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Abstract: Global climate change is one of the major constraints limiting plant growth, production, and
sustainability worldwide. Moreover, breeding efforts in the past years have focused on improving
certain favorable crop traits, leading to genetic bottlenecks. The use of crop wild relatives (CWRs)
to expand genetic diversity and improve crop adaptability seems to be a promising and sustainable
approach for crop improvement in the context of the ongoing climate challenges. In this review,
we present the progress that has been achieved towards CWRs exploitation for enhanced resilience
against major abiotic stressors (e.g., water deficiency, increased salinity, and extreme temperatures)
in crops of high nutritional and economic value, such as tomato, legumes, and several woody
perennial crops. The advances in -omics technologies have facilitated the elucidation of the molecular
mechanisms that may underlie abiotic stress tolerance. Comparative analyses of whole genome
sequencing (WGS) and transcriptomic profiling (RNA-seq) data between crops and their wild relative
counterparts have unraveled important information with respect to the molecular basis of tolerance
to abiotic stressors. These studies have uncovered genomic regions, specific stress-responsive genes,
gene networks, and biochemical pathways associated with resilience to adverse conditions, such as
heat, cold, drought, and salinity, and provide useful tools for the development of molecular markers
to be used in breeding programs. CWRs constitute a highly valuable resource of genetic diversity,
and by exploiting the full potential of this extended allele pool, new traits conferring abiotic-stress
tolerance may be introgressed into cultivated varieties leading to superior and resilient genotypes.
Future breeding programs may greatly benefit from CWRs utilization for overcoming crop production
challenges arising from extreme environmental conditions.

Keywords: adaptation; alfalfa; breeding; genetic resources; grain legumes; tomato; woody perennial crops

1. Introduction

Despite the fact that global hunger rates were static since 2015, they increased rapidly
from 2019 onwards, and humanity is facing again a rising global hunger crisis [1]. At
the same time, the world population is growing and is expected to reach 9.7 billion in
2050 and 10.4 billion in 2100 [2]. Human activities, such as poor management practices,
changes in diet preferences, increasing competition for land, water and energy use, soil
degradation, crop diseases, and climate change, are some of the factors that challenge food
productivity [3]. Climate change with a global average temperature increase of at least
1 ◦C since the industrial revolution coupled with an increase in the frequency and intensity
of extreme weather events, such as droughts, floods, heat waves, and storms, endangers
agri-food systems worldwide [4].

At present, agricultural land and global production are sufficient to feed the world
population, although economic and social inequalities and distribution difficulties leave

Plants 2023, 12, 328. https://doi.org/10.3390/plants12020328 https://www.mdpi.com/journal/plants

https://doi.org/10.3390/plants12020328
https://doi.org/10.3390/plants12020328
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/plants
https://www.mdpi.com
https://orcid.org/0000-0001-6178-0459
https://doi.org/10.3390/plants12020328
https://www.mdpi.com/journal/plants
https://www.mdpi.com/article/10.3390/plants12020328?type=check_update&version=4


Plants 2023, 12, 328 2 of 20

a significant part of the population in a state of starvation. However, demand for food is
expected to outstrip the production capacity of current agricultural systems as an increase
of 70% in agricultural yields is expected to be needed to feed the population in 2050 [3].
Therefore, according to FAO, we are facing the most dangerous period for agriculture in
human history [4].

In the last decades, cultivated land has increased worldwide by about 12% at the
expense of natural ecosystems. This implies destruction of forests and serious impacts
on wild biodiversity. Therefore, the percentages of land converted to agricultural land
should be kept as low as possible. Other solutions, such as improving agricultural practices,
creating new environmental policies, changes in diet, and reducing food waste, are decent
but partial [3,5].

Regarding modern high-yielding improved varieties, it is reported their high produc-
tivity has been achieved through a simultaneous reduction of their genetic base [6]. These
varieties were created to meet ideal field conditions with an adequacy of inputs, such as
water and fertilizer [7,8]. Furthermore, these varieties tend to emphasize reproduction
rather than defense and competition mechanisms. These are major problems nowadays as
agriculture is threatened by extreme conditions [9].

To comprehensively address the problems of modern agriculture, it is therefore crucial
to breed novel crop varieties resistant or tolerant to environmental stresses [10]. Efforts
should be made, focusing on traits that could be introduced to face key abiotic plant stresses,
such as drought, salinity, and extreme temperatures. In this aspect, scientists should exploit
all the available genetic diversity [5]. However, there are obstacles because of the gradual
loss of alleles and genetic bottlenecks due to the thus far plant breeding efforts, plant
domestication, and the extinction of plant species. Pointedly, both plant breeding and
domestication rely on human selection, and all forms of selection lead to a loss of genetic
variability since only genotypes that are superior for certain traits are advanced [11].

The solution to recover lost diversity, overcome breeding bottlenecks, and avoid
genetic vulnerability is to expand the existing gene pools of cultivated plants. One possible
strategy to achieve this objective is to utilize sources of wild desirable genes, namely,
crop wild relatives (CWRs) [12]. Crop wild relatives (CWRs) are ancestors or progenitors
of domesticated crop species as well as other close relatives throughout evolutionary
history [12] that can naturally cross successfully, sometimes implicating assisting methods,
with cultivated species. CWRs are taxonomically related to domesticated plants and
may belong to the same species. However, they exist as wild species in natural habitats
in and near their centers of origin [13]. Notably, they are widespread on all continents
besides Antarctica, and several can be found in the Vavilov’s diversity centers and their
adjacent regions [10].

Wild relatives, unlike domesticated species, were not subjected to strict anthropogenic
selection pressure with an emphasis on traits related to plant yield under optimal controlled
conditions [14]. Instead, throughout evolutionary history they were exposed and adapted
in an abundance of adverse environments and kept evolving to adjust and survive under
such harsh conditions [9]. Crop wild relatives possess a plethora of genes that confer
increased resistance to abiotic stresses [14] and represent a source of alleles that are absent
from modern cultivars that have significant agronomic value. They also feature higher
genetic and phenotypic variability than domesticated species and thus provide breeders
with a rich gene pool which constitutes a useful genetic resource for breeding programs.
Moreover, this resource is likely to broaden the genetic base of cultivated varieties by
introducing economically important genes, critical for meeting the challenges of food crisis
and climate change [13].

In the present review, we gathered information regarding the utilization of the CWRs
as a source of important abiotic traits for some representatives of crops species with high
economic value apart from cereals. The first representative is tomato (Solanum lycopersicum
L.), one of the most extensively studied vegetable species with great importance for human
nutrition. The second category includes (a) Medicago sativa L., which is a fodder legume
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with high nutritional value, used intensively for animal feed and (b) representatives of
grain legumes, such as cowpea (Vigna unguiculata (L.) Walp.) and peanut (Arachis hypogea
L.), that are often cultivated in marginal lands and confront unfavorable environmental
conditions [15]. The last category includes representatives of woody and perennial crops
that have been using crop wild relatives not only for crosses but also as rootstocks for
grafting. Although this review focuses on abiotic stressors, for this last category, some
CWRs that played a crucial role in the history and the creation of the modern varieties with
tolerance to biotic stresses are also mentioned.

2. The Exploitation of the CWRs in Specific Cultivated Species
2.1. Tomato

Cultivated tomato (Solanum lycopersicum) is one of the most economically important
crops also used as a model crop for vegetables [16]. It is a diploid species with a haploid
set of 12 chromosomes and genome size of approximately 950 Mb [17]. There is a plethora
of tomato wild relatives with specific traits, including Solanum pimpinellifolium, Solanum
nigrum, Solanum pennelli, Solanum peruvianum, and Solanum chilense [18] among others,
which have shown tolerance to different abiotic stresses and adaptation mechanisms to
different and extreme environmental conditions. Indicatively, Solanum chilense can grow in
the desert due to its long primary roots and its extensive secondary root system. Moreover,
it has been proved that Solanum pennellii utilizes water availability in soil efficiently under
drought conditions, while Solanum cheesmanii and Solanum peruvianum can grow in salty
coastal areas due to different adaptation mechanisms they have developed on their root
systems [19]. The exploitation of such huge genetic diversity existing in CWRs in tomato
breeding efforts for abiotic stress tolerance can provide new varieties with an enormous
reservoir of adaptive traits. Several examples of tomato CWRs regarding their tolerance to
abiotic stressing factors are mentioned below and reported extensively in Table 1.

Table 1. Crop wild relatives (CWRs) of the respective crop genera that present tolerance to abiotic stresses.

Species Type of Tolerance Wild Species Source

Tomato drought tolerance Solanum habrochaites (syn. Solanum
hirsutum) [20]

S. pennellii [21]
S. pimpinellifolium [22,23]
S. cheesmanii [24]
S. chilense [25]
Solanum sitiens [26]

salt tolerance S. pennellii [27,28]
S. pimpinellifolium [27]
S. hirsutum (syn. S. habrochaites) [29]
Solanum parviflorum [30]

heat tolerance S. habrochaites (syn. S. hirsutum) [20]
S. pennellii [31]
S. pimpinellifolium [31]
S. cheesmanii [32]
Solanum chmielewskii [33]

Alfalfa
drought, salt,
cold tolerance

Medicago truncatula [34]
Medicago ruthenica [35,36]
Medicago polymorpha [37]
Medicago falcata [38]
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Table 1. Cont.

Species Type of Tolerance Wild Species Source

Cowpea drought tolerance Vigna exilis [39]
Vigna heterophylla [40]
Vigna kirkii [40]
Vigna trilobata [39]
Vigna riukiensis [39]

heat tolerance Vigna hainiana [40]
Vigna stipulacea [40]

salinity tolerance Vigna luteola [40]
Vigna marina [41,42]
Vigna nakashimae [43]
Vigna riukiuensis [43,44]
Vigna trilobata [43,44]
Vigna vexillata [40]
Vigna trilobata [40]

extreme types of soils Vigna minima [45]
Vigna indica [46]

water-logging
tolerance Vigna vexillata [47]

Groundnut drought tolerance Arachis dardani [48]
Arachis diogoi [49]
Arachis duranensis [50,51]
Arachis glabrata [52]
Arachis magna [53]

heat tolerance Arachis diogoi [49]
Arachis duranensis [54]
Arachis glabrata [55]
Arachis ipaensis [54]

cold tolerance Arachis duranensis [56]
Arachis glabrata [52]
Arachis paraguariensis [55]

salinity tolerance Arachis diogoi [49]
Arachis duranensis [51,56]
Arachis glabrata [52]

UV-exposure
tolerance Arachis stenosperma [57]

Apple drought tolerance Malus prunifolia [58]
Malus sieversii [59,60]

heat tolerance Malus prunifolia [61]
Malus sieversii [60]

cold tolerance Malus prunifolia [59,60]
Malus baccata [62]
Malus sieversii [60]

Cranberry cold tolerance Vaccinium oxycoccos [63]

Grapevine drought tolerance Vitis yeshanensis [64]
salt tolerance Vitis sylvestris [65]

2.1.1. Drought Stress Tolerance

Drought is an important limiting factor of crop production, especially in the context
of global climate change. Several drought-tolerant (quantitative trait loci) QTLs or genes
have been identified in tomato CWRs, but they have not been proven as successful as
expected [66]. The development of advanced backcross introgression lines (BILs) provides
a useful alternative method for the transfer of drought-tolerant genes [10]. Eshed and
Zamir [67] presented a novel population consisting of 50 introgression lines originating
from a cross between the green-fruited species, Lycopersicum pennellii, and the cultivated
tomato (cv M82). Since then, many researchers used these lines in breeding programs
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to investigate promising genes and QTLs for drought stress among other stress factors,
concluding that despite the difficulties, this approach may be the best strategy if no other
effective breeding alternatives are available [10,68,69]. In fine-mapping drought tolerance
within several introgression of S. pennellii and the parental line cv M82, cleaved amplified
polymorphic sequences (CAPS) markers have been developed and screenings for root
morphological traits performed to identify plants putatively inheriting a root architecture
compatible with drought tolerance [68].

Advances in genetics and genomics have improved the understanding of structural
and functional aspects of the tomato genome [69]. Moreover, genes with high homology
to FQR1-like NAD(P)H dehydrogenase, known for its antioxidant properties, were also
identified in S. pimpinellifolium [70]. Further study of these unique orthologues might give
insight into the adaptation of S. sitiens, another drought and salt-tolerant tomato CWR in
water-limited environments [26]. In the future, new technologies, such as CRISPR-Cas9,
could enable the transfer of genes underlying drought tolerance from tomato CWRs to
cultivated tomato varieties [23].

2.1.2. Salt Stress Tolerance

Tomato is susceptible to salt stress, which leads to substantial productivity reduction.
CWRs, such as S. pimpinellifolium, S. pennellii, and S. chilense, can tolerate these adverse
conditions of salinity. Recently, the genome of S. pimpinellifolium has been sequenced [70]
and revealed an interesting finding for genes associated with abiotic stress, such as salinity.
Additionally, further study of some genes from S. chilense associated to abiotic stress [71]
can be a starting point to annotate new genes and the applicability for a genome-wide
analysis. Salinas-Cornejo et.al. [72] provided information that expression levels of SlAREB1,
a member of the abscisic acid-responsive element binding protein (AREB), are correlated
with the degree of drought and salt tolerance presented by transgenic tomato plants. They
also identified an important number of genes regulated by SlAREB1 protein and associated
with both abiotic and biotic stress responses.

Furthermore, many QTLs have been mapped for salt stress tolerance during the
different growth stages in tomato, For instance, (a) at the seed germination stage, indicating
S. pennellii and S. pimpinellifolium as potential tolerant sources of salt tolerance with several
QTLs mapped [27,73], and (b) at the vegetative and reproductive growth stages with regard
to fruit number, fruit weight, and fruit yield, several QTLs from S. pimpinellifolium [74,75]
have been annotated. The reported QTLs and major associated genes would be possibly
transferred to suitable genetic backgrounds of cultivated tomato genotypes to develop
tolerant cultivars against salt stress [76].

2.1.3. Heat/Cold Stress Tolerance

Cold stress reduces uptake of water and nutrients in plants, leading to nutrient starva-
tion within cells. Furthermore, heat stress leads to marked alterations in the physiology
and metabolism of plants [77]. On the other hand, the characterization of important gene
families and their relative expression under low and high temperatures have been reported
for a wide variety of plants [78–80]. Studies focusing on tomato chilling responses re-
vealed over-expression of the chloroplast gene family encoding heat shock proteins (HSPs)
and concomitant reduction in ROS and lipid peroxidation, reflecting an increase in pho-
tosynthetic performance [81]. Tolerance mechanisms utilized by plants against chilling
conditions involve the increased expression of genes that reduced the intensity of oxidative
damage induced by cold stress [82]. Catalase, a crucial ROS-scavenging enzyme, eliminates
hydrogen peroxide in the cell cytoplasm and contributes to the scavenging of H2O2 [83].
The seed priming-induced method increases CAT activities for several species studied,
including tomato [81]. Further investigation into tomato CWRs for more genes that induce
tolerance mechanisms for cold and heat stress and their exploitation in cultivated tomato
breeding programs is a promising approach for solving problems caused by extremely
low/high temperatures.
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2.2. Alfalfa

Legume plants make up one-third of the world’s major agricultural yield and are
significant sources for human and animal consumption [84]. Medicago sativa (alfalfa), the
most significant legume fodder, has been cultivated in more than 80 countries with a total
surface area of 32 million hectares available globally [85]. Alfalfa is regularly exposed to
harsh environments in the major regions of the world, including drought in Argentina
and northern China, cold temperatures in Russia and Canada, and saline/alkaline soils
in California, America, and Australia. Environmental stress in these places has had a
significant impact on alfalfa productivity and quality [86–89]. Long-term domestication
of cultivated alfalfa may have resulted in decreased tolerance for severe abiotic and biotic
stressors because of the emphasis placed on features linked to high production. The key
to accelerating M. sativa’s breeding is the use of genetic variants underlying agronomic
features in wild relatives close to the cultivated Medicago [90]. Therefore, genomic data
from wild species might offer important insights for enhancing features linked to the
adaptability to stressful situations in legume forages. For breeding alfalfa varieties with
great tolerance to environmental challenges, genetic resources rich in alleles adaptable to
severe environments are highly needed.

The genus Medicago includes wild species that are closely related to M. sativa, includ-
ing Medicago truncatula (a model plant for legumes) [34], Medicago ruthenica [36], Medicago
polymorpha [91], and Medicago falcata [38]. In the present study, emphasis was given to one
of the most promising wild species. Medicago ruthenica (L.) Trautv. is a natural grassland
plant that is widely distributed in hillsides, mixed grass steppes, and meadows in Siberia,
Mongolia, and northern China [92]. It is an allogamous diploid (2n = 2x = 16) perennial
legume fodder with a re-assembled genome of 904.13 Mb [93]. It is very closely related
to alfalfa [93]. Long, chilly winters and dry, saline soils limit M. ruthenica’s distribution
area [94]. As a result, M. ruthenica must have developed powerful defenses to withstand the
harsh conditions, such as drought, subfreezing temperatures, and saline soil. M. ruthenica is
thought to be a rather uncommon species among Medicago species that is highly adapted to
stressful conditions, and whose prospective applicability is favorably assessed in low-input
environments. The roles of differentially expressed abiotic stress-related genes, such as
the AP2/ERF family, MYB/MYB-related family, bZIP, bHLH, and WRKY from M. ruthenica in
conferring stress tolerance have not been fully elucidated [95,96]. These genes play impor-
tant roles in many different regulation mechanisms of diverse abiotic stresses. Numerous
studies have demonstrated the transcription factors, bZIP, WRKY, and AP2/ERF, have a
role in the transduction of the ABA signal and stress responses in plants through their
interaction [97].

2.2.1. Drought Stress Tolerance

In addition to being a close relative of alfalfa, M. ruthenica is a perennial species with a
similar genome size, life cycle, and pollination system. More importantly, because it is a
wild species with numerous accessions that is found widely in arid and/or semi-arid areas,
it is highly tolerant to drought stress. As a result, it has been used as parental material to
breed alfalfa cultivars that are tolerant to environmental stress, which has improved alfalfa
tolerance to adverse environments [35,93].

M. ruthenica’s drought tolerance was compared to that of M. truncatula, M. varia, M.
falcata, and two cultivars of alfalfa by Wang et al. [36]. Among the tested legume species, M.
ruthenica seedlings showed the greatest resilience to drought stress. The strongest resistance
of M. ruthenica to drought stress among the examined legume forages was demonstrated
by the fact that while exposure to drought significantly reduced the survival rates of
other legume forages, the same treatment had little impact on the survival rates of M.
ruthenica seedlings. Additionally, it was found M. ruthenica and M. truncatula, respectively,
have 37 and 23 of the AP2/ERF family, drought-responsive TF genes. Twenty-one and ten
drought-responsive TFs from the MYB/MYB-related family in M. ruthenica and M. truncatula,
respectively, were discovered [35]. The knowledge of M. ruthenica’s genome and the
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discovery of its resistance genes can help to improve agronomic traits linked to high yield
and exceptional tolerance to environmental stress using a molecular breeding strategy.

2.2.2. Salt Stress Tolerance

Abiotic stresses, such as salt stress, have an impact on plant productivity and growth.
Medicago ruthenica exhibits exceptional stress resistance, making it a valuable gene resource
for enhancing other plants’ stress tolerance. Two differentially expressed genes (DEGs)
(MrERF, MrbZIP) from M. ruthenica have not yet been thoroughly characterized in terms
of their functions in salt tolerance. Wu et al. [95] demonstrated the transgenic lines of
tobacco over-expressing these genes grew more successfully than wild types exhibiting
greater height, more branches, and earlier flowering. Additionally, compared to wild type
tobacco, the seed yield of transgenic tobacco was considerably higher. Furthermore, it
was demonstrated that MrERF or MrbZIP may be rapidly expressed in leaves by NaCl
since three transgenic tobacco lines outgrew the wild one in terms of leaf growth, with
MrERF and MrbZIP having the best growth. Thus, MrERF and MrbZIP can increase
the germination rate of Medicago under salt stress because they greatly increased the
germination rate of transgenic tobacco lines. Plant height, biomass, and the root-to-shoot
ratio of transgenic tobacco expressing MrERF or MrbZIP all significantly increased when
exposed to NaCl. Lastly, under salt stress, MrERF and MrbZIP transgenic lines’ roots length
grew by approximately 2.03 and 2.19 fold of wild type, respectively [96].

2.2.3. Cold Stress Tolerance

M. ruthenica is also an important resource for the genetic improvement of alfalfa in
response to cold stress. Shu et al. [94] performed an RNA-Seq analysis of the M. ruthenica
transcriptome in response to cold stress using high-throughput nucleotide sequencing. A
total of 894 genes were identified that responded to cold stress. Expressions of MrUN10866,
MrUN33504, MrUN37588, and MrUN40182 were induced by cold stress [95]. Numerous
transcription factors (TFs) have been identified, and they all play crucial roles in how plants
react to abiotic stressors, such as cold, including AP2/ERF, bHLH, MYB, WRKY, C2H2, and
NAC. The AP2/ERF TF family, whose members have been extensively characterized for
their involvement in cold tolerance, was the largest. This finding suggests these genes play
a crucial role in the abiotic stress response, and they may be utilized in breeding alfalfa [95].
The wild Medicago species that presented tolerance in the above-mentioned abiotic stresses
are presented in Table 1.

2.3. Grain Legumes

Grain legumes are often cultivated in marginal lands and confront unfavorable en-
vironmental conditions [15] that prevail in these areas. Typically, marginal areas are
characterized by poor soil fertility and are usually prone to abiotic stresses, such as drought
and salinity [9]. Breeding for tolerant grain legume genotypes to various abiotic stresses
is therefore of primary importance, especially given the impending climate change. In
this review, we focused on progress regarding CWRs assessment and implementation in
breeding of two summer grain legume species, namely cowpea (Vigna unguiculata (L.)
Walp.) and groundnut (Arachis hypogaea L.), as the climate change effect becomes more and
more apparent in Europe; thus, they consist of crops with increasing rates of cultivation in
the area [97].

2.3.1. Cowpea

Cowpea (Vigna unguiculata (L.) Walp.) (2n = 2x = 22) is a primarily autogamous, annual,
grain legume domesticated in Africa in two parallel primary centers of origin [98–101]. It
belongs to the genus Vigna which comprises about two hundred different species [102],
among them over one hundred wild species [45,103,104]. A plethora of endemic cowpea
wild types are still present in Africa [105] that are considered progenitors of cultivated
cowpea [98] and contain valuable genetic material for breeding. Recently, African cowpea
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genome size was revised and estimated through cytometric studies on 640.6 Mb [104],
while for asparagus bean (Vigna unguiculata ssp. sesquipedalis) a 632.8 Mb genome size is
reported [105]. The difference between the two species genome size is mainly because of
changes in the Gypsy retrotransposons contained [104].

Genes of the NAC family (VuNAC1, VuNAC2) [106], WRKY family (VuWRKY) [107],
DREB family (VuDREB 2A) [108], pUCPs family (VuUCP1a, VuUCP1b) [109], Aox family
(Vu Aox1, Vu Aox2) [110], HSP family (VuHSP17.7) [111,112], and LEA family [113] have
been found among others to be differentially expressed in cowpea under abiotic stresses
conditions, promoting abiotic stress tolerance.

Drought and Other Types of Stress Tolerance

Cultivated cowpea types have proved more prone to drought than the wild Vigna
material [114]. High levels of drought tolerance have been reported for V. heterophylla and V.
kirkii, while high-temperature occurrence tolerance have been reported in V. hainiana and V.
stipulacea [40]. V. exilis, V. trilobata, and V. riukiensis have also been characterized as drought
tolerant [39] as they express genes related to ABA biosynthesis and proline biosynthesis.
Antioxidant capacity, accommodation of small leaves that increase the heat flux from the
leaf surface, and hairiness of leaves consist of mechanisms for drought and heat tolerance
of wild Vigna species [114]. Vigna riukiuensis is especially characterized by a deep and wide
root system and small size of leaves that renders it a heat-tolerant species [43–45]. Wild
Vigna germplasm materials, such as V. minima and V. indica [115], have also been found
to be tolerant to acidic and limestone type of soils, and V. vexillata has been found to be a
water-logging-tolerant wild species [116]. Vigna wild species tolerance to abiotic stresses is
presented in Table 1.

Salt Stress Tolerance

Salinity tolerance has been reported for V. luteola, V. marina, V. nakashimae, V. vexillata
var. macrosperma, V. riukiuensis, and V. trilobata [41–44]. Salt tolerance mechanisms of wild
cowpea species include Na+ exclusion, increased antioxidant ability, osmotic regulation,
and changes in hydraulic conductance [117]. Accessions of wild species of V. nakashimae
and V. riukiuensis express salt tolerance through Na+ filtration by roots and stems to prevent
uptake into leaves and accumulation of large Na+ amount throughout the whole plant,
respectively [43]. Through screening of Asian Vigna wild types, Naito et al. [39] led to
the identification of genes related to salt stress response, such as sodium and potassium
transporters, while salt-tolerant species presented active transcription of SOS1 and SOS2
genes. They also found genes related to salt stress that are related to ABA biosynthesis [39].
Vigna marina was found actively to transcribe sodium transporters and antiporters (NHX1
and NHD1), while NHX2 and HKT1 potassium transporters were transcribed by V. riuki-
uensis [39], leading to increased salt tolerance. Furthermore, lower base water potential of
seeds compared with other Vigna species renders its seeds able to germinate in soils with
increased salt content [42].

Finally, QTLs for salt tolerance were found in V. marina ssp. oblonga, which is
a salt-tolerant type, that could be further used in introducing salt tolerance in culti-
vated cowpea [41]. However, attempts to cross the cultivated African cowpea with salt-
tolerant [117] V. vexillata, the closest species to cowpea [118], have so far proved fruit-
less [119,120] despite the creation and characterization of an interspecific hybrid created
by Gomathinayagam et al. [121]. As wild Vigna relatives are interesting material for the
improvement of the cultivated Vigna [46,122], the continuation of the crossing effort is
considered critical. Wild cowpea germplasm variation should be more intensively ex-
ploited [123] as it consists of a valuable source of abiotic stresses tolerance [124].

2.3.2. Groundnut

Groundnut (Arachis hypogaea L.) or peanut (2n = 4x = 40) (AABB) is an annual grain
legume and oil crop with a primarily self-pollinated mating system [125]. As it was formed
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after a hybridization between diploid species, A. duranensis (AA) and A. ipaensis (BB),
followed by chromosome doubling [126], it has a wide gene pool [122,125]. Cultivated
groundnut genome size is approximately 2.7 Gb, very similar to the sum of its two wild
progenitors, A. duranensis (1.25 Gb) and A. ipaensis (1.56 Gb) [127]. Crop wild relatives
of groundnut constitute a valuable but underutilized genetic source due to difficulties in
introgression of genes into the cultivated species, owing to ploidy discrepancy among
groundnut (allotetraploid species) and the wild relatives (mainly diploid species) [125,128]
as well as sterility barriers [129]. Drought and high temperatures constitute the major abiotic
stress factors for groundnut, whereas salinity tolerance is important in many areas [125].

Plant heat shock factors (HSFs) play a key role in groundnut response to various
environmental stresses by regulating the expression of stress responsive genes, such as
heat shock proteins (HSPs), dehydration responsive element-binding proteins (DREBs),
late embryogenesis abundant proteins (LEA), and abscisic acid response element-binding
proteins AREB [130]. CRT element-binding factors (CBFs) were also found to respond to
various plant stresses [131–134].

Dehydration responsive element-binding protein (DREB) genes are reported to increase
transpiration efficiency under water-limiting conditions (AtDREB1A, DREB1A) [135–137]. A
DREB factor, namely PNDREB1, was also identified by Zhang et al. [138] to respond to low
temperatures and osmotic stress. However, no response of this gene to salinity has been observed.
An ABA synthesis gene, AhNCED1, and three dehydration-induced transcription factor genes
were also found to be differentially regulated in groundnut under drought conditions [139].

Ethylene-responsive factor (ERF) regulates gene expression associated with abiotic
stress tolerance [140] through the activation of ABA [141]. In groundnut, ERF genes were
found to be induced after the application of abiotic stresses, such as drought, cold, heat, and
salinity [140]. Additionally, AhLea-3 has been reported to be related to salt tolerance [142].
AtNHX1, a vacuolar Na+/H+ antiporter in Arabidopsis thaliana, mediates the transport of
Na+ and K+ into the vacuole, enhancing salt tolerance [143]. Overexpression of the AtNHX1
gene was also found to improve salt and drought tolerance in transgenic groundnut [144].
Moreover, stress-inducible expression of AtHDG11 in transgenic peanut lines resulted in
up-regulation of various stress responsive genes (LEA, HSP70, Cu/Zn SOD, APX, P5CS,
NCED1, RRS5, ERF1, NAC4, MIPS, Aquaporin, TIP, ELIP) leading led to improved drought
and salt tolerance [145].

Drought Stress Tolerance

Wild groundnut species genes that are drought stress involved are discriminated
into two groups: (i) genes that are plant cell protectors and act as upstream regula-
tors and (ii) regulatory genes, such as transcription factors, implicated in the ABA path-
ways [146]. Tolerance to abiotic stresses has been recorded in A. stenosperma [128], while
Guimarães et al. [147] identified a remarkable number of transcription factors and genes
related to drought stress in a peanut ancestor, A. duranencis. In the same wild species, a
great number of differentially expressed genes were recorded upon drought stress treat-
ment [148]. Arachis duranensis tolerance to drought is based on restricted plant transpiration
behavior under stress implementation. Several characteristics associated with drought
response were detected in A. dardani, such as leaf angle adjustment [48], and in A. duranensis
high photosynthetic rate, stomatal conductance, transpiration rate, lower leaf temperature,
and vapor pressure [50]. Drought-responsive candidate genes, such as Expansin, Nitrilase,
NAC, and bZIP transcription factors, displaying significant levels of differential expression
during stress application in A. duranensis and A. magna were identified, while they pos-
sess drought response mechanisms, including signal transduction, primary metabolism,
hormone homeostasis, and protection of cellular structures [53]. More recently, genes
encoding the drought-responding fatty acid, desaturase, were also identified in groundnut
progenitors and presented to be homologous to peanut [149].
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Heat/Cold Stress Tolerance

A heat-tolerant genotype of the wild species A. glabrata (A. glabrata 11824) and a cold
tolerant genotype of A. paraguariensis (A. paraguariensis 120142) were identified by [55]
through screening of thirty-six different wild genotypes. A total number of sixteen and
seventeen heat shock transcription factors were found in A. duranensis and A. ipaensis,
respectively, that are commonly known to protect plants from abiotic stresses [54]. Non-
specific lipid transfer proteins (nsLTPs) that are known to transfer various lipid molecules
between lipid bilayers in plants were identified in A. duranensis that respond to salinity and
low-temperature conditions [51]. Tolerance assessed in Arachis wild species is presented in
Table 1.

Combined Abiotic Stress Tolerance

Genes and transcription factors identified in Arachis wild species were in many cases
responding to a complex of abiotic stresses. In wild groundnut A. diogoi, the expression of
gene AdDjSKI was induced under heat, salinity, drought, and osmotic stresses and seems
to be related to the photosynthetic mechanism of plants [49]. Recently, NAC transcription
factor genes that are implicated in salt and drought responses of many plant species were
identified in A. hypogaea as well its progenitors [56]. Valine-glutamine sequences that
are related to environmental changes were also assessed in wild species, A. duranensis,
A. ipaensis, and A. monticola. Genes of the mTERF family that mediate acclimation of
plants to adverse environmental conditions were also identified in A. duranensis and A.
ipaensis that were distributed over their ten chromosomes [150]. Transcriptomic analyses
on the wild and highly adaptable A. glabrata revealed a plethora of transcript factors to
be expressed under drought, salt, and cold stress implementation [52]. Finally, a great
number (4513) of differentiated expressed genes (DEGs) was also recorded to be expressed
under UV exposure and dehydration in A. stenosperma by Martins et al. [57], mainly
associated with cell signaling, protein dynamics, hormonal and transcriptional regulation,
and secondary metabolic pathways. These genomic findings provide useful tools for the
further improvement of the species in abiotic stresses.

Synthetic amphidiploid and autotetraploid groundnuts were created to overcome genetic
barriers of groundnut breeding [151]. Synthetic groundnut germplasm was mainly screened
for biotic stress tolerance [152–156] and introgressed into cultivated material [157,158]. The
variability that synthetics often express could possess hidden alleviation for abiotic stress
tolerance that remains mostly unexploited. Stress tolerance of the tetraploid groundnut species
is not always expressed in the same way as their wild diploid relatives [154]. Bera et al. [159]
found two interspecific derivatives, (NRCGCS-296 (J11 x A. duranensis)) and (NRCGCS-241
(GG 2 x A. cardenasii)), that presented high germination tolerant index and promptness
index while applying 250 mM NaCl and therefore were characterized as tolerant to salinity.
WRKY and Na+/H+ genes were also assessed as responsible for inducing tolerance in the
synthetic hybrids.

2.4. Woody Perennial Crops

Climate changes leading to temperature alterations (increased heat or cold), extreme
weather phenomena (e.g., dry spells, heat waves, heavy rainfalls), and water availability
(drought or flooding conditions) pose threats to the cultivation of woody perennial crops.
Changes in weather patterns subsequently exacerbate biotic stresses and the spread of
diseases. Ultimately, these adverse abiotic and biotic effects significantly compromise yield
and quality of the final product. In recent years, numerous efforts have been undertaken
to expand the genetic pool of woody perennial crops by exploiting the genetic diversity
of wild relatives and introgressing new desirable climate-resilient traits into cultivated
varieties [160,161].
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2.4.1. Apple

The cultivated apple, Malus domestica Borkh., is a diploid or triploid species with a
haploid set of 17 chromosomes and a genome size of approximately 600 Mb [162]. Apple
cultivation and production constitute one of the major fruit-producing industries address-
ing markets worldwide. However, climatic changes introduce a series of environmental
stressors which challenge apple yield and fruit quality. Apple breeding could greatly bene-
fit from apple wild relatives to face the challenge from adverse environmental conditions
and biotic and abiotic stressors [161]. For example, wild relatives, Malus floribunda, Malus
baccata, and Malus micromalus, have been used to pyramid apple scab and powdery mildew
resistance genes into progeny [163]. Assessment of a broad range of wild Malus germplasm
over the last 30 years has revealed ample potential sources of resistance to a multitude
of diseases. Similarly, apple wild relatives in Malus collections have been evaluated and
shown to possess traits related to fruit quality as well as abiotic stress resilience, such as
cold hardiness and drought tolerance [59]. In addition, investigations on the molecular
basis of stress tolerance have indicated a key role for a DREB2 (dehydration-responsive
element-binding factor 2) homologue in response to drought, cold, and heat in two highly
drought-tolerant wild apple relatives, Malus sieversii and Malus prunifolia [60,61]. Likewise,
Diacylglycerol kinase (DGK) genes were found to exhibit marked upregulation in response
to drought and salt stress in M. prunifolia [58]. Comparative analyses between two widely
used apple rootstocks (M. sieversii and R3) under water deficit conditions demonstrated
that M. sieversii is more tolerant to drought. Transcriptomic analysis of root tissue showed
differential expression of stress-responsive genes associated with oxidative stress, signaling
pathways in hormone biosynthesis, and transcriptional regulation between the two geno-
types, suggesting these genes play a crucial role in root processes that provide drought
tolerance [164]. Moreover, the deciphering of the cold-tolerant wild apple Malus baccata
genome identified cold-responsive genes (COR) that will be useful in marker-assisted selec-
tion in breeding programs [62]. Collectively, the Malus wild relatives provide an important
genetic resource for incorporating resilience in cultivated apple varieties.

2.4.2. Cranberry

Research focusing on wild cranberry is another example of targeted use of genetic vari-
ation in perennial wild populations toward the benefit of breeding resilient varieties [63,165].
Cranberry (Vaccinium macrocarpon Ait.), a fruit crop of high economic value in North Amer-
ica, Northern Europe, and Asia, often encounters a series of abiotic and biotic challenges,
such as frost damage, high temperatures, drought, flooding, and fungal diseases, which
lead to severe production losses. Recently, a collection of many wild cranberry accessions
from the northern U.S. and Canada was assessed through environmental association analy-
sis and revealed genomic regions linked to potential abiotic stress tolerance. One hundred
twenty-six significant associations between SNP marker loci (many of which tagged genes
with functional annotations) and environmental variables of temperature, precipitation,
and soil attributes were uncovered [166].

2.4.3. Grapevine

Although the Vitis genus is composed of 60 species, the species used predominately for
grapevine cultivation is Vitis vinifera L. Nevertheless, wild Vitis relatives exhibit important
traits not found in V. vinifera, such as resistance to the devastating ‘Pierce’s disease’ (PD)
caused by the bacterium Xyllela fastidiosa. Breeding programs focused on a PD-resistant
grapevine wild relative, Vitis arizonica, to generate PD-resistant lines. Over the years,
using V. arizonica x V. vinifera crosses, repeated backcrosses with V. vinifera and marker-
assisted selection (MAS) techniques, breeders managed to develop breeding grapevine
lines with PD resistance and 97% V. vinifera ancestry [167]. Similarly, to confront two
major grapevine fungal diseases, downy mildew (Plasmopara viticola) and powdery mildew
(Erysiphe necator), the wild relative Muscadinia rotundifolia was utilized. Crosses with Vitis
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vinifera and subsequent crosses with other Vitis hybrids resulted in progeny containing
genes implicated in resistance to both powdery and downy mildew [168,169].

On the other hand, molecular studies have begun to elucidate the genetic basis of
abiotic stress tolerance displayed by wild Vitis relatives. Overexpression of a stress-related
gene from the Chinese wild grape Vitis yeshanensis encoding a universal stress protein,
VyUSPA3, was shown to confer drought tolerance to transgenic V. vinifera cv. ‘Thompson
Seedless’ [64] (Table 1). In addition, comparative transcriptomic analysis performed be-
tween a coastline wild grapevine accession (Vitis vinifera L. ssp. sylvestris) which is tolerant
to high-salinity levels and the commercial rootstock, Richter 110, a salt-sensitive cultivar,
revealed differential gene expression profiles upon salinity stress [65] (Table 1). These
findings facilitate the investigation of gene pathways that play key roles in survival under
stress conditions and highlight the potential of such grapevine wild relatives as breeding
material both for scion and rootstock improvement.

In view of the gloomy projections of 56 to 73% loss of suitable land for viticulture in
major wine-producing regions by 2050 [170,171], studies have been focusing on grapevine
wild relatives with resilience to climate risk [172]. Recently, associations of wild species
SNPs (single nucleotide polymorphisms) with bioclimatic variables and putative adapta-
tion to biotic and abiotic stressors have been explored [173]. In addition, by integrating
species distribution models, adaptive genetic variation, genomic load and phenotype,
Aguirre-Liguori et al. [174] predicted that certain accessions of the wild grapevine species,
Vitis mustangensis, are well-suited for future climates and can contribute to grapevine
bioclimatic adaptation.

Importantly, commercial rootstocks currently used globally for grapevine grafting
were derived from North American wild Vitis species. These rootstocks have been used
since the second half of the nineteenth century to save European grapevines from the plague
of the soil-borne aphid, phylloxera (Daktulosphaira vitifoliae) [175]. Moreover, depending
on the rootstock, they confer drought and cold tolerance as well as disease resistance
to grafted grapevine [176]. Likewise, rootstocks have been used widely for improving
other cultivated woody perennials (apple, pear, peach, mango, citrus, etc.). However, in
general, relatively few rootstock genotypes are employed in grafting of woody perennial
crops. Wild relatives could serve as a significant allele pool for developing new rootstock
varieties with advantageous traits that would impart the grafted plant with resilience to
environmental stressors [160].

3. Conclusions

In recent years, substantial progress has been accomplished regarding the employment
of CWRs for expanding the genetic resources towards improvement of agronomically
important crops in the context of the ongoing climate change and the ever-increasing
world population. Adverse environmental conditions compromise the yield and quality
of important crops and may severely challenge food security worldwide. In crops of
high economic value, such as legumes, tomato, and woody perennials, described in this
review, investigations have focused on the characterization of existing wild relatives at the
morho-physiological and molecular level under a variety of abiotic stress conditions. On
many occasions, the genetic basis of abiotic stress tolerance was explored by comparative
genomic and transcriptomic analyses between wild relatives and the cultivated species
revealing genomic regions or specific stress-responsive genes and gene networks associated
with successful survival under stresses, such as drought, heat, cold, and salt stress. The
outcomes of these studies will be highly valuable for the development and screening of
improved genotypes in breeding programs and ultimately will result in varieties with
advantageous traits that impart climate-resilience.

Nevertheless, more extensive studies should be undertaken, and further use of wild
relatives should be sought out. Despite their high value as a plant genetic resource and
their multiple uses in plant breeding, most CWRs are endangered or close to extinction.
Furthermore, about 70% of them require immediate collection and conservation in gene
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banks, and 95% of them are under-represented in existing collections [177]. This calls
for concerted actions at national, regional, and international levels for prioritization and
systematic conservation of this important natural resource.

Notably, much effort has been undertaken across countries to generate prioritized
inventories for crop wild relatives (annual and perennial plants). These aim at proper
assessment and efficient conservation, both in situ (land protection) and ex situ (seed
banks), of unexplored or underexploited wild genetic resources [9,178–181]. Breeding
programs focusing on introgression of wild genetic material into cultivated crops will result
in climate-resilient varieties with low-input requirements. Exploiting the full potential
of CWRs for developing well-adapted, climate-smart varieties that maintain high-quality
produce is in line with the EU (European Union) Green Deal objectives and UN (United
Nations) SDG (sustainable development goals) and ultimately will contribute greatly to
sustainable agricultural production.
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