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Abstract: Abies beshanzuensis, an extremely rare and critically endangered plant with only three
wild adult trees globally, is strongly mycorrhizal-dependent, leading to difficulties in protection
and artificial breeding without symbiosis. Root hair morphogenesis plays an important role in the
survival of mycorrhizal symbionts. Due to the lack of an effective genome and transcriptome of
A. beshanzuensis, the molecular signals involved in the root hair development remain unknown,
which hinders its endangered mechanism analysis and protection. Herein, transcriptomes of radicles
with root hair (RH1) and without root hair (RH0) from A. beshanzuensis in vitro plantlets were
primarily established. Functional annotation and differentially expressed gene (DEG) analysis
showed that the two phenotypes have highly differentially expressed gene clusters. Transcriptome
divergence identified hormone and sugar signaling primarily involved in root hair morphogenesis
of A. beshanzuensis. Weighted correlation network analysis (WGCNA) coupled with quantitative
real-time PCR (qRT-PCR) found that two hormone–sucrose–root hair modules were linked by IAA17,
and SUS was positioned in the center of the regulation network, co-expressed with SRK2E in hormone
transduction and key genes related to root hair morphogenesis. Our results contribute to better
understanding of the molecular mechanisms of root hair development and offer new insights into
deciphering the survival mechanism of A. beshanzuensis and other endangered species, utilizing root
hair as a compensatory strategy instead of poor mycorrhizal growth.

Keywords: Abies beshanzuensis; in vitro plantlets; comparative transcriptome; root hair morphogene-
sis; sugar metabolism; hormone signaling

1. Introduction

Abies beshanzuensis M. H. Wu, an important fir of the Pinaceae family, is a relic plant
from the quaternary glacial period of ancient origin. It has a reputation as a “living fossil”
and has been designated as one of the 12 global critically endangered plant species listed by
the International Union for Conservation of Nature (IUCN) since 1987 [1]. Additionally, it
was recorded in the China Plant Red Data Book [2] and has been subsequently categorized
at ‘first-grade’ for national protection since 1999 [3]. A. beshanzuensis is shade-tolerant and
prefers cold and humidity, only distributed on the main peak of Mt. Baishanzu of China at
an altitude of 1740–1750 m, which may be evidence that psychrophytes in low latitudes
retreated to high altitudes at the end of the quaternary glacial period. Unfortunately, there
are only three wild adult trees of A. beshanzuensis remaining in the world at present, and
they are considered critically endangered. Therefore, it is urgent to preserve its germplasm
resources, analyze the endangered mechanisms and expand its narrow habitat.
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In recent years, plentiful measures have been taken to rejuvenate the mother tree
and artificially breed seedlings of A. beshanzuensis due to its sparse individual population
and extremely weak natural regeneration ability [4]. However, the number of artificially
bred seedlings is still small, and long-term natural reproduction and conservation remain
unresolved. Hence, it is necessary to imminently use plant tissue culture and other technical
methods to assist the breeding of A. beshanzuensis. However, A. beshanzuensis belongs
to a strong mycorrhizal symbiosis-dependent gymnosperm, which primarily relies on
mycorrhiza for the absorption and utilization of nutrients to undergo normal growth and
development [5,6]. Departing from the mycorrhizal symbiosis in its natural state will lead to
growth and development obstacles or even death of A. beshanzuensis, whereas high habitat
elevation results in the imbalance of rhizosphere microbial relationship, which seriously
hinder the nutrient absorption, growth and development [5,7]. In the early stage, our team
has made a breakthrough in obtaining plantlets of A. beshanzuensis in vitro using immature
embryo rescue technology, and we have established an artificial breeding system [8,9].
Importantly, A. beshanzuensis test-tube plantlets could grow in a sterile environment without
mycorrhiza, but during transplanting and domestication, some plantlets cannot absorb
nutrients normally, which makes it difficult for test-tube seedlings to return to their habitat.
Overcoming the nutrient absorption problem after breaking out of the strongly dependent
mycorrhizal symbiosis and exploring the regulatory mechanism in A. beshanzuensis is
the key to save the precious endangered plant resources and solve their survival and
reproduction problems.

Plant growth and development predominantly depend on root nutrient uptake [10,11].
Root hairs, epidermal protuberances from the root, constitute almost 90% of the surface
area of the root system and expand the plant’s interface with the soil environment, which
is beneficial in improving the absorption capacity for soil nutrient uptake [12,13]. Longer
and/or denser root hairs can also enhance the water and mineral absorption [14–17].
However, A. beshanzuensis strongly depends on ectomycorrhizal symbiosis to complete
normal growth and development, metabolism and other physiological activities [6], and
their root hairs are extremely rare in nature. During the sterile cultivation process, we found
that several test-tube plantlets of A. beshanzuensis appeared in two states, that is, radicles
with root hair (RH1) and radicles without root hair (RH0). Additionally, the growth and
development of test-tube plantlets with root hairs were significantly improved compared
with the ones without root hairs after further transplantation. Dynamic morphogenesis of
root hair is a vital trait for the plants to improve the acquisition of essential nutrients and
growth development, especially for the endangered species.

It is essential that we improve comprehension of the root hair developmental path-
way. Epidermal cells in the mature zone of plant roots include non-rooting hair cells (N,
atrichoblast) and rooting hair cells (H, trichoblast). The process of root hair growth and
development can be roughly divided into four stages: root hair cell fate determination, root
hair initiation, root hair apical growth, and root hair maturation [18–20]. Initiation and
elongation of root hair and tip growth are controlled by many different, yet interconnected,
molecular pathways [20,21]. This regulation framework includes complex interactions
of some hormones (auxin, ethylene, cytokinin, etc.) and nutrients (sugars). Auxins are
involved in regulating the morphogenesis of root hair, which can change the root hair
length or even restore root hair growth in the hairless mutants [22,23]. Relative transcrip-
tional activities of AUXIN RESPONSE FACTORS (ARFs) can both suppress and improve
the growth of root hair [24,25]. Auxin signals are commonly interacted with ethylene to
regulate root hair development. Ethylene can participate in the epidermal cell fate deter-
mination process, such as activating key root hair genes’ expression, such as RHD6, RSL2
and RSL4, to regulate root hair initiation [20,26–28]. Additionally, the crosstalk between
auxin, ethylene, cytokinin and other hormonal signals is instrumental in the root hair
developmental pathway, which controls root hair morphogenesis [29–31].

In addition, root growth and branching patterns are closely related to sugar supply [32–34].
Sucrose can induce the auxin response pathway by activating PIN transporters and the stem
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cell niche, promoting the division and elongation of root cells in WT seedlings and med12
and med13 mutants of Arabidopsis thaliana [33,35,36]. Many pivotal genes such as IAA17,
OXI, VLN4 and XIK, regulating the initiation and elongation of root hair and their regulation
mechanisms by hormone and sugar cues, have been discovered in Arabidopsis [37–39]
and monocot species based on transcriptomics, single-cell RNA sequencing and other
molecular biology methods [20,40,41]; however, relevant reports are still unavailable in the
endangered fir.

Root hair may be an essential survival strategy for A. beshanzuensis after dispensing
with their ‘symbiosis partner’. However, the regulation mechanism on the growth and
development of root hair from A. beshanzuensis remains unknown. In this study, we per-
formed transcriptome sequencing throughout root hair development in RH1 and RH0 and
identified the key gene co-expression modules related to hormone and sugar metabolism
involved in the root hair morphogenesis. Our study will help to illustrate the molecular
mechanisms of root hair development in A. beshanzuensis to further study the survival
mechanism of A. beshanzuensis and other endangered species dependent on mycorrhiza.

2. Results
2.1. Comparison of Morphology from Test-Tube Plantlets of A. beshanzuensis In Vitro Conditions

To protect A. beshanzuensis from becoming severely endangered, plant tissue culture,
such as embryo culture and somatic embryogenesis, is an indispensable and efficient mea-
sure to expand its population range. Immature seeds of A. beshanzuensis were collected
and plump embryos were isolated with a sterile operation, before being inoculated on
the DCR medium (containing sucrose (20 g·L−1), hydrolyze casein (500 mg·L−1) and agar
(8 g·L−1), pH 5.8) to develop test-tube plantlets of A. beshanzuensis (Figure 1A,B). The
radicles appeared after seven days of culture under weak light conditions, and interest-
ingly, morphological differences were found that the root hair developed on the cocked
radicles, while nearly no root hair developed on the radicles attached to the medium
(Figure 1C–F). Additionally, during the following transplant process, the test-tube plantlets
of A. beshanzuensis with root hairs grew better than those without root hair. Hence, it is
indicated that root hair might play a pivotal role in the growth and development of the
endangered A. beshanzuensis free of mycorrhizal symbiosis.

2.2. RNA-Seq Sequencing Analysis and Functional Annotation

To find out the gene-expression modes responding to the developmental process of
root hair from A. beshanzuensis, RNA-seq of different development stage of two-type roots
(RH1_B, RH1_0, RH1_A, RH0_B, RH1_0, and RH1_A) was adopted to demonstrate the
transcriptional gene expression profiles. Three biological replicates were employed at
each time point. Eighteen sample RNA-Seq libraries were constructed and sequenced
in total. According to the 95% similarity between sequences, the corrected transcript
sequences have been clustered to remove the redundancy, and the length and frequency
distribution of transcripts before and after the removal of redundancy were statistically
analyzed (Figure 2A). A total of 83,384 transcripts and 28,923 unigenes were assembled, and
the sequence length distribution after redundancy removal was counted (Tables S3 and S4).

To obtain comprehensive gene function information and annotate the gene function
of the de-redundant sequences using CD-HIT software, the databases used include Nr,
Nt, Pfam, KOG/COG, Swiss-prot, KEGG, and GO. Among them, 28,199 unigenes have
been annotated to the Nr protein database, 26,705 unigenes have been annotated to the
Nt database, 21,386 unigenes have been annotated to the Pfam database, 21,387 unigenes
have been annotated to the GO database, 27,070 unigenes have been annotated to the
KOG/COG database, 24,662 unigenes have been annotated to the Swiss-prot database,
and 27,801 unigenes have been annotated to the KEGG database (Figures 2B,C and S1).
We classified the functions of all predicted unigenes using GO and KEGG assignments.
The GO terms “metabolic process (GO:0008152)”, “cellular process (GO:0009987)”, and
“single-organism process (GO:0044699)” were enriched in the biological process category.
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The GO terms “cell (GO:000562)”, “cell part (GO:0044464)”, and “organelle (GO:0043226)”
were enriched in the cellular component category. The GO terms “binding (GO:0005488)”,
“catalytic activity (GO:0003824)”, and “transporter activity (GO:0005215)” were enriched
in the molecular function category (Figure S1). Additionally, the most enriched KEGG
pathways were “signal transduction (ko04016)”, “carbohydrate metabolism (ko01212)”,
“translation (ko03013)”, and “transport and catabolism (ko04138)” (Figure 2C).
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Figure 2. Annotation and classification of assembled unigenes in radicles development of A. be-
shanzuensis. (A) Length distribution of subreads at different development stage of two-type roots
(RH1_B, RH1_0, RH1_A, RH0_B, RH1_0, and RH1_A), RH1, radicles with root hair; RH0, radicles
without root hair; B represents 2 days before root hair initiation; 0, root hair initiation; A represents
2 days after root hair initiation, the same meaning as below. (B) A total of 28,923 unigenes were totally
annotated using different protein databases. (C) KEGG assignments for functional classification of
the assembled unigenes.
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2.3. Comparative Analysis of DEGs during the Development of the A. beshanzuensis Root
with/without Root Hair

In total, 4839 DEGs were identified different at development stages of two-type roots
(RH1_B, RH1_0, RH1_A, RH0_B, RH1_0, and RH1_A). To analyze the expression patterns
of identified DEGs, k-means clustering was conducted (Figure 3A). The result showed
that the 4839 DEGs were classed into six clusters that exhibited distinct expression modes
in RH0 and RH1. In general, clusters 2, 4 and 5 exhibited similar expression patterns
during the three stages of root hair development, and only clusters 1, 3 and 6 displayed
relatively disparate expression patterns. Notably, the DEGs in cluster 3 were consistently
up-regulated at the three development stages in RH1 compared to RH0. On the contrary,
the DEGs in cluster 6 showed down-regulated expression patterns at the three development
stages in RH1 compared to RH0. Cluster analysis showed that the unigenes had diverse
expression patterns and could be divided into six classes, containing unigenes highly
expressed in RH1 and RH0 (Figure 3B). The finding indicated that these DEGs played
different roles during the root development of A. beshanzuensis.
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2.4. Identification of DEGs of Hormone Signals Involved in Root Hair Growth and Development

Since the stages of root hair cell fate determination and root hair initiation were indis-
pensable for the lifespan of root hair, we screened the DEGs in groups of RH0_B, RH0_0,
RH1_B and RH1_0. Based on the GO and KEGG enrichment analysis, the largest number
of DEGs were identified in the hormone signal transduction and the starch and sucrose
metabolism pathway. We performed the cluster expression pattern analysis and found that
genes of the hormone signal transduction and the starch and sucrose metabolism pathway
involved in root hair morphogenesis showed different expression patterns (Figure 4C).
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Figure 4. Identification of DEGs involved in hormone and sugar signal transduction at different
development stages of two-type roots in A. beshanzuensis. (A) Identification of DEGs involved in
hormone signal transduction in groups of RH0_B, RH0_0, RH1_B and RH1_0 from A. beshanzuensis.
(B) Identification of DEGs involved in sugar pathway in groups of RH0_B, RH0_0, RH1_B and RH1_0
from A. beshanzuensis. (C) Cluster expression patterns of important DEGs involved in pathway of
sugar, hormone and root hair growth and development in groups of RH1_B, RH1_0, RH1_A, RH0_B,
RH1_0, and RH1_A of A. beshanzuensis.

To investigate the genes involved in hormone signal transduction, we filtered our
RNA-seq datasets. A total of 26 key regulators were identified in the hormone sig-
naling pathway (Figure 4A). In the auxin signaling pathway, genes of TIR1 and AUX-
IAA were differently expressed in the RH0 and RH1 group, which may be involved in
cell enlargement and plant growth. TIR1 genes (transcript44569/f5p0/2291 and tran-
script33559/f3p0/2760) were significantly upregulated in the RH0 group compared with
RH1 group. Additionally, it showed a trend of rising first and then falling in the different
development stages of the RH0 group, while in the RH1 group, it showed a gradual de-
scent (Figure 5). In the cytokinine signaling pathway, B-ARR (transcript71841/f2p0/1603)
was significantly up-regulated in the RH1 group and increased gradually during the root
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hair development process, which was defined to regulate cell division and shoot initia-
tion. In addition, in the ethylene signaling pathway, the ETRs (transcript18258/f2p0/3462
and transcript17218/f20p0/3444) were highly expressed in the RH0 group, while EBF1/2
(transcript29821/f2p0/2902, transcript29821/f2p0/2902, and transcript21823/f3p0/3265)
and EIN3 (transcript38824/f2p0/2633) were up-regulated in the RH1group compared
with the RH0 group. Furthermore, in the brassinosteroid signaling pathway, BSKs (tran-
script26938/f2p0/3018, transcript40961/f3p0/2493, and transcript30921/f2p0/2859) were
differently expressed in the two groups, which may be involved in cell elongation and
division (Figure 5). Among them, transcript26938/f2p0/3018 decreased gradually during
the development in the RH1 group; it was even silent after the root hair initiation, while
transcript40961/f3p0/2493 showed a contrary trend under the same conditions. This
finding indicated that dynamic hormone signaling may drive the morphology, initiation,
growth and development of root hair.

2.5. Identification of DEGs of Sugar Metabolism Involved in Root Hair Growth and Development

There were also plenty of DEGs enriched in the starch and sucrose metabolism path-
way in our RNA-seq datasets. According to the KEGG annotated gene set, a total of
15 key genes were screened in the starch and sucrose metabolism pathway (Figure 4B).
It was observed that 3 key genes of CMINVs (EC: 3.2.1.26, transcript57112/f3p0/2016,
transcript57359/f5p0/2007, and transcript61228/f3p0/1906) were annotated in D-glucose-
6P and D-fructose synthesis, which were significantly up-regulated in the RH0 group
compared with the RH1 group. Specifically, these genes showed an earlier increase and
later decrease trend in the different development stages of the RH0 group, but gradually
decreased in that of the RH1 group. Meanwhile, 2 SPS2 crucial genes (EC: 2.7.1.1, tran-
script4562/f2p0/4657 and transcript4764/f5p0/4651) annotated in D-fructose-6P synthesis
and one gene (EC: 2.7.1.1, transcript4937/f7p0/4584) annotated in D-glucose synthesis
were significantly highly expressed in RH1 group, which showed a gradual upward
trend. In addition, 2 BGLU12 pivotal genes (EC: 3.2.1.21, transcript62004/f3p0/1885 and
transcript62679/f2p0/1894) annotated in D-glucose and cellobiose synthesis, showed
significant up-regulated during the development of the RH1 group. They increased
gradually, and transcript62679/f2p0/1894, specifically, rose by 17-fold in the later de-
velopment stage of RH1 group higher than that of RH0 group. In total, 2 key SUSs (EC:
2.4.1.13, transcript21012/f2p0/3294 and transcript20257/f62p0/3275) annotated in the
sucrose and UDP-glucose synthesis and decomposition process were expressed signifi-
cantly higher in the RH0 group compared with the RH1 group. They showed an earlier
increase and later decrease in the different development stages of RH0 group; in particular,
transcript20257/f62p0/3275 increased by nearly 20-fold at RH0-B compared with RH1-B
(Figure 6). The SPS2 (EC: 2.4.1.14, transcript4562/f2p0/4657 and transcript4764/f5p0/4651)
annotated in sucrose-6P synthesis was up-regulated during the development of the RH1
group and was almost not expressed in that of the RH0 group. TPS6 (EC: 2.4.1.15, EC:
3.1.3.12 and transcript4937/f7p0/4584) annotated in trehalose synthesis was significantly
up-regulated during the development of the RH1 group and increased gradually. These
results suggested that sucrose metabolism pathway signaling may be bound to the root
system architecture, in particular, root hair initiation in A. beshanzuensis.
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Figure 6. Expression pattern of key DEGs in sugar metabolism pathway at different development
stage of two-type roots in A. beshanzuensis.

2.6. Interaction Analysis of Sucrose and Hormones Metabolism Signals Involved in Root
Hair Development

In order to further study the regulation relationship between sucrose, hormones, and
root hair, the genes related to root hair development reported in the literature were screened,
such as IAA17, XIK, VLN4, BHLH32, LRX3, and OXI1 [20,38], and as detailed in Table S2.
These gene sequences were subjected to BLASTN searches against the transcriptome
sequences to identify homologous sequences in A. beshanzuensis with E values < 10-10. We
screened the homologous root hair development genes with the best alignment rate in A.
beshanzuensis used for WGCNA (Table S2). To further investigate the hub regulators in
the sucrose and hormone metabolism signal pathways during the root hair development
of A. beshanzuensis, WGCNA was performed to parse the interactional network of DEGs
(Figure 7). In the root hair gene module, IAA17 is a negative regulator for root hair
development, which caused a reduction in root hair in Arabidopsis [42]. In contrast, OXI,
VLN4 and XIK are defined as the key factors to promote root hair elongation and tip
growth in Arabidopsis [20,37,38]. The results found that two hormone–sucrose root hair
modules were linked by IAA17, which led to SUS2, a hub gene co-regulated by sucrose and
hormone signals, being co-expressed with ARR4, TIFY10B, EBF1, and BSK3 in the hormone
signal transduction pathway, BGLU12 and CMINV in the sucrose synthesis pathway, and
IAA17, OXI, VLN4 and XIK in root hair regulation. These results suggest that the sucrose
pathway is co-regulated with hormones such as auxin, cytokinin and ethylene, and SUS2
was positioned in the center of the regulation network. At the same time, SRK2E, as a hub
gene in hormone signal transduction, was co-expressed with SPS, OXI, VLN4 and XIK
genes to regulate root hair length (Figure 7).
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Figure 7. Screening of hub DEGs in hormone signal transduction and sugar metabolism pathway
related to root hair growth and development genes in root development regulation of A. beshanzuensis.
Each node indicates a gene. Yellow nodes, hub DEGs in sugar metabolism pathway; red nodes, hub
DEGs in hormone signal transduction; green nodes, gene connections involved in root hair growth
and development of A. beshanzuensis. Bigger nodes indicate more connections.

2.7. qPCR Validation for Reference Genes and DEGs of Sucrose and Hormones Signals Involved in
Root Hair

Since few housekeeping genes have been reported in A. beshanzuensis, we firstly
screened the expressional stability of reference genes. Difference in cycle threshold and
variance coefficient were calculated to evaluate the expression stability of candidate genes.
Seven candidate reference genes were evaluated in order to screen the superior internal
reference genes for data normalization. PP2A, EIF2, EIF3, EF1, EIF, UBQ and act1 were
selected due to their stable expressions across eighteen sample pools, and PP2A showed
the most expressional stability in different tissues and different root developmental stages
(Figure 8A).

To validate the gene expression involved in sugar metabolism, hormone signaling and
root hair pathways, qRT-PCR assays were performed on the samples of roots at different
development stages from A. beshanzuensis plantlets. We selected five sugar-related genes,
five hormone-related genes, and four root hair-related genes, including SUS2, SRK2E and
IAA17, to verify our RNA-seq data. The specific primer sequences are listed in Table S1.
The results showed that the expression of these chosen genes was basically consistent
with RNA-seq results and showed a correlation of more than 0.9 (Figure 8B), which also
indicated the reliability of our transcriptome. At the same time, further analysis of the
qRT-PCR showed that VLN4, OXI1 and XIK, as the key factors to promote root hair growth,
were significantly higher in RH1-B and RH1-0 than that in RH0-B and RH0-0. On the
contrary, IAA17 acted as a negative regulator and was significantly higher in RH0-B and
RH0-0 than in RH1-B and RH1-0. The co-expressed key genes in the sucrose pathway
(SUS2, SUS1 and CMINV1) and hormone signal regulator (BSK3) were significantly higher
in RH0-B and RH0-0 than in RH1-B and RH1-0, showing a similar expression trend to
IAA17. In addition, hormone signal regulators such as ARR4 and EBF1 were consistent
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with the expression trend of the VLN4, OXI1 and XIK. This suggests that the above genes
could be used as the candidate regulators of root hair morphogenesis.
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gests that the above genes could be used as the candidate regulators of root hair mor-

phogenesis. 

Figure 8. Expressions of 14 DEGs in hormone and sugar signal involved in root hair growth and
development of A. beshanzuensis determined by qRT-PCR. (A) Expression stability of candidate
reference genes of A. beshanzuensis determined by qRT-PCR. (B) Expressions of 14 DEGs in hormone
and sugar signal involved in root hair growth and development of A. beshanzuensis determined by
qRT- PCR. Error bars, standard deviation (SD) from three biological repeats.

3. Discussion

A. beshanzuensis is a strong mycorrhizal symbiosis plant, which hardly use roots to
absorb and utilize nutrients to complete the normal growth and development without
symbiosis or with poor symbiosis growth, leading to difficulties in artificial breeding. Root
hair is an essential part of root, and its dynamic modifications play critical roles in nutrient
utilization and adversity stress response. Root hair morphogenesis regulation involved in
complicated signaling pathways, such as hormone transduction, sugar metabolism, protein
interactions, and transcription factors, etc., whereas how the molecular signaling involved
in the root hair growth and development of conifers is dependent on mycorrhizal symbiosis
remains unknown.

3.1. Root Hair Acts as a Pivotal Survival Strategy for A. beshanzuensis Breaking out of the
Strong-Dependent Mycorrhizal Symbiosis

Root hairs help plants absorb water and nutrients, anchor the root into the soil, and
provide locations for the interactions with soil microorganisms [16,43,44]. In this study,
we found that root hair of A. beshanzuensi developed on the cocked radicles (Figure 1E,F),
while nearly no root hair on the radicles attached to the medium (Figure 1C,D). It can
be hypothesized that the cocked radicles in the air under septic conditions might suffer
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from the adversity and lack water and nutrient elements, which promotes the root hair
initiation for continue survival. Under nutrient-deficient conditions, nutrient accumulation
was positively correlated with root hair length. Electrophysiological studies have found
that root hairs can directly promote the absorption of nutrient elements [45]. The transport
system operates on the root hair plasma membrane [17]. The length and density of root
hairs can sense nutrient and water status in the soil, thereby regulating plant root growth
and development and morphogenesis in response to environmental changes [45,46]. In the
later stage of root system development, root hairs can participate in the formation of root
sheaths and improve the ability of plants to adapt to stresses, thereby reducing the loss of
water and nutrients [47].

Our group found that the root hair played an important role in the cultivation of
test-tube plantlets of A. beshanzuensis under sterile conditions. Mycorrhizal fungi and root
hairs are closely related as two methods for roots to obtain resources. It is generally believed
that these two absorption strategies are complementary; that is, the role of mycorrhizal
fungi can be replaced by root hairs and vice versa [48].

The habitat of A. beshanzuensis is at a high elevation where microbial activity is rel-
atively weak, leading to a thick litter layer and an imbalance of a rhizosphere microbial
relationship, which may seriously hinder the growth of A. beshanzuensis. In this case, the
occurrence of root hair may serve as a compensatory mechanism to compensate for the
decreased absorptive capacity associated with the reduced rate of fungal infection [15],
which can serve as a survival strategy for A. beshanzuensis. Hence, it is crucial to determine
the regulation mechanism of A. beshanzuensis root hair architecture.

3.2. Root Hair Morphogenesis of A. beshanzuensis Can Be Regulated by Hormone and
Sugar Signaling

Whether or not an epidermal cell will mature into a root hair depends on a variety
of factors, including outer environmental circumstances and various autologous trans-
duction signals [20,49]. The TRANSPORT INHIBITOR RESISTANT1/AUXIN SIGNALING
F-BOX (TIR1/AFB) receptor complex binding to the auxin contributes to the interplay
between TIR1/AFB and AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) co-repressors, leading
to Aux/IAA polyubiquitination and degradation [50,51]. In Arabidopsis thaliana, three ARFs
(ARF5, ARF7, and ARF8) have been characterized to promote root hair growth, while eight
root-hair-specific ARFs (ARF1-4, ARF19-11, and ARF16) were determined to suppress root
hair growth [24,25]. Some auxin-signaling mutants, such as the SHORT HYPOCOTYL
2 (SHY2/IAA3) mutant results in root hair extension [52]. In this study, TIR1 and AUX/IAA
of A. beshanzuensis were significantly differently expressed in the RH0 and RH1. They were
significantly up-regulated in the RH0 group compared with the RH1 group (Figure 5), indi-
cating that auxin signaling regulates root hair growth development. Type-B ARABIDOPSIS
RESPONSE REGULATORS (ARRs) can control the cytokinin signaling through positive
feedback regulation [28,53]. Additional cytokinin caused a root hair length increase in the
wild-type Arabidopsis, and lowering the content of the endogenous cytokinin shortened
root hair length [28]. Here, B-ARR of A. beshanzuensis was significantly up-regulated in
the RH1 and increased gradually during the root hair development process (Figure 5),
which showed that cytokinin signaling may be positively involved in root hair growth.
Ethylene biosynthesis intercept or ETR1 and EIN2 function hinders root hair growth [54,55].
Additionally, ethylene activates the expression of crucial root hair genes, such as RHD6,
RSL2, RSL4, and the bHLH transcription factor of the RSL family, which regulate the root
hair initiation and tip growth of roots [27,28,30,56]. In our study, the ETRs were highly
expressed in the RH0 group, while EBF1/2 and EIN3 were up-regulated in the RH1group.
Exogenous glucose and sucrose can promote the growth of plant primary roots and the
growth of the meristem, while high concentration of glucose can inhibit the growth of
primary roots, and the number of lateral roots and root hairs changed when treated with
different concentrations [6,57] found that light and sucrose had antagonistic effects, which
jointly affected the occurrence and elongation of root hair. In this study, a total of 15 key
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genes were screened in the starch and sucrose metabolism pathway (Figure 4B), and two
key SUSs were expressed significantly higher in the RH0 group, which showed an earlier
increase and later decrease in the different development stages, while the SPS2 genes were
up-regulated during the development of the RH1 group, and were almost not expressed in
that of the RH0 group (Figure 6). This suggests that hormones and sucrose signals may be
bound to the root hair morphogenesis in A. beshanzuensis.

3.3. The Interaction of Hormone and Sugar Metabolism Pathway Plays an Indispensable Role in
Root Hair Growth and Development

The interaction of various signals is crucial in the root hair morphogenesis of plants [20].
It has been illustrated that ethylene can activate auxin biosynthesis during root hair ini-
tiation in root tips [58–60]. In the aux1-ein2 mutant, the root hair displayed a deficient
phenotype, and numerous root hair genes were up-regulated by both auxin and ethylene
signaling [55,61]. In addition, the hairless phenotype of rhd6 root could be compensated by
auxin and ACC involved in ethylene synthesis [22,28]. Auxin and ethylene may interact
with RHD6 to regulate downstream genes, such as RSL1/2/4, of the core-controlled root
hair pathway [20,60]. Several primary genes in the network of root hair formation can
also be targeted by auxin, ethylene, and cytokinin. For instance, all the three hormones
(auxin, ethylene, cytokinin) could repair the rhd6 mutant phenotype [28]. In addition,
the auxin response factors of ARF5 and ARF7 could up-regulate CYTOKININ RESPONSE
FACTOR (CRF) genes to participate in cytokinin biosynthesis [62,63] dditionally, it has
been illustrated that cytokinin can also take part in ethylene biosynthesis by promoting
ACC synthase stability [64]. Furthermore, strigolactones coupled with auxin play additive
roles in root hair development [65] and regulate root hair elongation by activating ethylene
signals related to auxin signals, which are involved in the root hair lifespan [66]. Sugars also
play a primarily regulatory role in root architecture, interacting with auxin, ABA, ethylene
and brassinolide. In addition, although glucose has been illustrated to antagonistically
interact with ethylene during root growth, it has been determined to improve ethylene-
induced root hair initiation and elongation [34]. In this study, WGCNA showed that two
hormone–sucrose–root hair modules were linked by IAA17, and SUS was positioned in the
center of the regulation network, co-expressed with ARR4, TIFY10B, EBF1, and BSK3 in
the hormone signal transduction pathway, BGLH12 and CMINV in the sucrose synthesis
pathway, and IAA17, a key gene related to root hair development (Figures 7 and 8). The
interwoven network between sugar and hormone signaling cascades plays a pivotal role in
root hair architecture, which provides a new insight into the protection and breeding of
endangered plants.

4. Conclusions

In summary, we firstly assembled the comparative transcriptomes for radicles with
root hair (RH1) and radicles without root hair (RH0) of A. beshanzuensis test-tube plantlets
and demonstrated that interactions of hormone and sugar signaling were primarily in-
volved in the root hair morphogenesis of A. beshanzuensis. We hypothesized that root hair
may be an important survival strategy, based on our study. Our findings provide a new
insight into the mechanisms of the root hair morphogenesis of A. beshanzuensis and other
endangered plants.

5. Materials and Methods
5.1. Plant Materials

The immature seeds were taken from the adult tree of Abies beshanzuensis grown in
the National Nature Reserve of Baishanzu in Mt. Qingyuan, Lishui, Zhejiang Province in
China (27◦42′ N latitude, 119◦11′ E longitude, 1775 m above sea level).
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5.2. Immature Embryo Culture

Immature seeds from A. beshanzuensis were washed under running tap water for 3 h
and sterilized in 70% analytical ethanol for 1 min. The seeds were then soaked in 0.1 wt%
HgCl2 for 8 min before washing with sterile water 3-5 times. Outer seed coats of immature
seeds were dissected under a stereomicroscope, and the isolated endosperm was inoculated
into the medium of DCR (Gupta and Durzan Medium), coupled with sucrose (20 g·L−1),
hydrolyze casein (500 mg·L−1) and Agar (8 g·L−1), pH 5.8. After inoculation, the cultures
were incubated at (20 ± 2) ◦C for 3 days in the dark, and then incubated at low light for
10 days. We found that root hair developed on the cocked radicles (RH1), while nearly
no root hair on the radicles attached to the medium (RH0), and this trait was maintained
in vitro in plantlets. Different developmental stages of root (2 days before the root hair
emerged, RH1/RH0_B; the day that root hair emerged, RH1/RH0_0; and 2 days after root
hair emerged, RH1/RH0_A) were collected from immature embryo cultures, and placed
immediately in liquid nitrogen, then stored at −80 ◦C for further RNA extraction and
quantitative real-time PCR (qRT-PCR) analysis. Three biological replicates were performed.

5.3. RNA Sequencing and Data Analysis

Total RNA was isolated from eighteen samples using an EASY38 spin Plus Plant
RNA Kit (Aidlab, Beijing, China) following the manufacturer’s protocol, and the integrity
and purity of RNA was assessed as described by Liu et al. [67]. The Isoform Sequenc-
ing (Iso-Seq) library was prepared according to the Iso-Seq protocol using the Clontech
SMARTer PCR cDNA Synthesis Kit and the BluePippin Size Selection System protocol
as described by Pacific Biosciences (PN 100-092-800-03) to obtain the third-generation
sequencing for a full-length transcriptome without a reference (PRJNA894800). Sequence
data were processed using SMRTlink 5.0 software. Additional nucleotide errors in con-
sensus reads were corrected using the Illumina RNA-seq data with the software LoRDEC.
Cuffdiff(v2.1.1) was used to calculate FPKMs of all transcripts in each sample. Cuffdiff
provides statistical routines for determining differential expression in digital transcript or
gene expression data using a model based on the negative binomial distribution. Tran-
scripts with a P-adjust < 0.05 were designated as differentially expressed. Differential
expression analysis of the two groups was performed using the DESeq R package (1.18.0).
Genes with an adjusted p-value < 0.05 found by DESeq were designated as differen-
tially expressed (fold change >2-fold). Raw sequence data were uploaded to the National
Center for Biotechnology Information (NCBI) Short Read Archive with the accession
number PRJNA894826. Assembled unigenes were aligned to the Nr protein database of
NCBI (http://www.ncbi.nlm.nih.gov (accessed on 5 November 2021)), KEGG pathway
database (http://www.genom e.jp/kegg (accessed on 27 October 2022)), Swiss-Prot pro-
tein database (http://www.expasy.ch/sprot(accessed on 1 July 2020)), and COG database
(http://www.ncbi.nlm.nih.gov/COG (accessed on 15 March 2021)). Blast2GO was used to
produce the gene ontology (GO) analyses (http://www.geneontology.org/ (accessed on
1 January 2019)) for assembled unigenes. Heat maps were conducted with the Complex-
Heatmap R package.

5.4. Network Analysis of Key Genes Involved in Root Hair Grow and Development in
A. beshanzuensis

To identify the key genes involved in plant hormone signal transudation and sugar
metabolism, which is responsible for the regulation of root hair growth and develop-
ment, a system biology approach was applied using an R package for weighted gene
co-expression network analysis (WGCNA), converting co-expression measures into con-
nection weights [68] with a weighted cut-off value > 0.50. The co-expressed gene network
was performed with Cytoscape software [69].

In a previous study, some root hair development genes were identified in Arabidop-
sis thaliana, such as IAA17, XIK, VLN4, BHLH32, LRX3, and OXI1 [20,38]. These gene
sequences were subjected to BLASTN searches against the transcriptome sequences to

http://www.ncbi.nlm.nih.gov
http://www.genom
http://www.expasy.ch/sprot(accessed
http://www.ncbi.nlm.nih.gov/COG
http://www.geneontology.org/
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identify homologous sequences in A. beshanzuensis with E value < 10-10. The best blast
homologous genes were used for WGCNA (Table S2).

5.5. Selection of Candidate Reference Genes

Seven candidate reference genes from A. beshanzuensis with a stable expression in the
different root development stages were selected based on the transcriptome result (PR-
JNA894826) (Table S1). These genes are commonly regarded as housekeeping genes in some
model plants. Their CDS sequences were blasted from the third-generation sequencing for
a full-length transcriptome without a reference of A. beshanzuensis (PRJNA894800).

5.6. Quantitative Real-Time PCR (qRT-PCR) Validation

Total RNA was isolated, processed in accordance with the manufacturer’s protocol,
and reverse-transcribed by a Prime Script RT reagent Kit (Takara, Dalian, China). Gene-
specific primers (Table S1) were designed for the real-time quantitative PCR (qRT-PCR)
determination of target genes by Primer Express3.0.1 (Applied Bio- systems). qRT-PCR was
conducted with an ABI PRISM 7300 Real-Time PCR System (ABI, Foster City, CA, USA)
using the SYBR Premix Ex Taq (Takara) coupled with an amplification procedure: 95 ◦C for
30 s, 40 cycles of 95 ◦C for 5 s and 60 ◦C for 34 s. Three biological and technical replicates
were employed. The data were calculated using the 2−∆∆CT method [67,70,71].

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants12020276/s1, Table S1: Primers used in the paper; Table S2:
Homologous root hair development genes of A. beshanzuensis with the best alignment rate in Ara-
bidopsis thaliana; Table S3: Modified concordant transcripts; Table S4: Length distribution statistics of
transcripts after redundancy removal; Figure S1: GO assignments for functional classification of the
assembled unigenes.
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