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Abstract: The ratio of amylose to amylopectin in maize kernel starch is important for the appearance,
structure, and quality of food products and processing. This study aimed to identify quantitative
trait loci (QTLs) controlling amylose content in maize through association mapping with simple
sequence repeat (SSR) and single-nucleotide polymorphism (SNP) markers. The average value
of amylose content for an 80-recombinant-inbred-line (RIL) population was 8.8 ± 0.7%, ranging
from 2.1 to 15.9%. We used two different analyses—Q + K and PCA + K mixed linear models
(MLMs)—and found 38 (35 SNP and 3 SSR) and 32 (29 SNP and 3 SSR) marker–trait associations
(MTAs) associated with amylose content. A total of 34 (31 SNP and 3 SSR) and 28 (25 SNP and 3 SSR)
MTAs were confirmed in the Q + K and PCA + K MLMs, respectively. This study detected some
candidate genes for amylose content, such as GRMZM2G118690-encoding BBR/BPC transcription
factor, which is used for the control of seed development and is associated with the amylose content
of rice. GRMZM5G830776-encoding SNARE-interacting protein (KEULE) and the uncharacterized
marker PUT-163a-18172151-1376 were significant with higher R2 value in two difference methods.
GRMZM2G092296 were also significantly associated with amylose content in this study. This study
focused on amylose content using a RIL population derived from dent and waxy inbred lines using
molecular markers. Future studies would be of benefit for investigating the physical linkage between
starch synthesis genes using SNP and SSR markers, which would help to build a more detailed
genetic map and provide new insights into gene regulation of agriculturally important traits.

Keywords: molecular markers; normal and waxy maize; population structure; QTLs; UPGMA
dendrogram; Zea mays

1. Introduction

Maize (Zea mays L.) is the most important agricultural crop. Starch is the main com-
ponent of maize kernels and comprises about 70% of kernel dry weight. Maize starch is a
major source of human food, animal feed, and industrial materials, including for bioethanol
production, paper, textiles, etc. [1,2]. Enhancing maize starch content can provide higher
kernel quantity and quality, and it can also improve its value in industrial applications [3].
Therefore, manipulating starch content and texture in the kernel is an important target in
maize breeding [4]. Maize starch can be differentiated into two types based on the texture
and content of the endosperm in the kernel: amylose of the linear form and amylopectin
of the branched form. The ratio of amylose to amylopectin in maize kernels is impor-
tant for the appearance, structure, and quality of food products and processing, such as
starch gelling, the firmness and formation of crystalline granules, and the thickening of
paste [5,6]. The amylose content in particular exhibits various variations in the natural
population of maize, ranging from 0% (waxy maize) to 64% (amylomaize) [7]. Based
on the composition of kernel starch, maize can be differentiated into two types: normal
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(nonwaxy) and waxy maize. In the world in general, normal maize is more cultivated
in terms of production amount and area and is mostly used for food and feed. On the
other hand, waxy maize, known as sticky or glutinous maize, is a unique type of cultivated
maize, the immature ears of which are mainly used for food in East and South-East Asian
countries [8,9]. Starch of the normal maize endosperm is made up of approximately 25%
amylose and 75% amylopectin [1], whereas starch of the waxy maize endosperm consists
of over 99% amylopectin.

Many enzymes and genes play critical roles in maize starch synthesis, such as sucrose
synthase (SUS encoded by shrunken1 (sh1); cleavage of sucrose into fructose and UDP-
glucose), ADP-glucose pyrophosphorylase (AGPase; small and large units encoded by
brittle2 (bt2) and shrunken2 (sh2), respectively), soluble starch synthases (SSs), granule-
bound starch synthase (GBSS; encoded by waxy1 (wx1)), starch-branching enzyme (BE;
encoded by amylose extender1 (ae1)), and starch-debranching enzyme (DBE; encoded by
sugary1 (su1)) [10]. Among such genes, the Waxy1 (Wx1) gene, 3.93 kb long and containing
14 exons on the long arm of chromosome 9, encodes GBSS, which controls amylose synthesis
in maize endosperm [11,12]. Although the Wx1 (dominant wild-type) gene can convert
ADP-glucose to amylose, the wx1 (recessive mutant) gene vastly inhibits the conversion
to amylose, which leads to increased accumulation of amylopectin [13]. Homozygous
recessive wx alleles result in the waxy maize endosperm having a sticky texture and
comprising almost only amylopectin [14]. Moreover, the recessive wx1 gene is also related
to the tasty and savory flavor in maize kernels [15]. The homozygous recessive wx mutant
(waxy maize) was first discovered in the early 1900s in China, and it is widespread in other
Asian countries [16]. There are more than 50 natural mutations in the wx gene that have
been identified at the molecular level [17].

In plant-breeding programs, determining the genetic basis of agronomic traits is a
very important scientific issue for crop improvement [18]. Traditional breeding depends on
phenotypic selection in the field, which is laborious and time-consuming [19]. However,
marker-assisted selection (MAS) enables the selection of desired phenotypes based on
genotypes [20]. Discovery of quantitative trait loci (QTLs) is the first step for MAS [21].
Two methods are usually utilized to identify QTLs or genes associated with important agro-
nomic traits: one is QTL mapping based on linkage within segregating populations, which
generates crosses between biparents with contrasting phenotypes and genotypes [22]; while
the other is association mapping using linkage disequilibrium (LD) between markers and
agronomic traits of interest [23,24]. QTL mapping is a classical method for detecting QTLs
or genes for quantitative traits of interest without prior genetic knowledge. Many QTLs
for starch content in maize have been reported in different biparental populations [25–33].
However, low resolution is a critical disadvantage for QTL mapping, which often ranges
from 10 to 30 cM [34]. The best way to improve the resolution is to increase the marker
density for QTL mapping [35]. With advances in genomics and genotyping technologies,
single-nucleotide polymorphism (SNP) markers have been applied to increase marker
density with high throughput and little time and cost [4]. Moreover, association mapping
using SNP markers is an alternative to traditional QTL mapping using markers such as
simple sequence repeats (SSRs) or microsatellites, amplified fragment length polymor-
phisms (AFLPs), and restriction fragment length polymorphisms (RFLPs). Compared
with traditional QTL mapping approaches, association mapping using SNP markers en-
ables the detection of 10 s of 1000 s of loci simultaneously and allows for higher mapping
resolution [23,36].

Therefore, the main objectives of this study were to identify QTLs controlling amylose
content in maize through association mapping with SSR and SNP markers and to identify
candidate markers responsible for amylose content for marker-assisted selection (MAS).
In other words, this study tried to detect unknown minor genes that regulate the amylose
content of maize kernels.
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2. Results
2.1. Phenotypic Analysis for Amylose Content in RIL Population

Phenotypic variations for amylose content in two parental lines and an 80-recombinant-
inbred-line (RIL) population are shown in Figure 1 and Table 1. Amylose content in Mo17
(female) and KW7 (male) was 14.4 ± 0.6 and 2.9 ± 0.6%, respectively. Moreover, the average
value of amylose content for the 80 RIL population was 8.8 ± 0.7%, ranging from 2.1 to
15.9%. Based on the average value (8.8%) for the RIL population, we divided the population
into two different groups: a low-amylose group and a high-amylose group. The low group
consisted of 36 inbred lines, which had an average value of amylose content of 3.4 ± 0.5%,
ranging from 2.1 to 4.7%. Meanwhile, the high group contained 44 inbred lines, which had
an average value of 13.1 ± 0.9%, ranging from 10.3 to 15.9 (Figure 1, Table 1). To confirm
differences in amylose content variation between the low and high groups, a t-test was
performed using the phenotypic data (Table 1), and this showed statistically significant
differences between the low group and the high group (t = −45.403, p < 0.001).
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Figure 1. Frequency distribution of average amylose content of each line in maize F7:8 RIL population.

Table 1. Results of amylose content evaluation for the two parental lines, all RIL populations, and the
low and high groups.

Female
(%)

Male
(%)

All (n = 80)
(%)

Low Group (n = 36)
(%)

High Group (n = 44)
(%)

Mean 14.4 2.9 8.8 3.4 13.1
SD 0.6 0.6 0.7 0.5 0.9

Min 2.1 2.1 10.3
Max 15.9 4.7 15.9
t-test

(p) −45.403 (0.001)

SD: standard deviation; Min: minimum value; Max: maximum value.

2.2. Cluster Analysis and Population Structure

An unweighted pair group method with arithmetic mean (UPGMA) dendrogram was
determined to detect a clustering pattern for the 80 RIL population with 14,968 SSR and
SNP markers, and the population was clustered into three major groups (Figure 2a). Group
I consisted of a total of 27 lines with 17 low- and 10 high-amylose lines; Group II included
30 lines, which consisted of 9 low- and 21 high-amylose lines; and Group III only included
23 lines with 10 low- and 13 high-amylose lines (Figure 2a). In addition, to understand
the population structure among the 80 RIL population, we used a model-based approach
via STRUCTURE software using the 14,968 SSR and SNP markers. Although some lines
belonged to an admixed group, almost all the lines were divided into two major groups
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at K = 2 (Figure 3a). Based on a membership probability threshold of 0.8, all lines were
divided into three groups: Group I, Group II, and the admixed group. In detail, Group
I included 28 lines with 10 high- and 18 low-amylose lines; Group II included 16 lines
consisting of 12 high- and 4 low-amylose lines; and the admixed group included 36 lines,
which consisted of 22 high- and 14 low-amylose lines (Figure 3a).
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2.3. Marker–Trait Association for Amylose Content

This study detected loci associated with amylose content using two different mixed
linear models (MLMs): a population structure (Q)+ kinship (K) matrix model (Q + K MLM)
and a principal component analysis (PCA) + K model (PCA + K MLM). Based on a false
discovery rate (FDR) at 0.05 and 0.01, this study found 53 (44 SNP and 9 SSR) and 38 (35 SNP
and 3 SSR) marker–trait associations (MTAs), respectively, associated with amylose content
using Q + K MLM (Table 2). On the other hand, 40 (37 SNP and 3 SSR) and 32 (29 SNP and
3 SSR) MTAs were detected using PCA + K MLM (Table 3). Moreover, based on Bonferroni
thresholds at α = 0.05 and α = 0.01, some MTAs were excluded from those based on the
FDR in both Q + K and PCA + K MLM. From this result, a total of 34 (31 SNP and 3 SSR)
and 28 (25 SNP and 3 SSR) MTAs, respectively, were confirmed in the two different analyses
(Tables 2 and 3). The percentage of phenotypic variation explained by R2 ranged from
20.6% to 87.0% in Q + K MLM for each SNP and SSR marker (Table 2). In the case of PCA +
K MLM, phenotypic variation for each marker ranged from 16.6% to 61.9% (Table 3). All
SNP and SSR markers detected in PCA + K MLM were overlapped with markers identified
by Q + K MLM. Moreover, all significant MTAs for amylose content were only detected on
chromosome 9 in both of the MLM analyses and with the two different thresholds.
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Table 2. Information of marker–trait association for amylose content using Q + K MLM.

Marker
Type Marker Chr Position and

Bin Value p-Value R2 (%) Gene ID Gene Name Gene Description FDR
at 0.05

FDR
at 0.01 −log10(p)

SSR umc1634 9 9.03 2.64E − 11 0.870 GRMZM2G121333 - alpha/beta-Hydrolases
superfamily protein 3.34E − 06 6.68E − 07 10.58 **

SNP PZE-109022525 9 23,019,885 3.40E − 10 0.665 GRMZM2G147319 - Zinc finger (C3HC4-type RING
finger) family protein 6.68E − 06 1.34E − 06 9.47 **

SSR umc2213 9 9.02 3.66E − 10 0.698 GRMZM5G830776 - SNARE-interacting protein
KEULE 1.00E − 05 2.00E − 06 9.44 **

SNP SYN10618 9 22,668,399 1.01E − 09 0.620 GRMZM2G092296 rps22a ribosomal protein S22 homolog 1.34E − 05 2.67E − 06 9.00 **

SNP SYN34180 9 23,749,286 1.62E − 09 0.601 GRMZM2G118355 - Histone H3 1.67E − 05 3.34E − 06 8.79 **

SNP SYN34181 9 23,765,962 1.62E − 09 0.601 GRMZM2G118690 bbr4 BBR/BPC-transcription factor 4 3.01E − 05 6.01E − 06 8.79 **

SNP SYN34183 9 23,749,944 1.62E − 09 0.601 GRMZM2G118355 - Histone H3 2.00E − 05 4.01E − 06 8.79 **

SNP SYN34184 9 23,749,967 1.62E − 09 0.601 GRMZM2G118355 - Histone H3 2.34E − 05 4.68E − 06 8.79 **

SNP SYN34187 9 23,750,028 1.62E − 09 0.601 GRMZM2G118355 - Histone H3 2.67E − 05 5.34E − 06 8.79 **

SNP PUT-163a-
18172151-1376 9 22,689,623 3.50E − 09 0.570 - - - 3.67E − 05 7.35E − 06 8.46 **

SNP SYN10617 9 22,666,672 3.50E − 09 0.570 GRMZM2G092296 rps22a ribosomal protein S22 homolog 3.34E − 05 6.68E − 06 8.46 **

SNP PZE-109023492 9 23,538,268 5.80E − 09 0.550 GRMZM2G396553 adc1 arginine decarboxylase1 4.01E − 05 8.02E − 06 8.24 **

SNP PZE-109023685 9 23,765,279 5.80E − 09 0.550 GRMZM2G118687 TIDP9202 Peptidyl-prolyl cis-trans
isomerase (PPIase) 4.34E − 05 8.69E − 06 8.24 **

SNP PZE-109024175 9 24,345,287 7.42E − 09 0.540 GRMZM2G370155 - - 4.68E − 05 9.35E − 06 8.13 **

SNP PZE-109023327 9 23,467,856 8.13E − 09 0.537 GRMZM2G121333 umc1634 alpha/beta-Hydrolases
superfamily protein 5.01E − 05 1.00E − 05 8.09 **

SNP PZE-109023851 9 24,080,158 2.52E − 08 0.493 GRMZM2G082855 er3 erecta-like3 5.34E − 05 1.07E − 05 7.60 **

SNP PZE-109024053 9 24,147,325 2.52E − 08 0.493 - - - 5.68E − 05 1.14E − 05 7.60 **

SNP wx1 9 9.03 4.30E − 08 0.474 GRMZM2G024993 waxy1
NDP-glucose-starch

glucosyltransferase, starch
granule-bound

6.01E − 05 1.20E − 05 7.37 **

SNP PZE-109022101 9 22,340,830 5.91E − 08 0.462 - - - 6.35E − 05 1.27E − 05 7.23 **

SSR umc1893 9 9.02 7.93E − 08 0.473 - - - 6.68E − 05 1.34E − 05 7.10 **

SNP PZE-109021982 9 22,174,224 1.14E − 07 0.509 - - - 7.01E − 05 1.40E − 05 6.94 **

SNP SYN31842 9 22,336,574 1.14E − 07 0.509 GRMZM2G107609 - Glycine-rich protein 7.35E − 05 1.47E − 05 6.94 **
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Table 2. Cont.

Marker
Type Marker Chr Position and

Bin Value p-Value R2 (%) Gene ID Gene Name Gene Description FDR
at 0.05

FDR
at 0.01 −log10(p)

SNP PZE-109021558 9 21,857,603 1.22E − 07 0.436 - - - 7.68E − 05 1.54E − 05 6.91 **

SNP PZE-109021565 9 21,884,153 3.57E − 07 0.398 - - - 8.02E − 05 1.60E − 05 6.45 **

SNP PZE-109021581 9 21,886,534 3.57E − 07 0.398 GRMZM2G447455 - Armadillo repeat-containing
kinesin-like protein 3 8.35E − 05 1.67E − 05 6.45 **

SNP PZE-109022064 9 22,338,567 4.16E − 07 0.459 GRMZM2G107665 - Aminomethyltransferase 8.69E − 05 1.74E − 05 6.38 **

SNP PZE-109021851 9 22,066,639 4.32E − 07 0.458 GRMZM2G148106 AY105451 ATP-dependent Clp protease
proteolytic subunit 9.35E − 05 1.87E − 05 6.36 **

SNP SYN9832 9 22,066,507 4.32E − 07 0.458 GRMZM2G148106 AY105451 ATP-dependent Clp protease
proteolytic subunit 9.02E − 05 1.80E − 05 6.36 **

SNP SYN11958 9 25,829,587 7.56E − 07 0.372 - - - 9.69E − 05 1.94E − 05 6.12 *

SNP SYN11959 9 25,830,547 7.56E − 07 0.372 GRMZM2G042080 sod11 superoxide dismutase11 1.07E − 04 2.14E − 05 6.12 *

SNP SYN11960 9 25,829,682 7.56E − 07 0.372 GRMZM2G042080 sod11 superoxide dismutase11 1.00E − 04 2.00E − 05 6.12 *

SNP SYN11961 9 25,829,976 7.56E − 07 0.372 GRMZM2G042080 sod11 superoxide dismutase11 1.04E − 04 2.07E − 05 6.12 *

SNP PZE-109025646 9 25,833,120 2.49E − 06 0.332 GRMZM2G344634 acb2 Acyl-CoA-binding protein2 1.10E − 04 2.20E − 05 5.60 *

SNP PZE-109026003 9 26,499,170 2.49E − 06 0.332 GRMZM2G393146 - Putative acyl-activating
enzyme 19 1.14E − 04 2.27E − 05 5.60 *

SNP PZE-109025124 9 25,102,451 5.68E − 06 0.305 GRMZM2G335052 si660005h06c Putative receptor-like protein
kinase family protein 1.17E − 04 2.34E − 05 NS

SNP SYN34135 9 26,592,678 6.17E − 06 0.302 GRMZM2G136838 krp2 kinesin-related protein2 1.20E − 04 2.41E − 05 NS

SNP PZE-109020811 9 20,840,270 1.41E − 05 0.276 GRMZM2G134260 hb77 Homeobox-transcription factor
77 1.24E − 04 2.47E − 05 NS

SNP PZE-109025060 9 25,097,187 1.71E − 05 0.282 - - - 1.27E − 04 2.54E − 05 NS

SSR umc2338 9 9.03 2.75E − 05 0.255 GRMZM2G153792 polm3 polymerase II
transcription-mediator3 1.30E − 04 NS NS

SNP PZA00583.4 9 20,609,016 3.62E − 05 0.246 GRMZM2G089992 bub3 Budding inhibited by
benzimidazoles homolog3 1.40E − 04 NS NS

SNP PZE-109020028 9 20,403,620 3.62E − 05 0.246 GRMZM2G000645 - Coatomer subunit beta’-3 1.37E − 04 NS NS

SNP SYN9817 9 20,346,749 3.62E − 05 0.246 GRMZM2G444801 sfp5 sulfate transporter5 1.34E − 04 NS NS

SNP PZE-109021152 9 21,138,321 6.06E − 05 0.288 - - - 1.44E − 04 NS NS

SNP PZE-109044991 9 77,785,458 6.44E − 05 0.229 - - - 1.47E − 04 NS NS
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Table 2. Cont.

Marker
Type Marker Chr Position and

Bin Value p-Value R2 (%) Gene ID Gene Name Gene Description FDR
at 0.05

FDR
at 0.01 −log10(p)

SSR umc1170 9 9.02 7.77E − 05 0.223 - - - 1.50E − 04 NS NS

SNP PZE-109021389 9 21,823,525 7.80E − 05 0.275 GRMZM2G144421 saur72 small auxin up RNA72 1.54E − 04 NS NS

SSR bnlg244 9 9.02 1.03E − 04 0.240 - - - 1.57E − 04 NS NS

SSR phi065 9 9.03 1.14E − 04 0.263 GRMZM2G083841 pep1 phosphoenolpyruvate
carboxylase1 1.60E − 04 NS NS

SSR umc2087 9 9.03 1.18E − 04 0.214 GRMZM2G422069 platz16 PLATZ-transcription factor 16 1.64E − 04 NS NS

SNP PZE-109020401 9 20,619,848 1.19E − 04 0.261 - - - 1.67E − 04 NS NS

SSR umc1700 9 9.03 1.42E − 04 0.206 GRMZM2G422069 platz16 PLATZ-transcription factor 16 1.70E − 04 NS NS

SNP PZE-109021109 9 20,982,506 1.54E − 04 0.253 - - - 1.74E − 04 NS NS

SNP SYN15749 9 20,988,151 1.54E − 04 0.253 GRMZM2G105957 - - 1.77E − 04 NS NS

Chr: chromosome; R2: phenotypic variation; FDR: false discovery rate; NS: not significant; *, **: Bonferroni thresholds at α = 0.05 and α = 0.01, respectively.

Table 3. Information of marker–trait association for amylose content using PCA + K MLM.

Marker
Type Marker Chr Position and

Bin Value p-Value R2 (%) Gene ID Gene Name Gene Description FDR
at 0.05

FDR
at 0.01 −log10(p)

SSR umc1634 9 9.03 1.74E − 10 0.619 GRMZM2G121333 - alpha/beta-Hydrolases
superfamily protein 3.34E − 06 6.68E − 07 9.76 **

SNP PZE-109022525 9 23,019,885 1.73E − 09 0.48 GRMZM2G147319 - Zinc finger (C3HC4-type RING
finger) family protein 6.68E − 06 1.34E − 06 8.76 **

SSR umc2213 9 9.02 3.18E − 09 0.481 GRMZM5G830776 - SNARE-interacting protein
KEULE 1.00E − 05 2.00E − 06 8.50 **

SNP SYN10618 9 22,668,399 4.89E − 09 0.446 GRMZM2G092296 rps22a ribosomal protein S22 homolog 1.34E − 05 2.67E − 06 8.31 **

SNP SYN34180 9 23,749,286 1.29E − 08 0.416 GRMZM2G118355 - Histone H3 1.67E − 05 3.34E − 06 7.89 **

SNP SYN34181 9 23,765,962 1.29E − 08 0.416 GRMZM2G118690 bbr4 BBR/BPC-transcription factor 4 3.01E − 05 6.01E − 06 7.89 **

SNP SYN34183 9 23,749,944 1.29E − 08 0.416 GRMZM2G118355 - Histone H3 2.00E − 05 4.01E − 06 7.89 **

SNP SYN34184 9 23,749,967 1.29E − 08 0.416 GRMZM2G118355 - Histone H3 2.34E − 05 4.68E − 06 7.89 **

SNP SYN34187 9 23,750,028 1.29E − 08 0.416 GRMZM2G118355 - Histone H3 2.67E − 05 5.34E − 06 7.89 **

SNP PUT-163a-
18172151-1376 9 22,689,623 2.48E − 08 0.396 - - - 3.67E − 05 7.35E − 06 7.61 **
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Table 3. Cont.

Marker
Type Marker Chr Position and

Bin Value p-Value R2 (%) Gene ID Gene Name Gene Description FDR
at 0.05

FDR
at 0.01 −log10(p)

SNP SYN10617 9 22,666,672 2.48E − 08 0.396 GRMZM2G092296 rps22a ribosomal protein S22 homolog 3.34E − 05 6.68E − 06 7.61 **

SNP PZE-109024175 9 24,345,287 6.47E − 08 0.367 GRMZM2G370155 - - 4.01E − 05 8.02E − 06 7.19 **

SNP PZE-109023492 9 23,538,268 6.86E − 08 0.365 GRMZM2G396553 adc1 arginine decarboxylase1 4.34E − 05 8.69E − 06 7.16 **

SNP PZE-109023685 9 23,765,279 6.86E − 08 0.365 GRMZM2G118687 TIDP9202 Peptidyl-prolyl cis-trans
isomerase (PPIase) 4.68E − 05 9.35E − 06 7.16 **

SNP PZE-109023327 9 23,467,856 8.06E − 08 0.361 GRMZM2G121333 umc1634 alpha/beta-Hydrolases
superfamily protein 5.01E − 05 1.00E − 05 7.09 **

SNP PZE-109023851 9 24,080,158 3.23E − 07 0.321 GRMZM2G082855 er3 erecta-like3 5.34E − 05 1.07E − 05 6.49**

SNP PZE-109024053 9 24,147,325 3.23E − 07 0.321 - - - 5.68E − 05 1.14E − 05 6.49 **

SNP PZE-109022101 9 22,340,830 3.59E − 07 0.318 - - - 6.01E − 05 1.20E − 05 6.45 **

SNP PZE-109021558 9 21,857,603 4.12E − 07 0.314 - - - 6.35E − 05 1.27E − 05 6.39 **

SSR umc1893 9 9.02 5.53E − 07 0.318 - - - 6.68E − 05 1.34E − 05 6.26 **

SNP wx1 9 9.03 5.73E − 07 0.305 GRMZM2G024993 waxy1
NDP-glucose-starch

glucosyltransferase, starch
granule-bound

7.01E − 05 1.40E − 05 6.24 **

SNP PZE-109021982 9 22,174,224 6.19E − 07 0.356 - - - 7.35E − 05 1.47E − 05 6.21 **

SNP SYN31842 9 22,336,574 6.19E − 07 0.356 GRMZM2G107609 - Glycine-rich protein 7.68E − 05 1.54E − 05 6.21 **

SNP PZE-109021565 9 21,884,153 1.64E − 06 0.276 - - - 8.02E − 05 1.60E − 05 5.79 *

SNP PZE-109021581 9 21,886,534 1.64E − 06 0.276 GRMZM2G447455 - Armadillo repeat-containing
kinesin-like protein 3 8.35E − 05 1.67E − 05 5.79 *

SNP PZE-109021851 9 22,066,639 1.66E − 06 0.326 GRMZM2G148106 AY105451 ATP-dependent Clp protease
proteolytic subunit 9.02E − 05 1.80E − 05 5.78 *

SNP SYN9832 9 22,066,507 1.66E − 06 0.326 GRMZM2G148106 AY105451 ATP-dependent Clp protease
proteolytic subunit 8.69E − 05 1.74E − 05 5.78 *

SNP PZE-109022064 9 22,338,567 2.99E − 06 0.309 GRMZM2G107665 - Aminomethyltransferase 9.35E − 05 1.87E − 05 5.52 *

SNP SYN11958 9 25,829,587 1.02E − 05 0.228 - - - 9.69E − 05 1.94E − 05 NS

SNP SYN11959 9 25,830,547 1.02E − 05 0.228 GRMZM2G042080 sod11 superoxide dismutase11 1.07E − 04 2.14E − 05 NS

SNP SYN11960 9 25,829,682 1.02E − 05 0.228 GRMZM2G042080 sod11 superoxide dismutase11 1.00E − 04 2.00E − 05 NS

SNP SYN11961 9 25,829,976 1.02E − 05 0.228 GRMZM2G042080 sod11 superoxide dismutase11 1.04E − 04 2.07E − 05 NS
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Table 3. Cont.

Marker
Type Marker Chr Position and

Bin Value p-Value R2 (%) Gene ID Gene Name Gene Description FDR
at 0.05

FDR
at 0.01 −log10(p)

SNP PZE-109020811 9 20,840,270 2.59E − 05 0.205 GRMZM2G134260 hb77 Homeobox-transcription factor
77 1.10E − 04 NS NS

SNP PZE-109025646 9 25,833,120 5.64E − 05 0.186 GRMZM2G344634 acb2 Acyl-CoA-binding protein2 1.14E − 04 NS NS

SNP PZE-109026003 9 26,499,170 5.64E − 05 0.186 GRMZM2G393146 - Putative acyl-activating
enzyme 19 1.17E − 04 NS NS

SNP PZE-109025124 9 25,102,451 9.59E − 05 0.173 GRMZM2G335052 si660005h06c Putative receptor-like protein
kinase family protein 1.20E − 04 NS NS

SNP PZA00583.4 9 20,609,016 9.82E − 05 0.172 GRMZM2G089992 bub3 Budding inhibited by
benzimidazoles homolog3 1.30E − 04 NS NS

SNP PZE-109020028 9 20,403,620 9.82E − 05 0.172 GRMZM2G000645 - Coatomer subunit beta’-3 1.27E − 04 NS NS

SNP SYN9817 9 20,346,749 9.82E − 05 0.172 GRMZM2G444801 sfp5 sulfate transporter5 1.24E − 04 NS NS

SNP SYN34135 9 26,592,678 1.30E − 04 0.166 GRMZM2G136838 krp2 kinesin-related protein2 1.34E − 04 NS NS

Chr: chromosome; R2: phenotypic variation; FDR: false discovery rate; NS: not significant; *, **: Bonferroni thresholds at α = 0.05 and α = 0.01, respectively.
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3. Discussion

To understand the genetic relationships and population structure of the 80 RIL maize
population, we utilized two methods: a model-based approach and a distance-based
approach (Figures 2 and 3). The model-based STRUCTURE revealed that the RIL population
could be divided into two major groups and an admixed group at K = 2 (Figure 2), while the
distance-based UPGMA dendrogram showed the RIL population divided into three major
groups with 47.8% of genetic similarity (Figure 3). Although the 80 RIL maize population
was well divided into two or three major subgroups using 14,968 markers, there was no
clear group pattern in accordance with amylose content (Figures 2a and 3a). The admixed
group contained 45% of the total lines and was a mixture of high- or low-amylose lines.
Furthermore, to better comprehend the genetic relationships and population structure of the
maize 80 RIL population, we analyzed the model-based and distance-based approaches of
the RIL population using 40 overlapping SNP and SSR markers (Table 3) related to amylose
content by association mapping. In the model-based approach, the two major groups were
Group I, which included 27 low-amylose inbred lines and only one high-amylose line
(RIL67), and Group II, which comprised 41 inbred lines consisting of 39 high-amylose and
two low-amylose lines (RIL12 and RIL66) (Figure 2b). Moreover, in the distance-based
approach the maize 80 RIL population was divided into two major groups with 10.1%
genetic similarity: Group I included 33 low-amylose and 2 high-amylose lines (RIL14 and
RIL67), and Group II contained 42 high-amylose and 3 low-amylose lines (Figure 3b). As
shown by these results, the 40 SNP and SSR markers clearly distinguished high and low
amylose content in the maize 80 RIL population.

Association mapping is a powerful method to identify loci and genes related to
important agronomic traits and uses high-throughput genotyping technologies in crop [37].
Population structure in MTAs is a critical factor because it can increase the probability
of false-positive associations [38]. To resolve this problem, several models have been
developed for association mapping, such as the Q + K model and PCA model [39,40].
Although much research has generated a Q-matrix for association mapping by STRUCTURE
software, this method is computationally intensive and not suitable for running very large
datasets [37]. The PCA model is also applied to generate a population structure and is
known to have fewer residual false-positive associations [41]. Therefore, this study used
the Q + K and PCA + K models to identify MTAs for amylose content and to minimize
false-positive associations. In the results, 13 more MTAs (7 SNPs and 6 SSRs) for amylose
content were detected with Q + K MLM than with PCA + K MLM (Tables 2 and 3). However,
40 common MTAs were confirmed for Q + K MLM and PCA + K MLM. To avoid false
positives and false negatives, the correct p-value threshold should be determined for
statistical significance. Many statistical procedures accounting for multiple testing have
been proposed to select statistical significance thresholds in association mapping. The
Bonferroni correction and FDR are commonly used for crops [42]. However, the Bonferroni
correction method is considered the most conservative, while the FDR method is a popular,
less conservative approach for selecting MTAs [36]. These methods were used to detect
significant MTAs in this study. With the FDR method, a total of 53 and 40 MTAs were
confirmed in Q + K MLM and PCA + K MLM, respectively. When the more conservative
Bonferroni correction was used, we found 34 and 28 MTAs in Q + K MLM and PCA +
K MLM, respectively (Tables 2 and 3). In particular, umc1634 at GRMZM2G121333 was
the most statistically significant marker in association mapping at p = 2.64 × 10−11 and
1.74 × 10−10 with R2 of 0.870 and 0.619 in Q + K MLM and PCA + K MLM, respectively.

To find candidate genes for amylose content, we confirmed the genomic region of the 40
overlapping MTAs between Q + K MLM and PCA + K MLM. Among these MTAs, 8 MTAs
were unknown, and 32 SNP and SSR marker associations with 26 genes were detected in
the Bin 9.02~9.03 region, which corresponds to a physical position between 20,346,749 to
100,030,452 base pairs (bps). Moreover, in our previous studies [43,44] for QTL mapping,
we detected two QTL regions between umc1634 and wx1 using SSR and SNP markers and
between PZE-109022525 and PZE-109024175 using SNP markers. The 14 statistically signif-
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icant markers at 9 genes (GRMZM2G147319, GRMZM2G024993, GRMZM2G121333, GR-
MZM2G396553, GRMZM2G118355, GRMZM2G118687, GRMZM2G118690, GRMZM2G082
855, GRMZM2G370155) in the Q + K MLM and PCA + K MLM were detected between
previous QTL intervals (Tables 2 and 3). Although many genes were detected in the asso-
ciation mapping using SNP markers, wx1 at GRMZM2G024993 was only associated with
amylose content and encodes GBSS for amylose biosynthesis. This finding is not surprising
because this gene on chromosome 9 was highly linked and well known for its association
with amylose content [5]. However, one candidate gene is GRMZM2G118690-encoding
BBR/BPC transcription factor, which is for control of seed development [45]. This tran-
scription factor is also greatly associated with the amylose content of rice [46]. Moreover,
some significant genes were identified with highly phenotypic variation (R2). For example,
umc2213 at GRMZM5G830776-encoding SNARE-interacting protein (KEULE) had p-values
of 3.66 × 10−10 and 3.18 × 10−9 with R2 of 0.698 and 0.481 in Q + K MLM and PCA +
K MLM, respectively (Tables 2 and 3). SYN10618 and SYN10617 at GRMZM2G092296
were also significantly associated with amylose content in this study. Although the PUT-
163a-18172151-1376 marker is uncharacterized, this marker also statistically significantly
associated with amylose content with high phenotypic variance in this population. Al-
though we found only the wx1 gene as a key gene in the starch biosynthesis pathway, a
previous study identified potential candidate genes that encode enzymes in nonstarch
metabolism and act as regulators of starch biosynthesis [4].

Starch content as a quantitative trait is known to be controlled by a large number
of genes/QTLs that each have small effects [47]. This study found some genes on chro-
mosome 9 associated with amylose content. Many studies already found QTL or genes
associated with starch and amylose content in chromosome 9 in maize [4,5,27,32,37,48].
These QTLs were detected in the intervals of bnlg430-dupssr19 and umc1771-bnlg430 on
chromosome 9 [48] and in the interval of PZE10907827-PZE109082140 with the physical
position of 126.2–130.8 Mb [4] and at 24,028,939 bp and 126,584,775 bp on chromosome
9 [49]. From genome-wide association studies (GWAS), several SNPs on chromosome 9
showed significant association with amylose content [5]. Our findings were inconsistent
with those of other studies for most genetic regions or genes, although chr.9.S_23283117
at GRMZM2G024993 [5] was identified in this study. This difference in the results for
chromosome 9 could be because of genetic background, population size, recombination
events, environmental effects, and analysis methods [50].

This study only focused on amylose content using an RIL population derived from
dent and waxy inbred lines. Therefore, this study cannot identify other genes or QTLs
related to the starch biosynthesis pathway. Future studies would be of benefit for investi-
gating the physical linkage between starch synthesis genes using SNP and SSR markers,
which would help to build a more detailed genetic map and provide new insights into
gene regulation of agriculturally important traits. Moreover, our future work will fo-
cus on designing SNP markers and QTLs related to the starch biosynthesis pathway in
maize-breeding programs.

4. Materials and Methods
4.1. Plant Material and Amylose Content Evaluation

A population of 80 F7:8 RILs used in this study was constructed by single-seed descent
between normal maize inbred line Mo17 (United States Corn Belt) and waxy maize inbred
line KW7 (Korean waxy maize landrace) at the Maize Experiment Station, Gangwon
Agricultural Research and Extension Service, Hongcheon [43,51]. Analysis of amylose
content was performed on both parental lines as well as on the 80 RILs in kernel, and this
study used three replicates for each line and an average value [44].

4.2. SSR and SNP Genotype in RILs

A total of 14,968 SSR and SNP genotypes for RILs were generated in this study from
two different studies for genetic and QTL mapping [43,44]. Among them, the 546 informa-
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tive markers (541 SSRs and 5 SNPs) reported in a previous study by Sa et al. (2015) [43]
were obtained after filtering by a chi-square test (p < 0.05) [43], and the 14,422 SNP markers
reported in a previous study by Sa et al. (2021) [44] were obtained for association map-
ping after filtering of the Illumina MaizeSNP50 Bead-Chip (Illumina, Inc. San Diego, CA,
USA) of 56,110 maize SNPs, which covers 19,540 genes developed from the B73 reference
sequence [44,52]. Among the 56,110 SNPs, many SNPs were removed, such as unanchored
SNPs; missing, heterozygote, and monomorphic markers in parental lines; over 10% miss-
ing in the RIL population; and SNPs on duplicated positions. Moreover, we also excluded
skewed SNP markers by a chi-square test (p < 0.05).

4.3. Statistical Data Analysis

Genetic similarity (GS) was generated for each pair of lines of the RIL population
using the Dice similarity index [53]. The similarity matrix was used to construct a UPGMA
dendrogram with the application of SAHN clustering in NTSYS-pc V2.1 [54]. This study
used the model-based program STRUCTURE 2.3 [55] to confirm the population structure for
the 80 RIL population. The membership coefficient of each K value at each subpopulation
was obtained with 5 replicates ranging from 1 to 10 using 100,000 cycles for both burn-in
and run length. The delta K statistic suggested by Evanno et al. (2005) [56] was calculated
with STRUCTURE HARVESTER (http://taylor0.biology.ucla.edu/structharvest/, accessed
on 1 April 2022) based on the STRUCTURE results. Each RIL with membership probabilities
<0.80 was assigned to a mixed group. Association analysis was performed using TASSEL 3.0
software [57], which was used to evaluate MTAs using an MLM (Q + K MLM and PCA + K
MLM) with Q, PCA, and K matrix at a significance value of p ≤ 0.05. The PCA and K matrix
were calculated using the PCA and kinship option, respectively, in TASSEL 3.0 software
from marker data. The statistical significances of the SSRs and SNPs were evaluated with
FDR-adjusted p-values at 0.05 and 0.01 critical thresholds [58] and Bonferroni-corrected
thresholds were performed to control the type I error rate at both α = 0.05 and α = 0.01 as
the cut-offs (3.34 × 10−6 and 6.68 × 10−7, corresponding to “−log10p (α/n)” values of 5.48
and 6.18, respectively).

Basic statistics used Microsoft Office Excel (2016) (Microsoft Corporation) for average,
standard deviation, and minimum and maximum values in parental lines and RILs. The
t-test for difference between the low and high groups for amylose content was calculated
using IBM SPSS Statistics version 26 (IBM Corporation, Armonk, NY, USA).

5. Conclusions

Maize can be differentiated based on the composition of kernel starch into two types:
normal maize and waxy maize. Starch of the normal maize endosperm is approximately
25% amylose and 75% amylopectin, whereas starch of the waxy maize endosperm consists
of over 99% amylopectin. This study aimed to identify QTLs controlling amylose content in
maize through association mapping with SSR and SNP markers and to identify candidate
markers responsible for amylose content for MAS. Amylose content in Mo17 (female) and
KW7 (male) was 14.4 ± 0.6 and 2.9 ± 0.6%, respectively. Moreover, the average value
of amylose content for the 80 RIL population was 8.8 ± 0.7%, ranging from 2.1 to 15.9%.
Based on the average value (8.8%) for the RIL population, we divided the population into
two different groups: a low-amylose group and a high-amylose group. A dendrogram
using UPGMA was used to detect clustering patterns for the 80 RIL population with
14,968 SSR and SNP markers, and the population was found to be clustered into three
major groups. We used two different analyses—Q + K and PCA + K MLMs—and all the
SNP and SSR markers detected in PCA + K MLM were overlapped with markers identified
by Q + K MLM. Moreover, GRMZM2G118690-encoding BBR/BPC transcription factor
controls seed development and is associated with the amylose content of rice. The umc2213
at GRMZM5G830776-encoding SNARE-interacting protein (KEULE) was significant, with
a higher R2 value in two different methods. SYN10618 and SYN10617 at GRMZM2G092296
were also significantly associated with amylose content. The uncharacterized marker

http://taylor0.biology.ucla.edu/structharvest/
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PUT-163a-18172151-1376 is also statistically significantly associated with amylose content
with high phenotypic variance. This study focused on amylose content using an RIL
population derived from dent and waxy inbred lines. Future studies would be of benefit
for investigating the physical linkage between starch synthesis genes using SNP and SSR
markers, which would help to build a more detailed genetic map and provide new insights
into gene regulation of agriculturally important traits in maize molecular breeding studies.
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