribute more to PBV than to OP as a result of the low loadings to FA(1) for
GY at these sites. Consequently, PBV would be higher than OP for the candidates in cycles
3 and 4 (Figure 8).
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The genetic gain was achieved in several agronomic and grain quality traits in these
trials, including increases in Oil, ProM, and BL disease resistance and a decrease in GSL
(Table 4). These estimates of genetic gain were not biased by environmental trends over
years [19,20].

In historical cultivars in the same trials, the estimate of genetic gain over years of
release was considerably less than inside the breeding population. Genetic gain in GY in
Australian historical triazine tolerant cultivars was 0.026 t ha−1 y−1 (1.3% y−1) from 1996
to 2015 as assessed by PBV (Figure 9a), and 0.023 t ha−1 y−1 (1.1% y−1) as assessed by
OP (Figure 9b). These values are close to the genetic gain in historical cultivars of lupins,
which were 0.020 t ha−1 y−1 over 31 years assessed by PBV and 0.017 t ha−1 y−1 assessed
by OP [21]. Similarly, the average achieved a genetic gain in GY in the world’s major
self-pollinating grain crops is approximately 1% y−1 [1].

High rates of genetic gain for GY and other traits inside this actively evolving crop
breeding program in Australia and Canada verify the predictions of stochastic models
of augmented S0,1 family selection with OCS based on an economic index [9,10]. Also,
for the first time in crop breeding, we incorporate a parameter related to yield stability
(RMSD) [22] in the economic index in cycle 4, and RMSD GY was predicted to decrease
(that is, GY stability to increase) in cycle 5 without negatively impacting the rate of genetic
gain in GY (Table 5). This result, and the high genetic correlations (>0.80) in GY and all
other traits across sites in Canada and Australia (Figure 5, Online Resource S9), support the
conclusion that yield stability across both local and global environments can be improved
with the inclusion of RMSD in the economic index.

In addition to high rates of genetic gain in GY, rapid increases were achieved in
Phoma stem canker (blackleg) disease resistance (+8.3% y−1), seed oil (+0.62% y−1), and
protein in meals (+0.41% y−1), while seed glucosinolate content decreased (−3.4% y−1)
(Table 4). However, genetic correlations between traits were both helpful and detrimental,
and changes were made to the weightings of traits in the economic index across cycles as
more knowledge became available to achieve desired gains. OCS in MateSel was important
to evaluate the best weighting on traits in the index to achieve the desired predicted genetic
gains in the next cycle, for example, to increase the weighting against tall and late flowering
genotypes in the index for the selection of parents for cycle 5 (Table 2). This resulted in
a predicted decrease in the population mean DTF and PlHt in cycle 5 (Table 5, Online
Resource S10).

These high rates of genetic gain in GY and other traits in the economic index occurred
with an achieved parental coancestry in cycle 5 parents of 0.087 with RMSD GY in the index
(Table 5). This was lower than predicted in stochastic models of augmented S0,1 family
selection with OCS based on an economic index, where achieved parental coancestry was
>0.20 with OCS after five cycles [10]. In this study, 35 new migrants (F1’s of SH × NH
crosses) were added in cycles 1, 2, 3, and 4, which helped to reduce achieved parental
coancestry in cycle 5 (Online Resource S2). The low achieved parental coancestry in cycle
5 bodes well for future genetic gain in this breeding program, which should continue at
similarly high rates for 20 or 30 cycles as predicted in stochastic models [9,10].

The breeding method outlined here follows the principles of BRIO crop breeding,
based on accurate breeding values, rapid cycles, index selection, and OCS [52], and adher-
ence to these principles was important to achieve rapid and sustainable improvements in
several economic traits in this study. OCS or similar optimised mating systems are impor-
tant to conserve genetic diversity while optimising long-term genetic gain [53,54]. BRIO
principles are flexible to include new technology as it arises. For example, we applied these
principles to the breeding of a common bean with genomic relationship information [32].
Genomic relationship information (G-BLUP) may be combined with additive relationship
information (A-BLUP) in single-step H-BLUP analysis [31] which should further improve
the accuracy of the PBV and help to accelerate genetic gain. Another attractive feature of
BRIO principles is that selection goals can be adapted to changing circumstances over time,
just as we adapted selection goals to react to undesirable PlHt and DTF in cycles 2 and 3.
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In the future, we may include heat stress tolerance in the index to pre-empt the negative
impact of global warming on GY [10].

The size and cost of this augmented S0,1 family selection breeding program were
relatively small—a total of 900 crosses were undertaken and 14,424 small field plots were
sown and harvested in field plot trials at 9 locations in Australia and Canada from 2014
to 2020 (Table 2). The cost of the field plots and grain quality testing is the same as
in traditional plant breeding trials. The analyses we applied to augmented S0,1 family
selection, including MMM-FA analysis and OCS in MateSel, were carried out on a laptop
computer. OCS in MateSel was used to improve GY, cooking time, and seed Fe and Zn
content in a common bean breeding program in East Africa [32] and to improve different
traits in Desi and Kabuli chickpea varieties [55]. Another positive feature of augmented
S0,1 family selection is that it delivers inbred lines for advanced testing as shown in the
pedigree diagram (Online Resource S1) and thereby combines the population improvement
phase with the product development phase of plant breeding [56].

Interestingly, we achieved only a small increase in the accuracy of additive genetic val-
ues in inbred lines over non-inbred genotypes of approximately 0.02 (Online Resource S6),
which supports the use of non-inbred parents to reduce breeding cycle time [5]. Our results
show that selfing to purity is not essential before selection and use as a parent and may
slow the rate of genetic gain by extending the generation interval (L). One reason for the
relatively high accuracy of additive genetic values in non-inbred lines in this study is that
we carried forward both self and cross progeny into the next cycle, and this increased the
number of collateral relatives within cycles and increased the connectivity of genetic rela-
tionships across cycles. Cross-and-self-sibs have a coefficient of coancestry (f ) equivalent to
full-sibs which helps to increase the accuracy of PBV.

MMM-FA provides a means to assess yield stability (RMSD GY) and overall perfor-
mance (OP) of genotypes in the presence of genotype by environment interactions [21,22].
OP is a useful concept when a diverse breeding population is evaluated over multiple sites
and cycles, and genotype by environment interactions are relatively low compared to the
generalised main effect of variety performance [22]. PBV GY values of genotypes in the
optimised MMM-FA model were closely correlated to OP GY values in this study (r = 0.957)
(Figure 7), and both PBV and OP are valid measures of genetic gain. RMSD GY in this
study reflects global yield stability across multiple sites in Australia and Canada. RMSD
GY was perfectly associated with f2 scores for GY in the FA(2) model in this study but this
may not be the case in higher-order FA models.

Future selection for adaption to global spring rapeseed environments may require
economic weights on traits specific to regions (for example, there may be specific weights
for important spring canola target regions such as Canada, Europe, China, India, and/or
Australia), and this may be accommodated through ‘multiple end-uses’ in MateSel [26].
The population would be managed with multiple versions of the economic selection index
for each target region and a global index applicable to all regions, with specific crossing
programs targeted for each region.

The integration of multiple traits into an economic index follows the logic of Hazel
and Lush [57] that selection on an “index of net desirability is much more efficient than
selection for one trait at a time”. However, index selection must be accompanied by OCS or
a similar optimised mating system to optimize long-term genetic gain. OCS based on an
economic index was essential in this study to achieve concurrent genetic improvements in
GY, Oil, ProM, and BL while decreasing GSL and maintaining OL, SW100, DTF, and PlHt
with low rates of population inbreeding. The breeder can change economic weightings in
the economic index to achieve desired gains over cycles as more data become available or
breeding goals change; for example, here we increased the index weightings against DTF
and PlHt in cycle 4 (Table 3) which greatly reduced the predicted population mean of these
two traits in cycle 5 (Table 5). We also increased the index weighting of ProM to double
the economic value of Oil (Table 3) in order to achieve a genetic gain in both traits (Online
Resource S10). This is clearly a subjective decision of the breeder since there are no current
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economic incentives to improve ProM in canola, but this may change in the future [58]
and appropriate weightings in the index selection together with OCS should achieve a
long-term genetic gain in both attributes. Likewise, the economic weight on OL was zero
in this study (Table 2), but it may be important to introduce a small economic weight to
prevent OL from decreasing in the future in this population (Online Resource S10).

Rapid cycles of S0,1 family selection with OCS resulted in very high rates of genetic
gain in GY and other commercial traits in spring oilseed rape in both Australia and Canada,
thereby confirming the predictions of stochastic modelling of the same process with OCS
and optimised mating designs [13,14]. Yield stability across these global environments was
predicted to improve rapidly when RMSD GY was included in the economic index. OCS
will help to accelerate genetic gain inside crop breeding programs while conserving genetic
diversity to assure future genetic gains [54], and thereby help to meet the expected global
demand for grains as food and feed in 2050 [1–3].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants12020383/s1. Online Resource S1. Pedigree graph of a
portion of the ancestral pedigree; Online Resource S2. Flow of germplasm during four two-year
cycles of augmented S0,1 family selection; Online Resource S3. Inbreeding coefficient (F) of genotypes;
Online Resource S4. Coefficient of coancestry (f ) of related genotypes; Online Resource S5. Statistical
models description; Online Resource S6. Summary of trial data for all traits; Online Resource S7.
Environmental trends in site predicted means for traits; Online Resource S8. Loadings for FA(1) and
FA(2) from the optimum MMM-FA model; Online Resource S9. Correlation coefficients of predicted
breeding values; Online Resource S10. Genetic changes in predicted breeding values (PBV) for
all traits.
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