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Abstract: Net primary productivity (NPP) can indirectly reflect vegetation’s capacity for CO2 fixation,
but its spatiotemporal dynamics are subject to alterations to some extent due to the influences of
climate change and human activities. In this study, NPP is used as an indicator to investigate
vegetarian carbon ability changes in the vital ecosystems of the Yangtze River Basin (YRB) in China.
We also explored the NPP responses to climate change and human activities. We conducted a
comprehensive analysis of the temporal dynamics and spatial variations in NPP within the YRB
ecosystems from 2003 to 2020. Furthermore, we employed residual analysis to quantitatively assess
the contributions of climate factors and human activities to NPP changes. The research findings are
as follows: (1) Over the 18-year period, the average NPP within the basin amounted to 543.95 gC/m2,
displaying a noticeable fluctuating upward trend with a growth rate of approximately 3.1 gC/m2;
(2) The areas exhibiting an increasing trend in NPP account for 82.55% of the total study area. Regions
with relatively high stability in the basin covered 62.36% of the total area, while areas with low
stability accounted for 2.22%, mainly situated in the Hengduan Mountains of the western Sichuan
Plateau; (3) NPP improvement was jointly driven by human activities and climate change, with
human activities contributing more significantly to NPP growth. Specifically, the contributions were
65.39% in total, with human activities contributing 59.28% and climate change contributing 40.01%.
This study provides an objective assessment of the contributions of human activities and climate
change to vegetation productivity, offering crucial insights for future ecosystem development and
environmental planning

Keywords: net primary productivity; climate change; human activities; residual analysis

1. Introduction

The increase in CO2 concentration will cause a series of problems such as global
warming [1,2], changes in food production [3,4], and groundwater table drop [5]. Within
terrestrial ecosystems, vegetation plays a crucial role in the carbon cycle by absorbing CO2
from the atmosphere through photosynthesis [6–9]. Hence, assessing the terrestrial ecosys-
tems’ potential for carbon sequestration holds significant importance for governmental
policy-making and ecological preservation.

Ecological systems sequester carbon through photosynthesis. The total amount of
organic carbon accumulated by vegetation through photosynthesis in a unit of time is
referred to as gross primary productivity (GPP) [10]. Deducting the portion consumed by
vegetation through autotrophic respiration leaves the net primary productivity (NPP) [11].
NPP reflects the efficiency and intensity of carbon fixation within an ecosystem and is a
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critical indicator of ecosystem productivity [12], and is also more sensitive to factors such as
climate and human interference [13]. Consequently, tracking the spatiotemporal dynamics
of NPP over historical periods is imperative for forecasting future trends in carbon and
ecosystem environmental changes.

The change in NPP is closely related to climate change [14,15]. The combined effects
of climate change and other factors may cause irreversible impacts on the ecosystem [16],
and moreover have more or lesser effects on vegetation carbon sequestration. Tempera-
ture, precipitation, and solar radiation are all key factors influencing vegetation growth.
Warming temperatures lead to changes in vegetation phenology, with an earlier onset of
spring phenology and a delayed onset of autumn phenology [17–19]. Additionally, the
temperature increase leads to a reduction in the temperature difference between summer
and winter, impacting vegetation photosynthesis and altering vegetation productivity [20].
In tropical regions, studies have shown that intra-annual temperature variations lead to
more pronounced vegetation periodicity, with temperature changes having a greater impact
compared to other climatic variables [21]. The availability of water for vegetation is the
foremost factor in ensuring vegetation growth and the degree of vegetation dependence
on available water varies significantly [22]. The sensitivity of vegetation productivity
to precipitation varies across different regions, with arid regions being more sensitive
compared to humid areas, and grasslands and shrublands exhibiting higher sensitivity
compared to forests and wetlands [23]. Similarly, extreme rainfall events can increase
vegetation net productivity in arid regions while having a negative impact on vegetation
in humid areas [24]. Solar radiation is the essential energy source for vegetation growth,
and a decrease in solar radiation within a certain range will result in a decline in vegetation
productivity [25].

The YRB, Asia’s largest river, traverses the vast inland regions of China, encompassing
significant wetlands, extensive grasslands, and diverse forest ecosystems. Notable wetlands
in the area include the Poyang Lake Wetland, Dongting Lake Wetland, and the Three Gorges
Reservoir Wetland. These wetland areas [26] play pivotal roles in ecological equilibrium,
serving as crucial habitats for rare wildlife and exerting essential influence on water resource
conservation and regulation. Grasslands [27] provide a vital source of sustenance for
livestock, contributing significantly to soil erosion mitigation, the promotion of biodiversity,
and the preservation of ecological balance. Forests [28] blanket the mountainous and
hilly terrains throughout the YRB, fulfilling critical ecological functions such as oxygen
generation, soil and water conservation, and carbon cycling. It is not only a valuable
ecological barrier [29–31], but also a significant carbon pool in China’s terrestrial ecosystem.
Predecessors have carried out a significant amount of research in the YRB, mainly focusing
on the vegetation index [32–34], but there is still a lack of in-depth understanding of the
vegetation productivity and its driving mechanisms. Yang et al. [35] conducted research on
the impact of NPP from the perspective of land use change. Wang et al. [36] explored the
increasing trend and influencing factors of NPP between 2000 and 2014, and the results
indicated that human activities were the primary driver of NPP changes. Zhang et al. [37]
used the LPJ (Lund–Potsdam–Jena) model and NDVI vegetation index to simulate NPP in
the YRB from 1982 to 2013. Hence, there remains a deficiency in research that adequately
distinguishes the impacts of climate change from the interferences caused by human
activities and quantifies the relative contributions of human activities and climate change.

With the development of afforestation projects, the dynamic changes in NPP spatial
distribution, and the response of NPP to climate and human-induced interventions, there
is a need for further exploration. Therefore, this research mainly includes the following
points: (1) Describing the spatiotemporal dynamics of NPP in the YRB; (2) Investigating the
relationship between NPP and climate factors as well as human-induced interventions, and
quantitatively characterizing their contributions to NPP. It is expected that this research will
provide an essential scientific basis for an in-depth understanding of the long-term carbon
dynamic change mechanism in the YRB and for future scientific ecosystem monitoring
and assessment.
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2. Data and Methods
2.1. Study Area

The YRB (Figure 1) is the largest river in Asia, originating from the Qinghai-Tibet
Plateau. The YRB covers an area of 1.8× 107 km2 and occupies about 18.8% of China’s
land area. In this study, the YRB is divided into 11 water systems, including Poyang Lake,
Dongting Lake, Mintuo River, Jinsha River, Wujiang River, Han River, Taihu Lake, Jialing
River water system, upstream, middle, and downstream.

The Yangtze River flows through plateaus, mountains, basins, plains, hills, etc., show-
ing a multi-level stepped terrain and complex terrain. It belongs to the subtropical monsoon
climate. The annual precipitation in the basin is uneven, and the interannual variation of
heavy rainfall is significant. According to statistics, the YRB has 3237.9× 109 m3 of forest
resources, equivalent to a quarter of the country’s total stock volume. The forest areas are
mainly located in northern Yunnan, western Sichuan, western Hunan, western Hubei, and
Jiangxi, and the area of the economic forests ranks first in the country.

Figure 1. The Yangtze River Basin.

2.2. Data Source

The research data are obtained through the Google Earth Engine (GEE) platform
https://earthengine.google.com/, accessed on 6 September 2022), which can provide satel-
lite data products on a global scale. The GEE’s powerful computing power is used to solve
research questions on spatiotemporal large scales [38–40]. The research data mainly include
NPP (https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MYD1
7A3HGF/, accessed on 6 September 2022), meteorological data (temperature, solar radiation
precipitation, https://developers.google.com/earth-engine/datasets/catalog/ECMWF_
ERA5_LAND_HOURLY/ (accessed on 21 October 2022), https://developers.google.com/
earth-engine/datasets/catalog/UCSB-CHG_CHIRPS_DAILY#bands/ (accessed on 30 Oc-
tober 2022)). We acquire NPP data through the MYD17A3HGF V6 product, with a spatial
resolution of 500 m and a temporal resolution of 8 days. The maximum value compos-

https://earthengine.google.com/
https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MYD17A3HGF/
https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MYD17A3HGF/
https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_HOURLY/
https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_HOURLY/
https://developers.google.com/earth-engine/datasets/catalog/UCSB-CHG_CHIRPS_DAILY#bands/
https://developers.google.com/earth-engine/datasets/catalog/UCSB-CHG_CHIRPS_DAILY#bands/
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ites (MVCs) technique derives annual maximum NPP data. Precipitation data are from
CHIRPS Daily Version 2.0 products, with a temporal resolution of daily and a spatial
resolution of 0.05°, capturing annual total precipitation. Temperature and solar radia-
tion data are from ERA5 Land Hourly data, with a spatial resolution of 0.1°. We also
calculate annual mean temperature values and annual total solar radiation. The digi-
tal elevation model (DEM) is derived from the SRTM digital elevation image product
https://srtm.csi.cgiar.org/srtmdata/ (accessed on 6 September 2022) with a spatial resolu-
tion of 30 m.

2.3. Methods

Figure 2 represents our main research process. We obtain the NPP data through the
MYD17A3HGF product. On this basis, we obtain 18 years of NPP data and analyze the
spatiotemporal changes of NPP using the Theil-Sen method. The CV index provides insight
into the stability of NPP changes over the 18-year period. We further analyze the correlation
between NPP and climate factors using the partial correlation analysis method. The land
cover changes in 2003, 2005, 2010, 2015, and 2020 are observed through the land use transfer
matrix, allowing us to assess the impact of human activities on NPP resulting from land
cover changes.

Figure 2. The technical approach of the research.

2.3.1. Trend Analysis Method

The Theil-Sen method [41] analyzed the interannual dynamic changes of NPP from
2003 to 2020.

β = Median
(

xk − xi
k− i

)
, ∀k > i (1)

where xk, xi is the value of NPP at k, I, where 1 < i < k < n. When β > 0, it means an
increase; otherwise, it means a decrease.

Mann–Kendall is a non-parametric statistical test method [42]. Its advantage is that it
does not require the trend to be linear and is not affected by outliers. The formula is

ZC =


S− 1√

var(S)
, S > 0

0, S = 0
S + 1√

var(S)
, S < 0

(2)

https://srtm.csi.cgiar.org/srtmdata/
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Var(S) = n(n− 1)(2 ∗ n + 5)/18 (3)

S =
n−1

∑
i=1

n

∑
k=i+1

sgn(xk − xi) (4)

sgn
(
xj − xi

)
=


1, xj − xi > 0
0, xj − xi = 0
−1, xj − xi < 0

(5)

where n is the count of the sample. In this paper, give n = 18, and the relationship between
the Z value and the reliability is shown in the Table 1.

Table 1. The reliability table.

Absolute Value of Z Reliability

≥1.65 90%
≥1.96 95%
≥1.96 99%

2.3.2. Stability Analysis

The coefficient of variation (CV) [43] is used to reflect the fluctuation degree of NPP
from 2003 to 2020. The stability distribution of NPP is obtained by calculating the CV value
of NPP at each pixel during the study period. It is calculated as follows:

CV =
1

NPP

√
∑n

i=1
(

NPPi − NPP
)2

n
(6)

where NPPi is the NPP value in the i-th year, n represents the total number of years, and
NPP is the annual average NPP.

2.3.3. Partial Correlation Analysis

Partial correlation analysis is used to analyze the linear correlation between two
variables while controlling for the linear effects of other variables [44]. The judgment index
is the R of the correlation coefficient value.

Pij,k =
Pij − PikPjk√(

1− P2
ik
)(

1− P2
jk

) (7)

Suppose there are 3 variables i, j, and k, while Pij,k and k are partial correlation
coefficients between independent variable k and independent variables i and j; Pij, Pik, Pjk
are correlation coefficients between two factors. According to R and P, we obtain three
different significance levels: significant positive correlation (R > 0, P < 0.05), no significant
correlation (P ≥ 0.05), and significant negative correlation (R < 0, P < 0.05).

2.3.4. Multivariate Regression Residual Analysis

To quantitatively separate the effects of climate change and human activities on NPP
variation, this study defined three categories of NPP: a multivariate regression model was
constructed using solar radiation, temperature, and precipitation data to derive NPP predic-
tions (PNPP). NPP values obtained from remote sensing imagery represented actual values
(ANPP). NPP residual values (HNPP), which represent the impact of human activities on
NPP, were calculated as the difference between ANPP and PNPP. When HNPP is greater
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than zero, it indicates a promotional effect of human activities on NPP, while values less
than zero indicate inhibition.

HNPP = ANPP− PNPP (8)

PNPP = a× P + b× T + c× S + d (9)

where P represents annual precipitation, T represents annual mean temperature, S rep-
resents annual total solar radiation; a, b, and c are regression coefficients; and d is the
constant term.

Linear regression is employed to calculate the change slopes for the three NPP types,
elucidating vegetation growth factors and quantifying their relative contribution rates
(Table 2).

Table 2. Contribution rate calculation under different driving factors conditions.

θANPP θHNPP θPNPP Driving Factor Relative Contribution/%

Climate Change Human Activities

>0 >0 Double-driven improvement θHNPP
θHNPP+θANPP

θANPP
θHNPP+θANPP

>0 >0 <0 human-driven improvement 100 0
<0 >0 climate-driven improvement 0 100

<0 <0 Double-driven degradation θHNPP
θHNPP+θANPP

θANPP
θHNPP+θANPP

<0 <0 >0 human-driven degradation 100 0
>0 <0 climate-driven degradation 0 100

3. Results
3.1. Spatial Distribution of Average NPP

From the spatial perspective (Figure 3), NPP exhibits distinct regional characteristics,
with higher values in the southern and eastern parts compared to the northern and western
regions. The multi-year average NPP is 543.95 gC/(m2 · a). Areas with an average NPP
ranging from 0 to 400 gC/(m2 · a) account for 22.56% of the entire watershed, primarily
distributed in the northwestern parts of the Jinsha River and Mintuo River watersheds.
Regions with NPP ranging from 400 to 600 gC/(m2 · a) cover approximately 35.72% of the
area and are found in the Sichuan Basin, Jianghan River Basin, middle and lower reaches
of the YRB, Taihu Lake, and Poyang Lake areas to the north. Areas with NPP ranging
from 600 to 800 gC/(m2 · a) account for about 30.20% and are predominantly distributed in
the vicinity of the Sichuan Basin, Dongting Lake watershed, and the southern part of the
Poyang Lake watershed. Regions with NPP ranging from 800 to 1000 gC/(m2 · a) make up
approximately 10.82% of the area, predominantly situated in the southern part of the Jinsha
River watershed. NPP values ranging from 1000 to 1945.2 gC/(m2 · a) account for only
0.26% of the entire study area. The Sichuan Basin features a closed topography, a higher
latitude resulting in relatively higher temperatures, and abundant precipitation, but lower
solar radiation compared to other latitudes. In summary, these unique climatic factors
contribute to slightly lower NPP values in this region compared to the surrounding areas.

3.2. Time-Series Characteristics of NPP

From 2003 to 2020, the NPP in the YRB exhibited a noticeable fluctuating upward
trend, with an approximate growth rate of 3.1 gC/(m2 · a) (Figure 4). In 2010, there was a
significant decrease in NPP, followed by a substantial increase in 2013. The data indicate
that, in July 2010, the YRB was severely affected by heavy rainfall, leading to a catastrophic
rainstorm disaster that caused extensive damage to vegetation and farmland. The annual
average NPP in 2003 and 2020 was 521.77 gC/(m2 · a) and 560.29 gC/(m2 · a), respectively.
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The maximum NPP was recorded in 2015, while the minimum was observed in 2005, with
a difference of 68.92 gC/(m2 · a).

Figure 3. Spatial distribution of average NPP from 2003 to 2020 (the red circle in the figure is the
Sichuan Basin, and the black area is the area without data).

Figure 4. Annual mean values of NPP in the YRB.

In the 11 river systems within the YRB (Figure 5), NPP exhibited varying degrees of
growth. The Wujiang had the highest NPP value, with annual averages of 742.2 gC/(m2 · a).
The Jinsha River basin had the lowest NPP value, with an annual average of 416.7 gC/(m2 · a).

Specifically, the upper and Jialingjiang River NPP growth rates were 5.42 gC/(m2 · a)
and 6.77 gC/(m2 · a), respectively, while the Jinsha River and Wujiang River NPP growth
rates were 1.77 gC/(m2 · a) and 1.83 gC/(m2 · a), respectively. Regions with slower NPP
growth included the Mintuo, Dongting Lake, Poyang Lake, and the middle reaches, with
growth rates of 2.84, 2.06, 2.25, and 2.83 gC/(m2 · a), respectively. Growth rates in other
river systems ranged from 3.9 gC/(m2 · a) to 4.32 gC/(m2 · a).

3.3. Spatial Distribution of Change Trends of NPP

From 2003 to 2020, the areas where the NPP is growing accounted for 82.55% of the
whole research area (Figure 6). This shows that the carbon sequestration capacity of the
ecosystem in the YRB has increased.
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Figure 5. The annual mean value of NPP of each water system in the YRB.

Figure 6. The 2003–2020 spatial change trend of NPP.

Regions with a significant increase in NPP (including highly significant and significant
increases) account for 37.87% of the entire basin. These areas are mainly located in the
upper reaches of the Jialingjiang River system and are also scattered in the Hanshui River
system, the middle reaches, the lower reaches, the Taihu Lake, and the upper reaches of
the Jialingjiang River. In recent years, China has implemented comprehensive protection
and rehabilitation of the ecological setting in the headwaters of the YRB, strengthened
the management of degraded grasslands, and continuously improved the ecosystem’s
functionality [45]. Regions with a significant decrease in NPP (including highly significant
and significant decreases) account for only 3.03% of the entire study area, primarily concen-
trated in Dongting Lake, south of the Wujiang River, and the northeastern part of Dongting
Lake. Stable NPP regions account for 37.89% of the study area.

The results of the stability analysis (Table 3 and Figure 7) show that the coefficient of
variation within the YRB has obvious spatial differences over the past 18 years, and the
overall fluctuation is relatively low, accounting for 62.36%. In the research area, stability,
lower stability, and low stability accounted for 35.42%, 1.93%, and 0.29%, respectively.
Among them, in the Sichuan Basin, the upper part of the Jinsha River system is dominated
by medium stability, and its lower stability is scattered among them. The stability of the
central part of the Mintuo River system and the Jinsha River system is relatively low, which
is mainly caused by multiple earthquakes in the structural fault zone. The landslides caused
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by the earthquake caused extensive destruction of vegetation, which further caused NPP
fluctuation [46].

Table 3. Statistical table of NPP stability changes in the YRB.

Coefficient of Variation Stability Area Ratio

[0, 0.05) High stability, low volatility 6.99%
[0.05, 0.1) Higher stability, relatively low volatility 55.37%
[0.1, 0.2) Medium stability 35.42%
[0.2, 0.3) lower stability, relatively high volatility 1.92%
[0.3,+∞) low stability, high volatility 0.29%

Figure 7. The spatial change trend of NPP from 2003 to 2020.

3.4. Correlation Analysis between Climate Change and NPP Variation
3.4.1. Spatiotemporal Characteristics of Climate Factors

As shown in the Figure 8, the climate in the YRB has undergone a warming and
humidifying trend, and there are notable spatial variations in climate factor changes.
The fluctuation range of precipitation is from −18.12 to 80.69 mm/a, with a mean value
of 11.88 mm/a. In the study area, 81.98% of the regions exhibit an increasing trend in
precipitation, while 18.02% show a decreasing trend. The areas with increasing trends are
mainly located in the southern part of the Hanjiang River, the northern part of the upper
reaches, the eastern part of the Jialing River, and the northwestern and central parts of the
Minjiang River.

Temperature primarily shows an increasing trend, with a fluctuation range from
−0.035 to 0.1017 °C/a and a mean of 0.0178 °C/a. The regions with a decreasing tem-
perature trend are mainly found in the northwestern part of the Dongting Lake Basin,
accounting for 6.74% of the area. Solar radiation has a fluctuation range from −46.02 to
34.85 MJ/(m2 · a), with a mean of −10.41 MJ/(m2 · a). The majority of the region experi-
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ences a decreasing trend in solar radiation, covering 83.15% of the area. The areas with
increasing trends account for 16.85% and are mainly distributed in the northern part of the
Minjiang River and the southern part of the Jinsha River.

Figure 8. Spatial distribution of climate factor trends from 2003 to 2020.

3.4.2. Partial Correlation Analysis between NPP and Climate Factors

Partial correlation and T-test were conducted to analyze the pixel-wise correlations
between NPP and time-series data of temperature, precipitation, and solar radiation from
2003 to 2020 (Figure 9). The range of partial correlation coefficients between temperature
and NPP was from −0.92 to 0.94, with 76.20% of the regions showing a positive correlation.
Among them, 9.54% of the regions exhibited a significant positive correlation, mainly
scattered in the upper reaches, Wujiang, the eastern part of Jialingjiang, the western part
of Dongting Lake, and the western part of the middle reaches. The negative correlation
was observed in 23.80% of the regions, with 0.98% exhibiting a significant negative corre-
lation, mainly distributed in the middle part of the middle reaches and the southern part
of Hanjiang.

The partial correlation coefficients between precipitation and NPP ranged from −0.95
to 0.93, with 58.44% of the regions showing a positive correlation. Among them, 4.68%
exhibited a significant positive correlation, mainly concentrated in the western and southern
parts of Wujiang, the upper and middle parts of the middle reaches, and the southeast
part of Hanjiang. The negative correlation was observed in 41.57% of the regions, with
2.08% exhibiting a significant negative correlation, mainly scattered in the middle parts of
Jialingjiang and Hanjiang.

Solar radiation had partial correlation coefficients ranging from −0.94 to 0.93 with
NPP. A total of 31.93% of the regions showed a positive correlation, with 1.61% exhibiting a
significant positive correlation, scattered in the northwestern part of Jialingjiang and at the
junction of Jialingjiang and Hanjiang. A total of 68.07% of the regions exhibited a negative
correlation, with 10.89% showing a significant negative correlation, mainly concentrated
in the Sichuan Basin, the junction of Taihu Lake and the lower reaches, the middle and
southwestern parts of Jialingjiang, and the middle part of Hanjiang.

3.5. Driving Mechanisms and Relative Contributions to NPP Variability
3.5.1. Driving Mechanisms of NPP Variability

The area within the basin where NPP has improved due to the joint influence of human
activities and climate change accounts for 65.39% (Figure 10). It is primarily located in
the Jialing River Basin, upper reaches, Hanjiang River Basin, and downstream regions.
The area solely improved by human activities accounts for 10.42%, mainly scattered in
the southern parts of the Jialing River Basin, southern parts of the Hanjiang River Basin,
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southwestern parts of the Hanjiang River Basin, and the junction of the Jialing River Basin.
The area solely improved by climate change accounts for 6.31%, with a relatively scattered
distribution, scattered in the central parts of the Jinsha River Basin and the central parts of
the Min River Basin. The area degraded due to the joint influence of human activities and
climate change accounts for 8.76%, with similarly scattered distribution, mainly scattered
in the southern parts of the Poyang Lake Basin, southeastern parts of the Dongting Lake
Basin, and the central parts of the Wujiang River and Jinsha River Basin. The regions
degraded solely by human activities and solely by climate change account for 5.15% and
3.37%, respectively. Overall, it can be observed that, under the joint influence of climate
and humans, NPP exhibits an overall positive development trend.

Figure 9. The 2003–2020 partial correlation coefficient between NPP and temperature.

Figure 10. Spatial distribution of NPP change drivers.
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3.5.2. Relative Contributions of Different Influential Factors to NPP Variations

In this section, the relative contributions of human activities and climate change to
NPP changes in the YRB are calculated based on the slopes of NPP, HNPP, and PNPP
variations (Figure 11). Overall, human-induced interventions contribute 59.28% to the
total, while climate change contributes 40.01%. Further analysis of the NPP improvement
areas shows that the relative contributions of human-induced interventions and climate
variability are 59.95% and 39.70%, respectively. In the NPP degradation areas, the relative
contributions of human-induced interventions and climate variability account for 56.12%
and 41.46%, respectively. In the entire study area, human intervention predominates,
accounting for 4.69% of the NPP improvement areas. Climate change, on the other hand,
dominates, constituting 2.83% of the NPP improvement areas. Regions where human
activities contribute more than 50% to NPP account for 53.76% and are mainly located in
the northwest of the Jinsha River Basin, the western part of the Hanjiang River Basin, and
the eastern part of the Jialing River Basin. Regions where climate change contributes more
than 50% to NPP account for 25.27% and are scattered across various river basins.

Figure 11. Contribution rates of different influencing factors to NPP variations.

4. Discussion
4.1. Spatiotemporal Distribution and Change of NPP

The YRB is rich in natural resources. Against the backdrop of climate change, efforts
have been made in ecological and environmental management in the YRB, yielding certain
achievements [47–49]. From 2003 to 2020, there was an overall trend of fluctuating increase
in NPP, and the NPP for each river system also exhibited an upward trend.

Previous research has demonstrated a strong correlation between estimated NPP
values and vegetation NDVI [50–53], with NPP increasing as vegetation quality improves.
The NPP in the Sichuan Basin, the middle reaches of Dongting Lake, and the upper reaches
of the Jinsha River have exhibited varying degrees of growth. The Sichuan Basin, in partic-
ular, has shown a notable increase, with a predominance of moderate stability, along with
scattered areas of lower stability [54,55]. This suggests that the reforestation efforts by the
Sichuan municipal government in recent years have been effectively executed. The overall
NPP in the Han River Basin is also exhibiting an increasing trend, especially in regions
such as Hanzhong and Shiyan, aligning with the findings of Zhang et al.’s research [56].
The source area of the YRB is a typical high-altitude and cold plateau region, with an
ecosystem highly sensitive and fragile, making its carbon balance particularly responsive
to climate and anthropogenic factors. In recent years, there has been a significant increase
in NPP in the source area, as indicated in Figure 11, with a substantial contribution from
anthropogenic disturbances [57], accounting from 75% to 100%. The Chinese government’s
efforts in environmental protection in this context should not be underestimated.

Looking at the fluctuations in NPP over the years, there are significant high-variance
regions in the Mintuo River. The central region of the Jinsha River Basin (Sichuan Province)
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also shows pronounced interannual variations. These areas are primarily located near the
boundaries of China’s first and second terraces in the vicinity of the Hengduan Mountains
(Ranges), characterized by mountainous terrain and tectonic fault zones [58]. Taking the
Longmenshan seismic belt as an example, this belt has experienced numerous earthquakes.
Frequent earthquakes not only cause damage to local buildings and structures but also
trigger events like landslides, mudslides, and avalanches [59], resulting in significant
harm to vegetation and its growth environment. In summary, geological disasters lead
to a decline in NPP, while post-disaster reconstruction and natural recovery increase
vegetation coverage and NPP. However, the instability of fault zones contributes to NPP
fluctuations [60–63].

4.2. Relationship between Affecting Factors and NPP

The carbon sequestration of ecosystems is intricately linked to vegetation, and the
growth of vegetation is influenced by diverse factors, including anthropogenic actions
and climate variability. Climate change contributes significantly to the variation in NPP,
accounting for 40.01% of the relative contribution and thus serving as a crucial factor
affecting vegetation productivity changes. In the period from 2003 to 2020, the YRB
experienced a warming and humidifying trend. The effects of temperature, precipitation,
and solar radiation on vegetation NPP differ noticeably. Temperature and precipitation
are positively correlated with NPP, accounting for 76.20% and 58.44% of the regions,
respectively, while solar radiation is negatively correlated, covering 67.07% of the regions.
However, the overall areas showing significant correlations are relatively small, considering
that this is due to not accounting for the lag effects of vegetation on climate [64].

Solar radiation is a necessary condition for photosynthesis in vegetation, and solar
radiation is directly proportional to the altitude. Due to its lower altitude, the Sichuan
Basin consistently experiences lower solar radiation throughout the year compared to other
regions [65]. In this region, solar radiation is significantly negatively correlated with NPP.
Ge reached the same conclusion [66]. Additionally, when compared to other regions at the
same latitude, the vegetation NPP in this area is noticeably lower.

The precipitation in the YRB increases from west to east, with a positive correlation
area of 58.44%. However, the significantly positively correlated area is only 4.68%. This is
due to the uneven distribution of annual precipitation in the YRB, where frequent heavy
rainfall events occur, but the area and intensity of these heavy rainfall events vary greatly.
Previous studies have mentioned [67] that, from 2016 to 2020, the YRB experienced different
numbers, intensities, and distribution areas of heavy rainfall events in June and July, with
rainfall events numbering 7, 4, 8, 9, and 9, respectively.

In general, the temperature in the YRB basin gradually decreases from east to west.
The Jinsha River and Minto River basins, starting from the northwest of the Hengduan
Mountains, exhibit more pronounced NPP stage changes. The NPP values vary from 200 to
400 gC/m2 in the area from the Hengduan Mountains to the source of the YRB, while the
NPP variation in the source of the YRB ranges from 0 to 200 gC/m2. The average annual
temperature at the source of the YRB is below 0 °C [68], and excessively low temperatures
often suppress the vegetation’s growth, leading to reduced vegetation productivity.

The relative contribution of human activity change is 59.28%, serving as the primary
driver for the increase in NPP productivity in the YRB. Starting in 2003, the implementation
of the "Grain for Green Program" marked a historic transition from deforestation and
land cultivation toward afforestation and reforestation. The YRB played a pivotal role in
this transformation, serving as the primary battleground for reforestation efforts. Over
the past two decades, the Chinese government has implemented the “Grain for Green
Program”, covering more than 80 million mu (about 5.33 million hectares) in the YRB, with
a yearly average reduction of 3.45% in land desertification, primarily in the southwestern
regions. Compared to the urbanization process, the “Grain for Green Program” has played
a more significant role in promoting the increase in NPP in forested areas [69]. Although
urbanization has led to a continuous expansion of urban areas, there has been a greening
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trend in some core urban areas’ surroundings [70]. Similar conclusions have been drawn
by researchers such as Peng [71] and Yang [72] for regions where the NPP has shown a
significant increase, such as the YRB source area, Sichuan Basin, and the upper reaches of
the Han River.

4.3. Limitations and Recommendations

NPP serves as an important indicator for assessing the capacity of vegetation to
sequester atmospheric CO2 and evaluating ecosystem functionality. With the ongoing
changes in global climate, future research necessitates a more in-depth exploration of the
impact of climatic factors on the long-term variations in NPP. On the basis of enhancing
data spatial resolution, it is essential to broaden the research’s temporal scale, for example,
by investigating variations in NPP across monthly and quarterly time scales for different
vegetation types [73]. Additionally, it would be beneficial to conduct hysteresis analysis [74]
of various vegetation types’ NPP responses to climate change, aiming to better comprehend
the challenges posed by climate change to ecosystems. Concurrently, human activities,
in accordance with local climatic conditions, should engage in rational practices such as
agriculture and the development of forest resources.

5. Conclusions

From 2003 to 2020, the annual average NPP in the YRB, despite fluctuations, showed
an overall increasing trend with a growth rate of 3.1 gC/(m2 · a). All 11 watersheds
within the basin exhibited fluctuating upward trends, with the Middle Reaches and the
Wujiang watershed showing larger fluctuations and growth rates of 1.8 gC/(m2 · a) and
2.8 gC/(m2 · a), respectively. Regions with significant NPP growth accounted for 37.87%
of the total area, with the Jialing River watershed having the largest increase in NPP. NPP
low-stability regions within the YRB from 2003 to 2020 covered 2.22% and were primarily
located in the Hengduan Mountains of the western Sichuan Plateau.

During the period from 2003 to 2020, against the backdrop of a warming and humid
climate in the YRB, NPP exhibited varying responses to different influencing factors.
Overall, NPP showed a positive correlation with temperature and precipitation but a
negative correlation with solar radiation. Temperature had a more significant impact
on vegetation productivity than solar radiation and precipitation, making it the primary
climatic factor influencing NPP variations.

Climate variability and anthropogenic actions exert a dual impact on NPP, with
74.15% of the areas being affected by the combined influence of climate variability and
anthropogenic actions. Overall, NPP in the basin primarily shows improvement. The
areas dominated by human activities in NPP improvement account for 10.42%, while those
dominated by climate change contribute 6.3% to the improvement. Additionally, human
activities emerge as the primary driving factor for NPP changes, with human activities and
climate change contributing 59.28% and 40.01%, respectively.
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