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Abstract: Essential oils (EOs) extracted from plants have a high potential to reduce ethylene biosyn-
thesis, although their effects have not been deeply studied yet on the key components of the ethylene
biosynthesis pathway: l-aminocyclopropane-1-carboxylic (ACC) oxidase activity, ACC synthase
activity, and ACC content. Hence, the present study aimed to elucidate the effects of released EOs
from active packaging (with different EO doses ranging from 100 to 1000 mg m−2) on the ethylene
biosynthesis key components of broccoli and tomato under different storage temperature scenarios.
The largest ethylene inhibitory effects on broccoli and tomatoes were demonstrated by grapefruit EO
and thyme essential EO (up to 63%), respectively, which were more pronounced at higher tempera-
tures. Regarding EO doses, active packaging with a thyme EO dose of 1000 mg m−2 resulted in the
strongest reduction (33–38%) of ethylene production in tomatoes. For broccoli, identical results were
shown with a lower grapefruit EO dose of 500 mg m−2. The studied EO-active packaging decreased
ACC synthase and ACC oxidase activities by 40–50% at 22 ◦C. Therefore, this EO-active packaging is
a natural and effective technology to reduce ethylene biosynthesis in broccoli and tomatoes when
they are stored, even in unsuitable scenarios at high temperatures.

Keywords: cyclodextrin inclusion complex; plant essential oils; active packaging; ACC oxidase;
ACC synthase

1. Introduction

The alarmingly high global food loss and waste rates require immediate worldwide
attention. According to FAO [1] definitions, food loss refers to the early stages of the food
supply chain: production, postharvest storage, transportation, and processing. Meanwhile,
food waste takes place towards the end of the food supply chain, including retail and con-
sumption [1,2]. In particular, retail and consumption stages related to fruit and vegetables
account for 20–40% of the food loss and food waste sum [1]. The United Nations launched
an ambitious challenge in 2015 to reduce global food waste per person by half by 2030 as a
result of such high rates [3]. The causes of the high waste of fruit and vegetables are mainly
related to the reduction in the product quality during its postharvest life due to ripening
and senescence processes [2,4]. In particular, ethylene, considered the ripening hormone of
plant products, plays a significant role in the postharvest quality reduction of horticultural
commodities [5].
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The ethylene biosynthesis pathway starts with the conversion of S-adenosyl-L-
methionine into l-aminocyclopropane-1-carboxylic acid (ACC) by the enzyme ACC syn-
thase (ACS). Subsequently, ACC can be converted to either 1-(malonylamino)cyclopropane-
1-carboxylic acid by the ACC N-Malonyl transferase or to the end product, ethylene, by
the ACC oxidase (ACO) [6,7]. In addition, recent investigations have shown evidence of
other ACC derivative products (different to ethylene or 1-(malonylamino)cyclopropane-1-
carboxylic acid), which are γ-glutamyl-ACC, jasmonyl-ACC, and bacterial metabolization
products (α-ketobutyrate and ammonium), as compiled by De Poel et al. [8]. Nevertheless,
strong evidence points to ACS and ACO as the two key enzymes of ethylene biosynthesis
in plant products [8]. It is well accepted that ACS is the rate-limiting step of ethylene
biosynthesis in plants, although there are examples where ACO is the rate-limiting step,
e.g., during the post-climacteric ripening of tomato fruit [8].

Groupage of fruit and vegetables during postharvest storage and distribution is a
very common practice, which consists of combining different fruit and vegetables in the
same place to reduce costs when product quantities are lower. Nevertheless, it must be
done with attention since two contradictory situations may converge: (i) horticultural prod-
ucts with high ethylene production and low ethylene sensitivity (e.g., cherry tomatoes);
and (ii) horticultural products with low ethylene production but high ethylene sensitivity
(e.g., broccoli). Broccoli has very low ethylene production rates (0.5 nmol g−1 h−1 at
22 ◦C) [9,10], although it is very sensitive to the ethylene action, resulting in sepal degreen-
ing (broccoli yellowing) with ethylene concentrations as low as 10 nL L−1 [11]. Nevertheless,
ethylene production is higher in tomatoes with values of ≈1.5 µL kg−1 h−1 in cherry toma-
toes (red maturity stages), and ethylene has no significant effects on the cherry tomato
colour, although the flesh firmness was reduced [12].

Several technologies have been proposed to reduce the ethylene effects and can be
grouped into two major action levels: (i) reduction in ethylene production of the plant
product, or (ii) scavenging the produced ethylene from the surrounding atmosphere of the
plant product [5,13]. Nevertheless, most of those technologies have a high cost and/or use
chemical products, which can be refused by the actual consumer, who is interested in more
natural products free of additives in chemical synthesis [14]. Interestingly, plant essential
oils (EOs) have a high potential to reduce ethylene production in plant products [10,15–17].

Plant EOs are natural extracts with well-known antimicrobial characteristics that are
highly valued as natural additives among consumers. Numerous spoilage microorganisms
and pathogens are susceptible to the strong in vitro antimicrobial activity of EOs and EO
compounds, which has been extensively studied and described in the literature [18]. In
addition, EO treatments have been used to maintain the postharvest quality of fruit and
vegetables preserving attributes like colour, firmness, etc. [19,20]. The majority of EOs
and their primary EO compounds are recognized by the European Union as acceptable
food additives. In particular, EO and EO compounds are categorized by the European
Union as ‘natural flavouring substances’ and ‘flavouring preparations’, respectively [21–23].
However, extra attention must be paid when using high EO doses since distinctive EO
off-flavours/odours may be perceived by the consumer in the treated product. However,
encapsulation of EOs (e.g., using cyclodextrins) may avoid such sensory disadvantages due
to the low but effective EO concentrations released from the EO encapsulation system [24].

Active packaging involves adding active compounds (antimicrobial, antioxidant, or
other preservative properties) to the packaging material and subsequent controlled release
during the product’s shelf life [25]. Active paper/cardboard packaging with encapsu-
lated EOs (within β-cyclodextrin) is an eco-friendly and cost-effective solution intensively
studied and validated at the industrial level by our research group in the last few years,
successfully extending the shelf life of fresh fruit and vegetables [16]. The EO release kinet-
ics of such active paper/cardboard packaging technology at different EO doses (100–1000
mg m−2) has been fully characterized at different temperatures (2–22 ◦C range) and relative
humidity scenarios (50–60% and 90–95%), which are common during the retail and distri-
bution of fruit and vegetables [24]. In addition, ethylene production was reduced with this
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EO-active paper/cardboard packaging technology in fruit and vegetables [10,17]. The use
of this EO-active packaging technology as an alternative to reduce ethylene production is
economically justified since the normal price of a cardboard box is only increased by 3–5%.
Nevertheless, a complete study of the effects of the released EOs (from active packaging)
has not yet been addressed on the ethylene biosynthesis pathway: ACC, ACO, ACC, and
related ethylene production.

This work aimed to study the effect of released EOs, previously encapsulated within
β-cyclodextrin, from an active cardboard packaging on the ethylene biosynthesis pathway
(ACC, ACO, ACC, and related ethylene production) of broccoli and tomato at different
temperatures. Therefore, several active packagings containing different EOs (bergamot
EO, grapefruit EO, thyme EO, rosemary EO, linalool, and eugenol) and different doses
(100–1000 mg m−2) were studied.

2. Results and Discussion
2.1. ACS Activity

Although the role of ACC in the ethylene biosynthesis pathway has been well charac-
terized since its discovery in 1979 [6], there are still many questions concerning the two
proteins associated with ACC in ethylene biosynthesis: ACS and ACO [8]. The ACS can
be induced by several factors, like fruit ripening, auxin, flower senescence, disease, and
wounding, among others (compiled by Kato et al. [26]). Hence, ACS activity was highly
increased in the first 24–36 h after harvest, related to the wounding stress after cutting
broccoli stems from the plant [26]. In particular, those authors found a high expression of
the ACS-related BO-ACS1 gene in the cutting zone of the broccoli stem.

The ACS activity of broccoli florets was 175.8 nmol g−1 h−1 at 22 ◦C. The ACS activity
levels at 22 ◦C in our study are higher than previously published data [26], which may be
explained by the wounding stress (during the 5 h of broccoli floret incubation) after cutting.
As expected, the ACS activity was highly reduced at lower temperatures, as observed
from the yellow-to-blue ACS turning according to the temperature reduction (Figure 1). In
particular, ACS activity levels were reduced to 0.61, 0.38, and 0.21 nmol g−1 h−1 at 15, 8,
and 2 ◦C, respectively. In that sense, the most interesting inhibitory effects of ACS activity
due to EOs released from the active packaging for broccoli, as previously observed for
ACO [10], may be observed at 22 ◦C.
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Figure 1. Surface responses for ACS activity of broccoli florets packaged with active packaging
including different essential oils (eugenol, bergamot, grapefruit, and their combination) under
different temperatures.

EOs from active packaging induced inhibition of ACS activity (Figure 1). There was
a marked effect of the EOs dose on the ACS activity at higher temperatures, as observed
in the incipient b-splines curvature at higher temperatures. In particular, the highest EO
dose:ACS activity correlation is observed from the higher curvatures for grapefruit EO and
bergamot EO at 22 ◦C. Hence, the ACS activity of broccoli florets at 22 ◦C was reduced by
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27, 37, and 46% when using grapefruit EO-active packaging at 100, 500, and 1000 mg m−2,
respectively (Figure 1). No remarkable findings were observed related to ACS activity
at lower temperatures due to the low enzymatic activity levels at such low temperatures
(Figure 1). The effect of EOs on the ACS activity of plant products has not been previously
studied to the best of our knowledge.

In tomatoes, the regulation and expression of the ACS and ACO oxidase genes are
also under a positive feedback control mechanism, even at the stage of massive ethylene
production [27]. Similar to broccoli, the ACS activity of tomato samples was reduced
as the temperature increased (Figure 2). In particular, ACS activity values of 5.9, 1.5,
and 1.7 nmol g−1 h−1 were observed at 22, 15, and 8 ◦C, respectively. These levels are
higher than previously published ACS data for tomatoes [28]. It may be explained by the
maturity stage and elapsed time after harvest, which are factors highly influencing ACS
activity [27,28].
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Figure 2. Surface responses for ACS activity of cherry tomatoes packaged with active packaging
including different essential oils (linalool, rosemary, thyme, and their combination) under different
temperatures (8, 15, and 22 ◦C).

EO-active packaging also induced inhibition of ACS activity in tomatoes (Figure 2).
Among EOs, thyme EO and rosemary EO induced the highest dose effects, as observed
from the curvature profile at higher temperatures (Figure 2). In particular, thyme EO-active
packaging at 100, 500, and 1000 mg m−2 induced inhibition of the ACS activity at 22 ◦C
of 33, 53, and 50%, respectively. In that sense, thyme EO-active packaging at 500 mg m−2

would be enough to induce similar ACS inhibitory effects in tomatoes as thyme EO-active
packaging at higher doses.

2.2. ACC Content

A significant development in our understanding of the process by which ethylene is
produced in plants was the discovery of ACC as its precursor, which served as a major
building block for other subsequent ethylene biology discoveries [8]. The initial ACC con-
tents of broccoli samples ranged from 2.14 to 6.22 nmol g−1, with higher values at higher
temperatures (Figure 3). These ACC content levels are slightly higher than the previous
literature related to broccoli florets [26]. After excision at harvest, the ACC and ethylene
production of broccoli were quickly synthesized in the wounded stem tissue due to the
marked increment in ACS activity and enhanced abundance of its transcripts [26]. Accord-
ingly, higher ACC biosynthesis could occur in our broccoli florets due to the wounding
effect during broccoli floret preparation.

In general, higher ACC contents were observed as the temperature increased (Figure 3).
It may be explained by the observed higher ACS activity at higher temperatures (Figure 1)
and consequently higher ACC biosynthesis. In accordance with this, low ACC content
variations (less curved lines) were observed at low temperatures as the EOs dose increased,
which agrees with the low ACS activity at low temperatures. Among EOs, the combined EO
formula showed the most linear behaviour with a low influence of the EOs dose. Similar
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behaviour was also observed for eugenol at doses higher than 500 mg m−2 (Figure 3).
Contrary to this, there was a marked EO dose effect for bergamot EO and grapefruit EOs at
temperatures over 8 ◦C. The active packaging effects are more desired at higher storage
temperatures when the ethylene biosynthesis is higher. In that sense, the highest ACC
reductions were observed for grapefruit EO at 500 and 1000 mg m−2 (Figure 3). Other EOs
(oregano EO, spearmint EO, cinnamon EO, and carvacrol) were also able to reduce ACC
contents in broccoli florets [10].
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Figure 3. Surface responses for ACC contents of broccoli packaged with active packaging with
different doses of inclusion complexes of different essential oils (eugenol, bergamot, grapefruit, and
their combination) under different temperatures (2, 8, 15, and 22 ◦C).

The initial ACC contents of tomato control samples were approximately 0.5 nmol g−1,
without significant differences among temperatures (Supplementary File S1). No good
data fitting was observed for the ACC data on tomatoes being presented as tabulated
data in Supplementary File S1. The ACC contents at 22 ◦C were similar to those at lower
temperatures, which may not be explained by the high ACS activity at 22 ◦C. This may be
due to a higher ACC-ethylene conversion due to the higher ACO activity of tomatoes at
22 ◦C (see Section 2.3).

In general, active packaging with thyme EO showed an inhibitory effect on the ACC
synthesis at all storage temperatures, with values of 0.30, 0.39, and 0.27 nmol g−1 for the
dose of 1000 mg m−2 at 8, 15, and 22 ◦C, respectively (Supplementary File S1). These
findings are in line with the ethylene production data (see Section 2.4). Interestingly, the
combined EOs formula showed the lowest ACC contents (0.18–0.20 nmol g−1) at 15 ◦C,
although it was punctual only for that temperature due to the lower ACS activity.

2.3. ACO Activity

ACO is the second enzyme involved in ethylene biosynthesis, which turns ACC into
ethylene when oxygen is present. Contrary to ACS, the post-translational regulation and
combinatorial interactions of ACO are far less well understood than those of ACS. It is
unclear whether ACO and ACS have similar levels of structural, biochemical, and post-
translational complexity because genetic data on ACO are lacking [8]. After harvest, ACO
activity significantly increases in broccoli florets, simultaneously with increments in the
abundance of BO-ACO1 and BOACO2 transcripts, followed by a marked rise in ethylene
production [26].

The highest ACO activity increased as the temperature did (Figure 4). In particular,
the ACO activity of control samples at 22 ◦C of 0.6 nmol g−1 h−1, which agrees with
previous data [10,26], was reduced to 0.1–0.3 nmol g−1 h−1 at lower temperatures. At high
temperatures, grapefruit EO showed the highest EO dose:ACO activity curvature among
EOs (Figure 4). Hence, grapefruit EO led to ACO activity reductions of 40–45%, compared
with control samples, without significant differences among EO doses. We also previously
found that other EOs (oregano EO, spearmint EO, cinnamon EO, and carvacrol) inhibited
the ACO activity of broccoli florets [10].
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Although ACS is well accepted as the rate-limiting step of ethylene biosynthesis
in plants, there are examples where ACO is the rate-limiting step, e.g., during the post-
climacteric ripening of tomato fruit [29]. As previously observed for ACS, the ACO activity
was higher at higher temperatures (Figure 5). In particular, ACO activities of 0.4 and
0.1 nmol g−1 h−1 were observed in control samples at 22 ◦C and 8/15 ◦C, respectively. The
highest curvatures at high temperatures were observed for rosemary EO, followed by thyme
EO. In particular, ACO activity reductions of 47/55/66% and 22/34/50% were observed for
rosemary EO and thyme EO, respectively, at 100/500/1000 mg m−2, respectively (Figure 5).
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2.4. Ethylene Production

The ethylene production in broccoli florets was 34.7, 145.6, 179.9, and
929.1 pmol kg−1 s−1 at 2, 8, 15, and 22 ◦C, respectively. Cherry tomatoes showed higher
ethylene production with values of 33.8, 35.8, and 41.1 nmol kg−1 s−1 at 8, 15, and 22 ◦C,
respectively. The obtained data are in accordance with previous literature [9,10,12]. As
observed, broccoli is a vegetable with lower ethylene production rates than tomatoes.
Though it is highly sensitive to ethylene, the predominant visible result of ethylene action
is yellowing, which causes broccoli’s colour to change at ethylene concentrations as low
as 10 nL L−1 [11]. It has been reported that a shift in the sepal tissue’s sensitivity to the
ethylene released by the reproductive structures in the floret mediates the ethylene-induced
yellowing of broccoli [11]. On the other side, tomato is a climacteric horticultural product,
and its ripening process is accelerated by ethylene, and this endogenous production of that
hormone results in a shorter postharvest life [12]. In general, active packaging reduced
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the ethylene production of broccoli florets and cherry tomatoes by 20–40%, as observed in
Figures 6 and 7.
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As previously commented, the ethylene production was higher as the temperature
increased, turning the b-splines of both vegetables from blue to green (Figures 6 and 7). For
broccoli, the ethylene production increases were more related to temperature increments
than those related to EO dose ones (Figure 6). In particular, this linear effect was more
accurate for grapefruit and bergamot EOs. Using active packaging with a pure EO compo-
nent (i.e., eugenol) led to a reduction in the width of colour stripes (less abrupture changes)
compared to bergamot and grapefruit EOs. It means that temperature increases had a
higher correlation with ethylene production changes. Nevertheless, line curvatures became
incremental for eugenol as the temperatures augmented, meaning that doses needed to
be incremental to reduce the ethylene production increments. An intermediate situation
occurred when eugenol was mixed with bergamot and grapefruit EOs.

Overall, ethylene production in broccoli was highly correlated with temperature,
although increasing the EO dose of the active packaging did not induce a marked reduction
in the ethylene production increments, except for eugenol. Among them, active packaging
with bergamot EOs better controlled the ethylene production with bluer lines at the highest
temperatures, although no apparent benefits were observed when incrementing the EOs
dose. In particular, active packaging with bergamot EOs induced the highest ethylene
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production control with 56–63% lower values at 22 ◦C (without significant differences
among EOs doses) compared to control samples.

The ethylene production of tomatoes using EO-active packaging showed a differ-
ent behaviour compared with broccoli (Figure 7). Among EOs, linalool showed a high
dose-ethylene production correlation, although it led to a lower temperature-ethylene
production correlation. Thyme EO also showed a certain curvature, meaning a positive
correlation involving EO dose-ethylene production reduction. Rosemary EO and the triple
EO combination showed intermediate situations between linalool and thyme (Figure 7),
as observed in Figure 2. Overall, thyme EO-active packaging could be selected, among
the rest of the studied EOs, for controlling ethylene production in cherry tomatoes. In
particular, thyme EO doses of 1000 mg m−2 reduced the ethylene production of tomatoes
by 33 and 38% at 8 and 15 ◦C, respectively (Figure 7). More interestingly, increasing the
thyme EO dose from 500 to 1000 mg m−2 is supposed to increase the ethylene production
control from 22 to 40%.

Zapata et al. [30] also found that supplementation of an edible coating (alginate-based)
with EOs (eugenol, thymol, menthol, and carvacrol) reduced by approximately 30–35% the
ethylene production of tomatoes during 7 days at 20 ◦C. Contrary to the reduced literature
on vegetables, the inhibitory effect of EOs on the ethylene production of fruits has been
widely reported [19,20,31–33], although it is very limited to active cardboard packaging
with EOs. In particular, Navarro-Martínez et al. [10] reported that the release of EOs (citral,
carvacrol, oregano, and cinnamon EOs) from active cardboard packaging reduced the
ethylene production of broccoli florets by 30−40% and up to 40−70% during storage of
this vegetable at 22 and 2 ◦C, respectively. Our group has previously studied the effects
of released EOs from active cardboard packaging on several fruits, like flat peaches and
apples [10,16,17].

3. Materials and Methods
3.1. Materials

Plant EOs (bergamot, grapefruit, thyme, and rosemary EOs) were acquired from
Esencias Martínez Lozano S.A. (Caravaca de la Cruz, Spain). EO composition analyses
are included in Supplementary File S2. Eugenol (99.5% purity) and linalool (99.5% purity)
were acquired from Merck (Dusseldorf, Germany). β-cyclodextrin, hereinafter referred to
as βCD, was provided by Roquette (Kleptose®10; Lestrem, France). Water-base lacquer
UKAPHOB HR 530 (ammonia-free anionic copolymer; pH 8–10; viscosity max. 100 mPa
s at 20 ◦C; with 30% total solids concentration), which is authorized for food contact
surfaces, was acquired from Schill + Seilacher GmbH (Böblingen, Germany). This is a
common lacquer type used for paper/cardboard packaging of fruit and vegetables, with the
following advantages: (i) it is easily dissolved in water to reach the appropriate density to
ensure homogeneous spraying on the cardboard surface; and (ii) when dried, improves the
impermeability of the paper/cardboard surface against the high humidity levels maintained
(to reduce water loss of plant products) in the cold rooms of horticultural facilities. Recycled
kraft paper sheets (50 g cm−2) were provided by Bioencapsulation and iPackaging S.L.
(Fuente Álamo, Murcia, Spain).

Broccoli (Brassica oleracea var. italica) heads were supplied by Sacoje SAT (Lorca,
Spain) in May 2022. According to the traceability information consulted by the producer,
broccoli heads were manually collected in open-air cultivation parcels in the Southeast
Mediterranean Spanish region (Lorca, Spain) at the commercial maturity stage (about
350–400 g per head). Cherry tomatoes (Solanum lycopersicum cv. Singular) were purchased
in October 2022 from a local producer (Perichán SAT; Cañada de Gallego, Spain). Samples
were hand-collected in greenhouses near the producer company in accordance with the
traceability information discussed.
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3.2. Encapsulation of Essential Oils and Active Packaging Preparation

The EOs and EO components used for the active packaging in broccoli (eugenol,
bergamot orange EO, grapefruit EO, and their combination in a ratio of 3:1:1 weight(w):w:w
corresponding to the major proportion to the EO component) and tomato (linalool, thyme
EO, rosemary EO, and their combination in a 3:1:1 w:w:w ratio) were selected based on their
high capacity to inhibit the ethylene production in these vegetables based on preliminary
experiments with approximately 50 different EOs (and different combinations of them)
(data not shown).

The EO−βCD inclusion complex was prepared using the kneading method [34].
Briefly, 1 g of EO was mixed with 7.6 g of βCD (following a 1:1 cavacrol:βCD molar ratio)
in a mortar with 3 mL of ethanol, kneaded for 45 min, and finally maintained in a vacuum
desiccator at room temperature for at least 72 h (it reduces the surface EO that is not trapped
in the βCD cavity). In addition, the characterization (XRD, FTIR, SEM, and TEM) of the
EO−βCD inclusion complex of this experiment is included in in Supplementary File S3,
showing a high encapsulation efficiency of 86 ± 13%.

The EO−βCD inclusion complex was dissolved (at different concentrations, as sub-
sequently shown) in diluted lacquer before spraying on the kraft paper. The lacquer was
previously diluted to a final solid concentration of 8.5% to compensate for the addition of
the EO−βCD inclusion complex, as lacquers with a solid content of ≥30% may be difficult
to spray on the paper or cardboard surface.

The active packaging was prepared to obtain load levels of the EO−βCD inclusion
complex of 100–1000 mg m−2, which would be equivalent (based on the previous EOs:βCD
molar ratio of 1:7.6) to entrapped 11.6–116.3 mg of EOs per m2 of paper. The selected
load range of the EO−βCD inclusion complex was selected between the minimum dose to
observe the benefits on the product quality during storage and the maximum dose without
transferring EO-related off-flavours to the product as previously reported [24]. Active
packaging material was prepared one day before the experiments.

3.3. Effect of Active Packaging on the Ethylene Biosynthesis System of Vegetables

Tomatoes and broccoli heads were previously sanitised using a NaOCl wash
(100 mg L−1; 1 min; pH 6.5), followed by a 1-min rinse with tap water. After that, the
broccoli was separated into florets. Subsequently, broccoli florets (≈120 g) and tomato
fruits (≈230 g) were packaged in rectangular plastic baskets (120 × 110 × 45 mm; 1 L of
capacity). A rectangle (120 × 110 mm) of active packaging was placed in the bottom of
the basket before being filed with the broccoli florets or tomatoes. Subsequently, trays
were thermal-sealed with an automatic packaging machine (Efaman; Efabind, Murcia,
Spain) with a Cryovac® EOP616B film (39 µm thickness; Cryovac, Fuenlabrada, Spain)
with synthetic air. The gas/water transmission rates of this film were: O2, 7.0 cm3 m−2

day−1 atm−1; CO2, 25.0 cm3 m−2 day−1 atm−1; N2, 0.5 cm3 m−2 day−1 atm−1; water,
10.0 g m−2 day−1.

Sampling for analyses (ethylene production, ACC content, and ACO and ACS activi-
ties) of broccoli was performed after 48, 30, 15, and 5 h of ethylene accumulation at 2, 8,
15, and 22 ◦C, respectively. For tomatoes, sampling was made after 4, 3, and 2 h at 8, 15,
and 22 ◦C, respectively. The selected accumulation times were based on preliminary tests
to achieve measurable ethylene concentrations within packages while avoiding CO2 and
O2 consumption concentrations higher/lower than 5/15% (measured with an O2/CO2
portable meter; Checkpoint O2/CO2 model, PBI Dansensor, Barcelona, Spain), respectively,
to avoid alteration of the normal product metabolism.

3.4. Ethylene Production

The ethylene production was analysed according to previous literature [16]. Briefly,
1 mL of gas was taken from the headspace of the containers using a gas-tight syringe and
then injected into a gas chromatograph (GC; Clarus 500 GC; Perkin Elmer Inc., Shelton CT,
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USA) for the ethylene determination. Two measurements (technical replicates) were made
for each basket.

The GC included a GC column (stainless steel column packed with Porapak Q 1/8′′,
80/100 mesh size; Teknokroma; Barcelona, Spain), and the analysis conditions were: oven,
injector, and flame ionization detector temperatures of 80, 120, and 250 ◦C, respectively;
with synthetic air and H2 as gas carriers at 350 and 35 mL min−1, respectively. Ethylene
content was quantified using an ethylene standard of 10 ppm (gas molar fraction volume)
(Praxair; Molina de Segura, Spain). The results were reported as nmol g−1 h−1.

After collecting samples for the ethylene analyses, the baskets were opened, and the
samples were frozen using liquid nitrogen. Then, samples were kept at −80 ◦C until ACC
content and enzymatic analyses (ACO and ACS) were performed.

3.5. 1-Aminocyclopropane-1-Carboxylic acid (ACC) Content

The original approach developed by Lizada and Yang [35] (reviewed by Bulens
et al. [28]) was used to determine the ACC content. For the ACC extraction, 4 g of
ground (IKA A11 Basic; mill with liquid N2; Königswinter, Germany) frozen tissue was
homogenised (IKA T-18 digital ULTRA-TURRAX®; Königswinter, Germany) with 4% sali-
cylic acid solution (in distilled water), followed by vortexing and being placed on ice for
30 min while being stirred. Samples were then centrifuged at 3090× g for 10 min at 4 ◦C. In
order to measure the ACC content, 1.4 mL of ACC extract and 0.4 mL of 10 mM HgCl2 were
combined in a 20 mL glass GC vial before being immediately sealed with an encapsulable
septum. After adding 0.2 mL of NaOCl (5% volume (v):v):NaOH (6 M) mix (2:1 v:v) using
a syringe, the reaction began. This was followed by an incubation period of 4 min on ice.
Ultimately, 1 mL of the GC vial headspace was injected into the GC, and the generated
ethylene was analysed (as indicated in Section 3.4). The results were reported as nmol g−1.

3.6. ACC Oxidase (ACO) Activity

The ACO activity was analysed as described in the literature [28,36]. For the ACO
extraction, 0.5 g of ground frozen sample plus 50 mg of polyvinylpolypyrrolidone were added
to 1 mL of MOPS (3-morpholinopropane-1-sulfonic acid) buffer (400 mM, pH 7.2), which
contained 10% glycerol (w:v) and 30 mM sodium ascorbate. Then, it was shaken for 15 min
at 4 ◦C. Samples were then centrifuged at 22,000× g for 30 min at 4 ◦C, and the supernatant
was used as the ACO extract. The ACO reaction was started by mixing 0.4 mL of the ACO
extract with 3.6 mL of ACO reaction buffer (50 mM MOPS buffer comprising 10% glycerol, 1
mM ACC, 10 mM sodium ascorbate, 50 µM iron sulphate, 10 mM sodium bicarbonate, and 1
mM dithiothreitol; pH 7.2) in a 20 mL glass GC vial, which was then rapidly closed with an
encapsulable septum. The reaction lasted for 1 h at 30 ◦C in a water bath. Ultimately, 1 mL of
the GC vial headspace was injected into the GC, and the generated ethylene was analysed (as
indicated in Section 3.4). The results were reported as nmol g−1 h−1.

3.7. ACC Synthase (ACS) Activity

The ACS activity was analysed as previously described [28,36]. For the ACS extraction,
3 g of ground frozen sample plus 15 mg of polyvinylpolypyrrolidone were added to 3 mL of
the extraction buffer, which consisted of 200 mM tricine (pH 8.5) containing 4 µM pyridoxal-
L-phosphate and 10 mM dithiothreitol. It was then stirred for 15 min at 4 ◦C. Samples were
then centrifuged at 22,000× g for 30 min at 4 ◦C, and the supernatant was used as the ACS
extract. The ACS extract was purified using solid-phase extraction columns (Sephadex
G-25 desalting column GE17-0851-01; Sigma Aldrich, Berlin, Germany). For the reaction,
1.5 mL of the purified ACS extract was added to 150 µL of the ACS reaction buffer (tricine
buffer 200 mM, pH 8.0) and 150 µL SAM chloride. The reaction continued for 2 h at 25 ◦C in
a water bath. Finally, 200 µL of the 100 mM HgCl2 solution was added to stop the reaction.
Subsequently, 950 mL of the reacted extract was mixed with 850 mL of distilled water in a
20 mL glass GC vial, which was then quickly sealed with an encapsulable septum. Then,
0.2 mL of the NaOH-NaOCl solution (see Section 3.5) was added through the septum and
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incubated for 4 min on ice. Ultimately, 1 mL of the GC vial headspace was injected into the
GC, and the generated ethylene was analysed (as indicated in Section 3.4). The results were
reported as nmol g−1 h−1.

3.8. Data Analysis and Mathematical Modelling

The relationship between the concentration of the measured compounds (ACC, ACO,
MACC, ACS, and ethylene) and the packaging conditions (storage temperature, EO dose,
and type of antimicrobial) was described using smoothing splines (b-splines) to describe
the complex non-linear relationships between these variables. To account more accurately
for the experimental error, the model was fitted using Bayesian regression [37].

In practice, the model was implemented in R version 4.2.3 [38] using the brms pack-
age [39]. For the splines, we use the “t2” implementation included in mgcv [40], considering
the concentration of the compound as the output variable and the storage temperatures and
antimicrobial dose as input variables. The type of antimicrobial (or combination) was intro-
duced as a categorical variable, introducing a random effect on the spline coefficients [41].

The model was fitted using the No-U-Turn sampler included in Stan [42], using the
interface provided by brms. The convergence of the model was evaluated as is often
recommended for this kind of model [37]: visually checking the lack of autocorrelation
and appropriate mixing of the trace plots of the Markov chains, ensuring that the R-hat
index was lower than 1.01 for every parameter estimate, and checking that the model
described the overall trend in the data. The results were represented as a contour plot
of the splines using ggplot2 [43]. The values of the parameter estimates are included in
Supplementary File S4.

4. Conclusions

This study shows for the first time a detailed scenario of the effects of essential oils
(EOs) released from active packaging on the key components of the ethylene biosynthesis
system (ACS, ACC, and ACO) of broccoli and tomato. Grapefruit EO and thyme essential
EO showed the highest inhibiting effects on the ethylene production of broccoli and toma-
toes, respectively, which were more evident at higher storage temperatures. According
to the EO doses, the highest inhibition of ethylene production in tomatoes was achieved
using active packaging with a thyme EO dose of 1000 mg m−2. Meanwhile, similar effects
were observed with a lower grapefruit EO dose (500 mg m−2) for broccoli. In particular,
these EO-active packaging systems reduced ACS and ACO activities by 40–50% at 22 ◦C.
Hence, the studied EO-active packaging systems may greatly reduce the detrimental effects
of ethylene on the postharvest quality of these products when they are stored at unrecom-
mended high temperatures. Future studies may deepen the genetic factors involved in
the observed inhibition of the key enzymes of the ethylene biosynthesis pathway: ACS
and ACO.
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//www.mdpi.com/article/10.3390/plants12193404/s1. Supplementary File S1: ACC content of
tomatoes; Supplementary File S2: Composition of the used essential oils; Supplementary File S3: Char-
acterization of the EO-βCD inclusion complex (XRD, FTIR, SEM, and TEM) [44,45]; Supplementary
File S4: Statistical analysis files.
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