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Abstract: Mechanical and chemical methods are widely used to control woody plant encroachment
in many African countries. However, very little is known about the effectiveness of these control
methods among woody species of different ages. We conducted a field experiment to determine the
effects of different tree removal treatments (10%, 20%, 50%, 75% and 100%) and herbicide application
(Picloram; 6 mL L−1) on the resprouting ability and vigour of 12 woody plant species. We examined
20 plots (30 m × 30 m) that were each subjected to tree removal, followed by herbicide application
on half of the stems for each plot. All the tree species in this study resprouted after cutting. The
applied concentration of herbicide significantly reduced the shoot production for Ehretia rigida,
Vachellia robusta and Ziziphus mucronata, with a marginal effect for Dichrostachys cinerea. The diameter
of stems was an important factor in determining resprouting ability, with shoot production decreasing
with increasing stem diameter. However, stem diameter did not affect shoot length and diameter for
all species. We found that woody plants are more likely to resprout and survive as juveniles than
as adults after cutting and that herbicide only affected four of the twelve species at a concentration
of 6 mL L−1. Thus, testing the amount of Picloram needed to kill certain woody species may be of
importance for land users in southern African savannas.

Keywords: Picloram; savanna; stem diameter; tree cutting; woody plant encroachment

1. Introduction

Woody plant encroachment is considered one of the most extensive forms of rangeland
degradation in arid and semi-arid areas globally [1,2] and can drastically reduce forage
production for livestock and wild animals [3–5]. Woody plant proliferation is exacerbated
in rangelands overgrazed by, among others, large herbivores, climate change and the
suppression of fire that is used to control tree establishment in savanna ecosystems, as
well as combinations of these factors [6]. In southern African savannas, the proliferation of
woody plants is facilitated by leguminous trees such as the Vachellia and Senegalia species [7]
and also by broadleafed species [8]. Woody plants have encroached on over 7.3 million
hectares in South Africa [9]. This has led to a considerable reduction in plant diversity and
grazing capacity, owing to reduced herbaceous species richness and biomass [10,11].

To properly manage and sustain the economic viability of savanna rangelands affected
by woody plant encroachment, it is important to encourage the ecological benefits of woody
plants in terms of the nitrogen fixation of leguminous trees [12], hydraulic lift [13,14] and
organic carbon [15,16] while limiting their encroachment [17,18]. Effective rangeland
management can be achieved by developing appropriate strategies that can help increase or
maintain grass production adequate for livestock and game ranching [19,20]. One strategy
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for optimising the availability of grass and maintaining the ecological benefits conferred by
woody plants is reducing tree density (also termed tree thinning), which involves a reduction
in the number of trees in areas where woody plant encroachment has occurred [3]. Tree
density reduction has been shown to have positive benefits in savannas, such as an increase
in grass production and reducing soil erosion [3,21].

Globally, brush management techniques may include mechanical and chemical control
methods to remove most of the woody layer [20,22–24]. A problem that is widely under-
stood is that mechanical control methods are limited by the fact that many trees resprout
after disturbances [25,26]. Many empirical studies have demonstrated the importance
of resprouting as a persistence strategy across different habitats, from savannas [27–29],
forests [30–32] and deserts [33] to Mediterranean ecosystems [31,32]. Resprouting is a mech-
anism that allows individual plants to regenerate after the elimination of the above-ground
biomass and persist in ecosystems with recurrent disturbances [30,34]. Woody plants have
been reported to regenerate from the cut or broken stem [34,35]. The resprouting ability of
various woody plants is supported by the non-structural carbohydrate reserves stored in a
well-developed, deep-root system [30,36]. Woody plants with strong resprouting ability
tend to trade off seeding through persistence, while other species have greater reproductive
performance and regenerate from seeds [37]. For the latter species, there are challenges that
may arise when regenerating through seedling emergence because this may depend on a
number of factors, such as seed viability, high seedling mortality during the dry season and
climatic conditions [38]. Nonetheless, shoots produced by the cut stumps are undesirable
because they have the ability to regrow into mature trees that may have competitive effects
on the herbaceous layer [27]. To prevent tree stems from resprouting after tree cutting, the
cut stems are frequently treated with chemical herbicides [39–41]. Cutting followed by
an immediate application of herbicide to the stump can greatly reduce or prevent future
sprouting in many woody and invasive species [41].

The competition for light and soil resources posed by high densities of woody plants
may subsequently reduce the resprouting ability of cut stems [38]. Thus, gap formation
through high intensities of tree removal may reduce the competition for resources of the
remaining trees, which may consequently result in an increase in resprouting ability and
vigour [38,42]. Resprouting vigour depends on the allocation of belowground stored
reserves and the capacity to acquire new resources through photosynthesis [38,43], which
may be enhanced via high intensities of tree removal. However, to our knowledge, the
effects of different woody removal intensities on the resprouting patterns of woody species
have not been studied before.

In general, the larger the stem, the greater the belowground resources that the plant
has to support resprouting [44]. However, there is considerable variance in this rela-
tionship; some authors have found the opposite pattern [45], and some have found no
relationship [46,47]. For instance, models developed by [48] to predict resprouting ability
among oak trees in the central Appalachians in Pennsylvania (USA) show that white oak
Quercus alba trees rapidly lost their resprouting abilities with increasing stem diameter.
Meanwhile, ref. [49] suggested that the resprouting ability of woody plants as influenced
by plant age is related to bud senescence. Additionally, thick bark in older trees may inhibit
resprouting abilities through hindering bud emergence [32], particularly in systems that
experience disturbances such as frequent fires [50,51]. Where faster growth allows trees
to escape damage via frequent disturbances, resprouting ability may then decline with
increasing size [52]. The tendency of young trees to be better resprouters than older trees is
reported to be an effective adaptive strategy against frequent disturbances [31]. Therefore,
these suggest that the effects of stem diameter on resprouting ability may be species-specific
and may be related to the development of the root systems of species [50,53]. Consequently,
differences in root systems among tree species may subsequently influence resprouting
patterns and the efficacy of control methods.

Here, we examined the resprouting patterns of 12 dominant woody plant species at
Roodeplaat Farm in the Gauteng Province of South Africa. We applied mechanical tree
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removal and herbicides to determine which of these two factors was most important for
controlling woody plant encroachment. We sought to determine the combined effects of
stem diameter, woody removal intensity (hereafter WRI) and herbicide application on
the resprouting patterns of woody plants. To achieve these aims, we conducted a field
experiment and made the following predictions: (1) herbicide application will result in
reduced or no regrowth from cut stems, regardless of the species; (2) the resprouting
ability will increase with increasing stem diameter because larger trees should have greater
storage of belowground resources [36,45,54]; and (3) moderate and high WRIs will increase
resprouting ability because of the substantial reduction in the competition for resources of
the remaining trees.

2. Materials and Methods
2.1. Study Area

The study was conducted at the Roodeplaat Experimental Farm of the Agricultural
Research Council (25◦36′29′′S, 28◦2′08′′ E) in Gauteng Province, South Africa. The farm is
about 2100 ha, which is mostly used for livestock and game production. The vegetation type
of the farm is the Marikana Thornveld [55]. The Marikana Thornveld is described as open
Vachellia karroo (formerly Acacia) woodland occurring in valleys and slightly undulating
plains and lowland hills [56]. Vachellia karroo and Senegalia (formerly Acacia) caffra [57],
are among the major dominant woody plants on the farm. Other dominant woody plants
include the Euclea species, Vachellia (formerly Acacia) tortilis and Ziziphus mucronata. The
nomenclature of [56] for tree species was followed. The grass component of the site is
characterised by Digitaria eriantha, Eragrostis curvula, Heteropogon contortus, Melinis repens,
Panicum maximum, Setaria sphacelata, Sporobolus africanus and Themeda triandra [10]. We
used the nomenclature of [58] for grass species. The study area is a mesic savanna with
a mean annual rainfall of 687 mm, which largely falls between November and March.
The minimum temperature during the winter season ranges between 2 and 16 ◦C, and
the maximum summer temperature ranges between 20 and 29 ◦C. The experimental site
was encroached at a density of 4065 ± 109 (mean ± SE) woody plants per ha−1. The
experimental plots are located on sandy soils and have been permanently fenced to prohibit
grazing since the establishment of the experiment in 2018.

2.2. Research Design

The study consisted of 20 plots of 30 m× 30 m each subjected to different intensities of
tree removal. The tree densities were determined by doing a direct count of all trees in each
plot. Trees were removed in October 2018 to the approximate equivalents of 10%, 20%, 50%,
75% and 100% (total clearing of the tree density) per plot, following [3]. The plots were
close to each other and were separated by 5-m-wide fire breaks. Tree removal treatments
were replicated four times and allocated randomly. The trees were cut with a chainsaw, and
any accumulated sawdust or debris was removed from the cut stems. All trees were cut at a
height of 0.25 m [25,27], and half the tree stems were treated with herbicide. The herbicide
used contains Picloram as its active ingredient [39,59]. This herbicide is a water-soluble
systemic herbicide with residual activity that acts through the roots and cut surfaces of
woody plants [59]. The herbicide was applied at a minimum recommended concentration
of 6 mL L−1 of water (Browser Herbicide®, Arysta Lifesciences, Tokyo, Japan) with crop
oil added at 5 mL L−1. Tree stems were treated with herbicide within 15 min after felling
during the growing season. A knapsack sprayer (Spraying Systems TG-1, Delavan CE 1)
with a single solid-cone nozzle was used for herbicide application.

The combined effects of stem diameter, WRIs and herbicide application on the re-
sprouting ability were examined on the following woody species that encroached on the
study site: Dichrostachys cinerea, Euclea crispa, Ehretia rigida, Gymnosporia buxifolia, Pap-
pea capensis, Searsia lancea, Senegalia caffra, Vachellia karroo, V. nilotica, V. robusta, V. tortilis
and Ziziphus mucronata. To determine the regrowth patterns for each resprouting stem, the
following variables were measured in each plot 9 months after tree felling towards the end
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of July 2019: (1) the total number of resprouting shoots per stem, (2) the shoot length of
the leader shoot and (3) the shoot diameter of the leader shoot, measured at the base of
the shoot. Shoot production was calculated as the number of shoots produced per stem
diameter [25].

2.3. Data Analysis

Prior to analysis, data were log10-transformed to ensure a normal distribution of resid-
uals, but the mean values and their associated standard errors were back-transformed after
analysis. In addition, the data met all the MANOVA assumptions. We used multivariate
analysis of covariance (MANCOVA) to test the effects of stem diameter, WRIs and herbicide
application on the resprouting ability and vigour of the study plants. Shoot production,
shoot length and shoot diameter were the dependent variables, with stem diameter as a
covariate. MANCOVA was used to reduce the Type 1 error that may be caused by testing
multiple dependent variables on the same subjects. We used Wilks’s λ test statistic to
investigate the effect of treatments on resprouting parameters. When the MANCOVA
was significant, we used univariate ANCOVA to identify factors that contributed to the
significant MANCOVA, followed by a Bonferroni post hoc test among groups of each
factor. We used linear regression to determine the relationship between the resprouting
parameters of the trees and the stem diameter. The data were analysed separately for each
species. IBM SPSS for Windows v. 26 [60] was used for all data analysis.

3. Results

There was no significant interaction among the resprouting parameters between
the removal treatments and herbicide application for all species in this study (p > 0.05).
We found no significant effect of the WRIs on the resprouting parameters for all species
(p > 0.05). There was no significant effect of the covariate (stem diameter) on shoot length
and diameter for all species (p > 0.05). However, there was a significant effect of stem
diameter on shoot production for 10 of the 12 study species (p < 0.05).

There was no significant effect of stem diameter on shoot production for E. rigida
(p = 0.276) and V. karroo (p = 0.181) in the univariate ANCOVA. The results showed that
E. rigida had the highest shoot production, while V. robusta had the lowest production of
shoots (Table 1). Furthermore, we observed a significant negative relationship between
stem diameter and shoot production for all the study species except for E. rigida, for which
there was no clear pattern (Figure 1).

Table 1. Mean (± S.E.) stem diameter, number of stems recorded (n) and overall shoot production.

Species Stem Diameter (cm) n Shoot Production (cm−2)

D. cinerea 3.8 ± 0.2 72 81.1 ± 16.4
E. crispa 4.7 ± 0.2 151 102.4 ± 15.9
E. rigida 5.2 ± 0.1 100 157.4 ± 20.7

G. buxifolia 6.7 ± 0.6 82 65.3 ± 18.3
P. capensis 6.9 ± 0.7 35 101.8 ± 23.8
S. lancea 9.7 ± 0.8 42 147.1 ± 60.4
S. caffra 7.8 ± 0.7 40 70.5 ± 17.4
V. karroo 4.8 ± 0.3 55 79.4 ± 30.8
V. nilotica 8.4 ± 0.5 70 62.1 ± 15.4
V. robusta 9.6 ± 0.3 201 41.4 ± 6.4
V. tortilis 9.1 ± 0.8 47 144.8 ± 39.1

Z. mucronata 7.1 ± 0.3 140 93.1 ± 14.9

We found a significant effect of herbicide application on the resprouting patterns
of four of the twelve study species (p < 0.05) (Table 2). Significant effects of herbicide
application were found on E. rigida, V. robusta, V. tortilis and Z. mucronata (p < 0.05). A
marginally significant effect (p < 0.058) of herbicide application was found for D. cinerea
(Table 2).
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Figure 1. The relationship between stem diameter and new shoot production (“Shoot prod”) of the
12 study species: D. cinerea, E. crispa, E. rigida, G. buxifolia, P. capensis, S. lancea, V. caffra, V. karroo,
V. nilotica, V. robusta, V. tortilis and Z. mucronata.

Table 2. The effect of herbicide application on the means of each of the following: number of leaves,
shoot diameter (cm), length of the leader shoot (longest shoot) (cm) and shoot production of 12 tree
species. Significant differences in the ANOVA results are denoted with an *. The species names are
Dichrostachys cinerea, Euclea crispa, Ehretia rigida, Gymnosporia buxifolia, Pappea capensis, Searsia lancea,
Senegalia caffra, Vachellia karroo, V. nilotica, V. robusta, V. tortilis and Ziziphus mucronata.

Species Treatment
Significance of Wilks’s λ in

MANCOVA
(p-Value)

Diameter of the
Leader Shoot
(Mean ± SE)

Length of the
Leader Shoot
(Mean ± SE)

Shoot Production
(Mean ± SE)

D. cinerea Herbicide
Control 0.058 0.03 ± 0.01

0.49 ± 0.07
6.20 ± 3.13

68.03 ± 9.39
13.5 ± 0.8

193.3 ± 32.6 *

E. crispa Herbicide
Control 0.225 0.03 ± 0.01

0.31 ± 0.04
3.79 ± 1.44

37.60 ± 3.61
25.32 ± 10.67

204.44 ± 29.79

E. rigida Herbicide
Control 0.001 0.04 ± 701.24

0.75 ± 0.07 *
4.81 ± 3.22

65.85 ± 5.93 *
20.6 ± 9.2

317.9 ± 29.6 *

G. buxifolia Herbicide
Control 0.138 0.05 ± 0.02

0.33 ± 0.05
2.35 ± 1.03

22.76 ± 3.34
9.0 ± 3.7

149.8 ± 42.4

P. capensis Herbicide
Control 0.099 0.08 ± 0.02

0.37 ± 0.09
6.54 ± 2.58

119.66 ± 87.26
44.5 ± 21.8

156.2 ± 37.8

S. lancea Herbicide
Control 0.347 0.12 ± 0.06

2.81 ± 1.82
9.64 ± 4.89

89.00 ± 9.71
114.7 ± 100.1
194.9 ± 28.5

V. caffra Herbicide
Control 0.122 0.21 ± 0.07

0.45 ± 0.08
3.70 ± 10.06

62.29 ± 10.19
28.1 ± 9.7

134.3 ± 36.9
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Table 2. Cont.

Species Treatment
Significance of Wilks’s λ in

MANCOVA
(p-Value)

Diameter of the
Leader Shoot
(Mean ± SE)

Length of the
Leader Shoot
(Mean ± SE)

Shoot Production
(Mean ± SE)

V. karroo Herbicide
Control 0.158 0.01 ± 0.01

0.35 ± 0.07
1.89 ± 1.36

42.22 ± 4.68
10.1 ± 6.2

221.7 ± 85.3

V. nilotica Herbicide
Control 0.083 0.04 ± 0.03

0.36 ± 0.05
2.09 ± 1.23

42.28 ± 5.45
3.9 ± 2.9

130.1 ± 29.5

V. robusta Herbicide
Control 0.004 0.09 ± 0.02

0.42 ± 0.04 *
5.84 ± 1.15

39.64 ± 3.08 *
6.8 ± 1.7

155.7 ± 15.2 *

V. tortilis Herbicide
Control 0.038 0.15 ± 0.05

0.65 ± 0.12
17.67 ± 4.75

61.94 ± 6.67 *
98.6 ± 48.2
212.9 ± 63.5

Z. mucronata Herbicide
Control 0.001 0.07 ± 0.02

1.05 ± 0.08 *
7.02 ± 2.44

104.92 ± 5.89 *
4.3 ± 1.5

192.4 ± 26.8 *

4. Discussion

After bush clearing, tree regeneration is a major potential problem encountered in
rangelands [1,25,61]. All the tree species in this study resprouted following cutting, demon-
strating their ability to regenerate from damaged tissues. Our results are consistent with
the results obtained in similar studies demonstrating woody plants’ abilities to resprout
after disturbances [30,35,44,62]. The ability of woody plants to resprout after disturbances
may be attributed to their stored resources [29,30,46]. The current study indicates that the
trees examined in this study have the ability to regenerate after cutting, and thus, further
stem treatment may be required to successfully control the plants to ensure a long-term
reduction in woody populations [61].

We predicted that larger stems would show a stronger resprouting ability than smaller
stems. However, we found that shoot production decreased with the increasing stem
diameter of the study plants except for E. rigida. The findings of the current study are in line
with [31,45,63], who demonstrated that the effectiveness of resprouting differs according to
tree age, which is usually measured via stem diameter at the time of disturbance [31,45,63].
For example, several studies e.g., [45,48,62,64] have reported that tree species resprout as
juveniles and lose their ability to resprout when they reach the adult stage. The causes of
this resprouting pattern in woody species are unclear but are often assumed to arise from a
combination of genetic, physiological and related anatomical changes that occur with the
stage of tree development [29,48,64]. Moreover, the reduced resprouting ability of larger
plants may be a consequence of the reduced production of non-structural carbohydrates [46].
Nonetheless, ref. [35] demonstrated that larger stems take longer to respond to the initial
cutting but, once recovered, have the capacity to regrow at a rate faster than that of smaller
stems. The study by [35] (39 months) lasted longer than our study (9 months), which may
possibly explain why the results of his study and ours differed.

Herbicide application significantly reduced the resprouting abilities of E. rigida, V. ro-
busta and Z. mucronata. Although herbicide application significantly reduced the shoot
length of V. tortilis, it did not affect the resprouting ability (i.e., shoot production) or diame-
ter of the leader shoot of this species. Furthermore, herbicide application had no significant
effect on the resprouting ability of seven species that we tested (E. crispa, G. buxifolia, P. capen-
sis, S. lancea, V. caffra, V. karroo and V. nilotica), which was inconsistent with our prediction
that herbicide application would significantly reduce the resprouting ability of all cut stems,
regardless of species. A possible reason for the inconsistency of the effects of herbicide
application across species may be attributed to the equal concentration of Picloram applied
to the cut stems and the time of application for each plant species. Elsewhere, ref. [65] found
that the herbicide triclopyr amine applied at a 25% v/v (i.e., (volume of solute/volume
of solution) × 100) concentration was not effective for the control of Triadica sebifera, an
invasive woody species invading the southeastern United States. However, in the same
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study, ref. [65] found that the same amount of triclopyr amine was effective in controlling
Ligustrum sinense, which invades the same area. Their results also showed that reducing
the recommended concentrations of two herbicides (i.e., glyphosate and triclopyr amine)
by 50% was effective for controlling L. sinense.

Reducing herbicide inputs into the environment is a desirable goal for land users glob-
ally [41] and particularly for resource-poor communal farmers. Thus, testing the amount
of Picloram needed to kill certain woody species may be of importance for land users in
southern African savannas. This will inform land managers of the optimal concentrations
of Picloram to use on certain species. Moreover, the seasonal timing of herbicide appli-
cation on cut stems has been reported to influence the subsequent resprouting of woody
plants [41,66,67]. In our study, trees were cut and treated with herbicide during the wet
season. However, ref. [41] demonstrated that woody plants are controlled better with
herbicides during autumn (fall), when woody plants are not actively growing. Additionally,
ref. [39] showed that using mixtures of several herbicides provided better control than
using single herbicides because different herbicides have different physiological pathways
and modes of action. Future studies should focus on testing the optimal concentrations
and time (the wet or dry season) of applications of different herbicides needed to kill the
tree stems of the species we examined.

Contrary to our expectations, moderate (50%) and high (75 and 100%) WRIs did not
affect resprouting among the woody species. We attributed these findings to the distribution
pattern of woody plants in savannas [18]. This is because savanna ecosystems are generally
less dense compared to forest systems [52]. The competition for resources (particularly
soil moisture) among savanna trees usually results in reduced plant densities and sizes
and leads to a more regular pattern of tree distribution [68]. Thus, unlike in forest systems
(e.g., [38]), high tree densities may not be an important determinant of resprouting success
in savannas. However, more studies on the impact of tree cover on resprouting stems are
needed, particularly in different savanna systems. Nonetheless, the findings of our study
show that the resprouting ability of woody species is not dependent on tree densities.

5. Conclusions

The findings of this study provide evidence that woody species in this study area
are capable of resprouting after disturbances. Herbicide application did not significantly
reduce the resprouting ability of all the study plants. These results suggest that higher
concentrations of herbicides, particularly Picloram, may be required to successfully prevent
cut stems from resprouting in other tree species. This may, however, pose a challenge for
resource-constrained farmers who seldom have access to sufficient funds to finance the con-
trol of woody plants. We warrant research that will test different concentrations of Picloram
and the timing of application required for successful reduction in the resprouting ability of
woody species (i.e., D. cinerea, E. crispa, G. buxifolia, P. capensis, S. lancea, V. caffra, V. karroo
and V. nilotica) that were not significantly affected by herbicide application. Nonetheless,
the resprouting ability reduced with an increasing stump diameter. Consequently, woody
plants are more likely to resprout and survive disturbances as juveniles than as adults.
This suggests the rejection of the prediction that the resprouting ability increases with an
increasing stem diameter. In addition, a moderate to high density of tree removal did
not increase the resprouting ability, thus indicating that the tree canopy cover is not an
important determinant of resprouting success in savannas.
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