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Abstract: In this study, we identified Plasmopara-viticola-lesion-associated mononegaambi virus
3 (recently classified as Penicillimonavirus gammaplasmoparae), a fungi-associated mymonavirus, in
grapevine plants showing an unusual upward curling symptomatology on the leaves and premature
decline. Mymonaviridae is a family comprising nine genera of negative-sense single-stranded RNA
viruses infecting filamentous fungi, although few of them have been associated with oomycetes,
plants, and insects. Although the first mymonavirus genome description was reported a decade ago,
the genome organization of several genera in the family, including the genus Penicillimonavirus, has
remained unclear to date. We have determined the complete genome of P. gammaplasmoparae, which
represents the first complete genomic sequence for this genus. Moreover, we provide strong evidence
that P. gammaplasmoparae genome is bipartite and comprises two RNA molecules of around 6150 and
4560 nt. Our results indicate that the grapevine powdery mildew pathogen, Erysiphe necator, was
also present in the analyzed plants and suggest P. gammaplasmoparae could be infecting this fungus.
However, whether the fungus and/or the mycovirus are associated with the symptomatology that
initially prompted these efforts remains to be determined.

Keywords: grapevine; HTS; mymonavirus; Penicillimonavirus gammaplasmoparae; Erysiphe necator

1. Introduction

Grapevine (Vitis vinifera L.) is one of the most important crops cultivated worldwide,
with its efficient and sustainable production seen as a major goal for the agriculture and
industry systems of many countries. Grapevine plants can be infected by many different
pathogens that may cause important losses in grape quality and production, thus threaten-
ing viticulture. Among them, 35 viral species have been associated with major grapevine
diseases, like infectious degeneration and decline, leafroll, rugose wood, fleck, red-blotch,
leaf mottling and deformation, vein clearing, and Roditis leaf discoloration [1,2]. However,
a much more complex grapevine virome has been described, with 97 viral species known
from this crop to date [2–9].

High-throughput sequencing (HTS) technologies have heavily contributed to the ex-
ponential increase in plant virome knowledge achieved during the last two decades [10–15].
The main advantage of HTS-based approaches is their ability to identify unknown viruses
even when present at low viral concentrations [11,15]. Different HTS approaches generate
metagenomic data, which can improve our understanding of the complex microbiome as-
sociated with plants, including viruses that infect organisms associated with plants, such as
fungi, bacteria, or insects [16]. In this scenario, new challenges arise for the understanding
of the biological significance of the identification of a novel virus. To this end, viral genomic

Plants 2023, 12, 3300. https://doi.org/10.3390/plants12183300 https://www.mdpi.com/journal/plants

https://doi.org/10.3390/plants12183300
https://doi.org/10.3390/plants12183300
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/plants
https://www.mdpi.com
https://orcid.org/0000-0001-5850-1527
https://orcid.org/0000-0001-8406-7963
https://orcid.org/0000-0001-9757-1835
https://orcid.org/0000-0001-5704-2138
https://doi.org/10.3390/plants12183300
https://www.mdpi.com/journal/plants
https://www.mdpi.com/article/10.3390/plants12183300?type=check_update&version=2


Plants 2023, 12, 3300 2 of 12

data can be complemented with additional evidence obtained from phylogenetic analyses,
morphological characterization of virions, and host range studies.

Mymonaviridae is a recently described virus family, which comprises nine genera Auric-
ularimonavirus, Botrytimonavirus, Lentimonavirus, Penicillimonavirus, Sclerotimonavirus, Hubra-
monavirus, Phyllomonavirus, Plasmopamonavirus, and Rhizomonavirus and 50 species [17].
Although most Mymonaviridae species have been reported infecting fungi, several species
like Apple virus B, Gisinge virus, Kiln Barn virus, and Hubei rhabdo-like virus 4 have been
found associated with plants or insects [18–20], suggesting that mymonaviruses hosts may
not be limited to fungi.

The typical mymonavirus genome organization was described based on the first
species reported, Sclerotimonavirus sclerotinae [21], and consists of a single molecule of
negative-sense RNA of about 10 kilobases (kb) harboring six non-overlapping open reading
frames (ORFs) encoding from 5′ to 3′ the following proteins: pI, nucleoprotein (NP), pIII,
pIV, L protein corresponding to the virus RNA-dependent RNA polymerase (RdRp) and
pVI. The ORFs are separated by non-coding intergenic regions (IGRs), which contain highly
conserved gene junction sequences [17]. Other reported mymonaviruses genomes range
between 6.2 and 11.6 kb and encode a variable number of ORFs (from four to seven),
but some of the reported genomes are incomplete [17]. The precise genome size and
number of ORFs for several genera (Hubramonavirus, Penicillimonavirus, Plasmopamonavirus,
Phyllomonavirus, and Rhizomonavirus) are therefore unknown since the available genomic
sequences are incomplete. No bipartite genomes have been described in the Mymonaviridae
family to date.

The present study was initiated in an effort to understand the etiology of an unusual
grapevine leafroll syndrome. A total RNAseq analysis showed the presence in these plants
of Penicillimonavirus gammaplasmoparae, a recently identified fungi-associated mymonavirus
species. Further experiments demonstrated that the genome of this virus is bipartite, and
we report here the first complete genomic sequence of Penicillimonavirus gammaplasmoparae,
the first bipartite mymonavirus described to date, as well as efforts to identify its host and
possible involvement in the studied syndrome.

2. Results
2.1. Grapevine Symptomatology

In 2018, five symptomatic grapevine plants, cultivar Crimson seedless, showing
unusual leaf rolling symptoms, were collected from a private vineyard located in Alicante
(Spain). The leaves showed a very unusual upward curling phenotype (Figure 1a–d) as
well as puckering on the leaf surface (Figure 1d).

The five plants were monitored during three growth seasons (2019–2021) and retained
the same unusual symptomatology for the whole period. They eventually suffered a decline
and died.

2.2. Penicillimonavirus gammaplasmoparae Detection Using HTS

In 2019, total RNA was extracted from leaves from two of the symptomatic grapevines
described above (Pin1 and IVIA 49.3) and analyzed using HTS. At the time they were
sampled for RNA extraction, the two plants also showed conspicuous grapevine powdery
mildew symptoms. HTS analysis yielded 60,597,198 and 49,645,466 reads, respectively, after
trimming and quality control steps. A grapevine genome subtraction was then performed
by mapping the reads against the grapevine genome and the 8,642,008/5,609,129 remaining
reads subjected to de novo assembly. A total of 14,905 (Pin1) and 34,061 (IVIA 49.3) contigs
larger than 200 nt were obtained and subsequently analyzed using BLASTN against the
RefSeq viral database. The results indicated the presence in the samples of 12 known
viruses, including grapevine viruses and mycoviruses (Table 1), none of which has been
associated with the observed symptoms.
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Figure 1. Symptoms observed on the grapevine plants analyzed in the present study: (a–d) upward
leaf rolling and (d) leaf puckering. (a,b) Pin 1. (c,d) IVIA 49.3.

Table 1. Viruses were detected in the two symptomatic grapevine plants analyzed using HTS in
this study.

Sample Code De Novo Contigs Virus Detected 1

Pin 1 14,375
GLRaV-1; GLRaV-2; GRSPaV; GFkV; GRVFV;

GVA; EnVS-1; EnVS-2; EnVS-3; PsV-F; EnPV-3; P.
gammaplasmoparae

49.3 34,061 GRSPaV; EnVS-1; EnVS-2; EnVS-3; EnPV-3; P.
gammaplasmoparae

1 Virus detected using BLASTN against the RefSeq database: grapevine leafroll-associated virus 1 (GLRaV-1);
grapevine leafroll-associated virus 2 (GLRaV-2); grapevine rupestris stem pitting-associated virus (GRSPaV);
grapevine fleck virus (GFkV); grapevine rupestris vein feathering virus (GRVFV); grapevine virus A (GVA);
Erysiphe necator mitovirus 1 (EnVS-1); Erysiphe necator mitovirus 2 (EnVS-2); Erysiphe necator mitovirus 3 (EnVS-3);
Penicillium stoloniferum virus F (PsV-F); Erysiphe necator partitivirus 3 (EnPV-3); Penicillimonavirus gammaplasmoparae
(P. gammaplasmoparae).

Among all assembled contigs, the bioinformatic analysis revealed the presence in
both samples, Pin1 and IVIA 49.3, of one contig of 6155 nt (deposited in GenBank in
July 2022, accession number OP042368, hereafter referred to as RNA2), which showed
99.8% nucleotide identity with the genomic RNA of the recently described Erysiphe necator
associated negative-stranded RNA virus 2 (NC_077044) and 99.82% nt identity with that
of Plasmopara-viticola-lesion-associated mononegaambi virus 3 (NC_076453), indicating
these two names to be synonymous. Indeed, this synonymy has been recognized, and
following the transition to viral binomial nomenclature, the corresponding virus species
has recently been named Penicillimonavirus gammaplasmoparae and included in the new
genus Penicillimonavirus in the family Mymonaviridae [22]. Efforts to extend the recovered
contig were unsuccessful, consistent with the genome length reported for the other two
isolates of, respectively 6178 and 6153 nt.

Interestingly, BLASTX analysis also revealed the presence in both grapevine samples of
a smaller contig of 4564 nt (deposited in GenBank in July 2022, accession number OP042367),
referred to here as RNA 1, which encodes a protein showing 24.1% amino acid identity
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with hypothetical protein 2 of Hubei rhabdo-like virus 4 (NC_032783) a member of the
family Mymonaviridae, raising the possibility that RNA 1 may represent the second genomic
segment of a bipartite mymonavirus. Consistent with this hypothesis, BLASTP analysis
of the putative codified protein (pII) shows a higher percentage of identity (39.2%) with
the nucleoprotein (NP) of the more recently released Magnaporthe oryzae mymonavirus
1 genome (GenBank OL415836).

The analysis of RNA 1 sequence showed the presence of five putative non-overlapping
ORFs separated by non-coding intergenic regions: ORF-I encoding a protein of 292 aa with
a predicted molecular mass of 31.8 kDa (named pI); ORF-II encoding a protein of 415 aa
with a predicted molecular mass of 46.9 kDa (named pII, putative NP); ORF-III encoding a
protein of 148 aa with a molecular mass of 17 kDa (named pIII); ORF-IV encoding a protein
of 202 aa with a molecular mass of 22.1 kDa (named pIV); and ORF-V encoding a protein
of 256 aa with a molecular mass of 29.6 kDa (named pV). ORFs III-V are located in the
+2 reading frame, while ORF-I and ORF-II are in the +1 and +3 reading frames, respectively.

Sanger sequencing confirmation of the presence of RNA 1 and RNA 2 in the sampled
grapevine tissues and of their sequence was performed using specific primers designed for
this study (Supplementary Table S1). The simultaneous presence of both RNAs was also
detected using RT-PCR in the three remaining plants showing the unusual symptomatology,
using specific primers targeting RNA 1 or RNA 2 (Supplementary Table S1).

P. gammaplasmoparae was first identified using HTS [23], and the raw reads used for this
discovery are publicly available (Bioproject PRJNA613358) in the Sequence Read Archives
(SRAs) of GenBank. In order to validate the co-occurrence of RNA 1 and RNA 2 in the
samples in which Plasmopara-viticola-lesion-associated mononegaambi virus 3 genomic
RNA was discovered, we performed BLASTN analyses using both RNAs as probes against
the relevant SRAs. In 6 out of 16 SRAs, both sequences were found (Supplementary
Table S2). On the other hand, in the 10 remaining SRAs, none of the sequences was present.
These results indicate a co-occurrence of RNA 1 and RNA 2 and are in agreement with our
hypothesis that these two RNA molecules are the two segments of a bipartite genome.

2.3. RNA 1 and RNA 2 Share Common Features

The association of RNA 1 and RNA 2 is also supported by the finding of common se-
quence features. Interestingly, both RNAs contain a shared sequence (SS) of 23 nucleotides,
with just one single nucleotide polymorphism, in their 3′ untranslated region (3′UTR)
(Figure 2b).

In addition, when IGRs and terminal non-coding sequences of both RNAs were ana-
lyzed, conserved sequences similar to gene junction sequences of other mymonaviruses,
were found in the RNA1 IGRs. Alignment of these conserved sequences in a 3′-to-
5′orientation and of similar sequences found in the terminal non-coding regions of both
RNAs showed the presence of two conserved elements, named element 1 and element
2, in this study. Element 1 is characterized by the sequence 3′-UUU(U/A)(U/A/G)-5′,
while element 2, separated by two nucleotides from element 1, contains the sequence
3′-AA(C/A)(A/U)(C/A)(C/A)-5′.

Elements 1 and 2 are thus present at the intergenic regions between ORFs I-V in RNA
1 and in the 5′ untranslated region (5′UTR) of RNAs 1 and 2 (Figure 2a). Similar elements
are present in the IGRs of Hubei rhabdo-like virus 4 (Figure 2d) and Magnaporthe oryzae
mymonavirus 1 (Figure 2e), two members of the family Mymonaviridae.

2.4. Virion Morphology and VANA Analysis

Viral particles were isolated from leaf tissue from the IVIA 49.3 grapevine by dif-
ferential centrifugation and ultracentrifugation on a sucrose gradient. After gradient
fractionation, virion-associated nucleic acids (VANA) were extracted and analyzed for the
presence of P. gammaplasmoparae by RT-PCR using specific primers targeting RNA 1 or
RNA 2 (Supplementary Table S1). Interestingly, both sequences were detected in the same
gradient fractions, corresponding to those positive fractions for both RNA 1 and RNA 2,
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suggesting that the two ssRNAs are either co-encapsidated or separately encapsidated in
particles showing similar sedimentation properties (Supplementary Figure S1).
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Figure 2. Common genome features in RNA 1 and RNA 2. The genomic structure of RNA 2 and
RNA 1 (a), as well as the position of conserved elements, are indicated. (b) Alignment of the shared
sequence (SS) in RNA 1 and RNA 2. (c) Alignment of gene junction sequences between ORFs in
a 3′-to-5′orientation of RNA 1 and RNA 2 sequences. (d) Alignment of gene junction sequences
between ORFs in a 3′-to-5′orientation of Hubei rhabdo-like virus 4 (NC_032783). (e) Alignment of
gene junction sequences between ORFs in a 3′-to-5′orientation of Magnaporthe oryzae mymonavirus
1 (OL415836). (*) Conserved positions.

Transmission electron microscopy (TEM) performed on the RNA 1/RNA 2 positive
gradient fractions revealed the presence of viral particles with a single morphology. These
virions exhibited a quasi-spherical morphology with a diameter ranging between 39 and
55 nm and frequently showed crescent or horseshoe-shaped outer zones less dense to
electrons (Figure 3).

2.5. Phylogenetic Evidence Supporting Penicillimonavirus Bipartite Genome

To further support our findings indicating the bipartite nature of the penicillimon-
avirus genome, we studied the phylogenetic relationships between several mymonavirus
belonging to different genera using the amino acid sequence of the NP, the sole RNA1-
encoded protein showing sequence conservation between the different viruses.
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Figure 3. Electron microscopy of viral particles present in positive RNA 1/RNA 2 positive gradient
fractions. The scale bar is shown at the bottom of each image. (a,b) Group of viral particles with
similar morphology. (c) Size in nm for several particles. (d) Virion morphology of a single particle.

During the completion of the present study, several sequences that could correspond
to the RNA1 of other Plasmopara-viticola-lesion-associated mononegaambi viruses became
available (July 2023; WKE35255, WKE35269, and WKE35277) and were therefore included in
the analysis. The sequences of NPs of other members of the following mymonavirus genera
were also included: Hubramonavirus, Sclerotimonavirus, Auricularimonavirus, Lentimonavirus,
and Plasmopamonavirus.

The results show that the P. gammaplasmoparae NP clusters with those of other penicil-
limonaviruses, strongly supporting the notion of a bipartite genome for all members of this
genus (Figure 4).

2.6. Efforts to Identify the Host of P. gammaplasmoparae

Plasmopara-viticola-lesion-associated mononegaambi virus 3 has been previously
described as field lesions of either downy or powdery grapevine mildew [22,23]. However,
the grapevine plants analyzed in the present study did not show signs of Plasmopara viticola
(downy mildew) infection but were clearly infected by Erysiphe necator, the grapevine
powdery mildew agent. In order to confirm this, we performed a bioinformatic analysis by
mapping the reads obtained for the Pin 1 and IVIA 49.3 plants against the P. viticola and E.
necator genomes. The results of this analysis indicated the presence of E. necator in both
grapevine plants, with a high coverage of greater than 97% of the fungus genome (Table 2).
On the contrary, mapping Pin1 and IVIA 49.3 reads against P. viticola reference genome
yielded a coverage of less than 5.8% (Table 2). The presence of E. necator was also confirmed
using RT-PCR using specific primers Uncin144/Uncin511 [24]. Taken together, these results
seem to indicate a significant presence of E. necator in the two analyzed grapevine plants,
suggesting that P. gammaplasmoparae may, in fact, be a virus of E. necator.
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Table 2. Results obtained from the mapping analysis of Pin 1 and IVIA 49.3 reads against the reference
genomes of Plasmopara viticola and Erysiphe necator.

Sample Fungus Reference
Genome (RefSeq)

Number of Mapped
Reads Coverage

Pin1 Plasmopara viticola
(GCA_001695595.3)

2.567 4.3%
49.3 3.090 5.8%

Pin1 Erysiphe necator
(GCA_016906895.1)

356.145 97.3%
49.3 398.428 97.8%

To further study the microbiome of the Pin1 and 49.3 samples, the sequencing reads
obtained from these two plants were analyzed using the IDseq-An pipeline [25]. The results
obtained confirm the presence of Erysiphe necator in both plants (with the signal for Blumeria
graminis, a Poaceae powdery mildew probably also corresponding to Erysiphe necator) and
the absence of Plasmopara viticola in both samples. Raw data from the pipeline results are
presented in the Supplementary Tables S3 and S4, respectively. The other fungi identified in
the dataset Pin1, with more than 500 reads per million, were Cladosporium sphaerospermum
and Wallemia sebi and the oomycete Albugo laibachii (Table S4), and in the case of 49.3, the
oomycete Albugo laibachii.

It is also important to note that the upward rolling symptomatology observed in the
analyzed grapevines is not at all typical of fungi infections such as powdery mildew or
downy mildew infection.
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3. Discussion

This study was initiated investigating the etiology of unusual grapevine symptoms
not previously reported, with a conspicuous upward rolling of leaves and eventual plant
decline and death. The HTS analysis performed on two of the symptomatic plants showed
the presence of several grapevine or fungal viruses not known to be associated with
such symptoms, including P. gammaplasmoparae, a recently described member of the
family Mymonaviridae. The results obtained have not allowed us to identify (a) causal
agent(s) for the symptoms that initially prompted these efforts. They, however, suggest
that P. gammaplasmoparae might be a virus of E. necator. We cannot, however, rule out
the possibility that it infects either grapevine or another unidentified organism associ-
ated with the analyzed plants. Unfortunately, the decline and premature death of the
grapevine plants have prevented us from performing additional studies in order to explore
these possibilities.

In the course of this work, our bioinformatic analyses recovered a 4.6 kb contig with
some structural and phylogenetic properties linking it to Mymonaviridae members. This
contig harbors 5 ORFs, one of which codes for a nucleoprotein (NP) with affinities to those
of Mymonaviridae members. It also shows a typical genomic organization with conserved
IGRs between the various genes that show homologies with those of other family members.
On the other hand, no homologies could be identified with any protein in GenBank for the
other four hypothetical proteins encoded on this RNA.

Here, we present strong evidence that supports the notion the known P. gammaplas-
moparae genomic RNA and this novel contig are, in fact, the two RNA segments of a bipar-
tite genome: (i) as outlined just above, the RNA 1 contig has structural and phylogenetic
properties linking it to Mymonaviridae members (ii) both RNAs (RNA 1 and RNA 2) share
conserved terminal regions including a shared sequence of 23 nucleotides nearly totally con-
served, a feature typical of the genomic RNAs of viruses with divided genomes [26] (iii) the
presence of a single type of viral particles in gradient fractions in which the two molecules
co-sedimented and (iv) the systematic presence of the two molecules in the plant samples
analyzed by ourselves and by the teams who initially described P. gammaplasmoparae as
Erysiphe necator associated negative-stranded RNA virus 2 and as Plasmopara-viticola-
lesion-associated mononegaambi virus 3 [22,23] according to our retrospective data mining.
The accumulation of these various lines of evidence makes an extremely strong case for the
divided genome hypothesis and, in our mind, essentially rules out the alternate hypothesis
that these two molecules are completely unrelated. Therefore, this study represents the
complete genome characterization of Penicillimonavirus gammaplasmoparaee, a member of
the family Mymonaviridae with a bipartite genome. We predict this bipartite genome feature
as a rule rather than the exception for the genus Penicillimonavirus.

During the final redactional stage of this study, a publication also hypothesized the
existence of divided genomes for some Mymonaviridae on the basis of sequence homologies
between Trichoderma harzianum mycovirus 1 RNA and a molecule they tentatively associate
with Trichoderma harzianum mycovirus 2 RNA [27]. They also performed data mining efforts
parallel to those reported here, indicating that molecules with homologies with the second
RNA they associate with ThMV2 are also systematically identified in metagenomic datasets
from which viral segments belonging to Penicillimonavirus or Plasmopamonavirus genus
members were identified, suggesting that a bipartite genome might be a feature of these
two genera (although ThMV1, which also appears to be a member of the Plasmopamonavirus
genus has an undivided genome).

The identification of conserved sequence elements between the two genomic RNAs
of Penicillimonavirus gammaplasmoparaee and the demonstration that a single type of viral
particles is associated with these two molecules provide, we feel, much more convincing
elements in favor of a bipartite genome structure than the co-occurrence and homologies
brought forward by these authors.

It should be noted that this situation of a group of negative-sense viruses that contains
viruses with either a single genomic molecule or a genome divided between two genomic
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segments is exactly that found in the Rhabdoviridae family, with most genera having undi-
vided genomes, but the Dichorhavirus and Varicosavirus genera being characterized by
bi-segmented genomes [28].

Overall, this study represents the complete genome characterization of Penicillimon-
avirus gammaplasmoparae, and conclusively demonstrates its bipartite genome nature, a
novel feature in the Mymonaviridae family. As suggested by Pagnoni et al. [27], we predict
this bipartite feature as a rule rather than the exception for the genus Penicillimonavirus.

4. Materials and Methods
4.1. Plant Monitoring and Collection

Five symptomatic grapevine plants, cultivar Crimson seedless, showing upward leaf
rolling, were collected from a private vineyard located in Alicante, potted and maintained
in a greenhouse, and monitored during three growth seasons.

4.2. RNA Purification

Leaf tissue from each symptomatic plant sample was placed in individual plastic
bags (Bioreba, Reinach, Switzerland) and ground with extraction buffer (PBS containing
0.2% DIECA and 2% PVP-10) in a 1:5 ratio (w:v). Total RNA was purified from 200 µL
of homogenate using the Plant/Fungi total RNA purification kit (Norgen Biotek Corpo-
ration, Thorold, ON, Canada) according to the manufacturer’s manual, including DNase
treatment using the RNase-Free DNase I Kit (Norgen Biotek Corporation, Thorold, ON,
Canada). Purified RNA was quantified with a DeNovix DS-11 spectrophotometer (DeNovix
Inc., Wilmington, DE, USA) to determine the concentrations and stored at −80 ◦C until
subsequent analysis.

4.3. High Throughput Sequencing

RNA quality control, library construction, and HTS sequencing on a NextSeq
500 platform (paired 2 × 150 nt) were performed at Macrogen Inc. (Seoul, Republic
of Korea). Complementary DNA (cDNA) was synthesized from each RNA extraction for
library preparation using TruSeq Stranded Total RNA LT Sample Prep Kit (Plant). Library
protocol preparation used for it was TruSeq Stranded Total RNA Sample Prep Guide, Part
#15031048 Rev.

4.4. Bioinformatic Analysis of HTS Data

HTS raw reads data obtained from samples Pin1 and IVIA 49.3 were analyzed as
follows: trimming and quality control were performed with CLC Genomics Workbench
v.20.0.4 software (Qiagen Bioinformatics, Hilden, Germany). Host genome subtraction was
performed using the reference genome GCF_000003745.3 and including mitochondrion
(FM179380) and chloroplast (DQ424856) complete organelle genomes. De novo assembly
contigs were performed using CLC Genomics Workbench. De novo contigs larger than
200 nt were annotated using BLAST analysis (BLASTN/X) with an e-value cut-off of 10−3

against a local virus database. Mapping analysis of the Pin1 and 49.3 reads against the
reference the genomes of P. viticola (GCA_001695595.3) and E. necator (GCA_016906895.1)
was performed with the Geneious Prime 2021 software (Biomatters Ltd., Auckland, New
Zealand). In addition, metagenomics analysis was performed using the open-source cloud-
based platform IDseq v8.2 [25].

4.5. RT-PCR and Sanger Sequencing Confirmation

In order to confirm the sequences assembled from HTS data, 22 primer pairs were
designed on the RNA 1 and RNA 2 HTS-recovered sequences. Total RNA from the IVIA
49.3 grapevine was used as a template. All RT-PCR reactions were performed on the
Applied Biosystems Veriti™ thermal cycler (Applied Biosystems, Foster City, CA, USA)
using AgPath-ID One-step RT-PCR kit (Ambion Inc., Austin, TX, USA) on a total volume
of 25 µL, containing 3 µL of total RNA as template and 0.5 µM of each primer. RT-PCR
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protocol consisted of one step of 45 ◦C for 30 min and 95 ◦C for 10 min, followed by 45 cycles
of amplification (95 ◦C for 30 s, 49–55 ◦C for 30 s and 60 ◦C for 1 min). Amplicons were
directly sequenced by Sanger, and sequences were aligned using Mega X software [29].

4.6. Viral Particles Isolation by Sucrose Gradient Ultracentrifugation

Viral particle purification was performed from symptomatic plant IVIA 49.3. Twenty
grams of leaf tissue were ground with 30 mL of cold (4 ◦C) extraction buffer supplied with
NaCl (150 mM) pH 7.5. First, low-speed centrifugation was carried out at 5000× g for
30 min in a Beckman Coulter centrifuge (rotor type JA-20). The supernatant recovered
from this low-speed centrifugation was transferred to a new tube and ultracentrifuged at
80,000× g for 1 h in a Beckman L-80 ultracentrifuge (rotor type 70.1 Ti). The supernatant
was discarded, and the pellet resuspended in 3 mL of gradient buffer (Tris-HCl 150 mM,
NaCl 10 mM, and EDTA 1 mM) and loaded on the top of 20 mL of a continuous sucrose
gradient (30–70%) prepared in the same buffer and centrifuged 214,000× g for 20 h in a
Beckman L-80 ultracentrifuge (rotor type TFT 50.38). Gradient fractions of 500 µL were
collected using a peristaltic pump system CTP 100 (Thermo Fisher Scientific Inc., Waltham,
MA, USA) and a fraction collector FRAC 100 (Pharmacia Biotech, Uppsala, Sweden). RNA
from each fraction was extracted and analyzed using RT-PCR as described above, in order
to detect the presence of RNA 1 and RNA 2 using primers RNA1-6F and RNA1-580R, as
well as primers RNA2-1F and RNA2-554R (Supplementary Table S1).

4.7. Transmission Electron Microscopy

Transmission electron microscopy (TEM) was performed from the collected RNA 1 and
RNA 2-positive gradient fractions at the microscopy department of Centro de Investigación
Principe Felipe (CIPF, Valencia, Spain). Glow Discharge (30 s, 7.2 V, using a Bal-Tec MED
020 Coating System (BalTec AG, Pfäffikon, Switzerland) was applied over Carbon-coated
copper grids, and grids were immediately placed on top of sample drops for 10 min.
After two brief distilled water washes, grids were contrasted with 1% uranyl acetate for
5 min. Excess fluid was removed, and grids were allowed to dry before examination
with a transmission electron microscope FEI Tecnai G2 Spirit (Thermo Fisher Scientific,
Waltham, MA, USA). Finally, photomicrographs were obtained under a transmission
electron microscope (FEI Tecnai G2 Spirit Biotwin) using a digital camera Morada Soft
Imaging System (Olympus, Tokio, Japan).

4.8. Sequence Alignment and Phylogenetic Analysis

A phylogenetic analysis was performed on 12 complete NP sequences belonging
to different mymonaviruses: OP042367, WKE35255, WKE35269, WKE35277, OQ550534,
NC_032783, MN744716, NC_076025, NC_076899, MF276904, NC_025383, ON746412). The
multiple alignment was performed using MAFFT (V7.490) implemented in Geneious Prime
2021. The phylogenetic tree was reconstructed in MEGA X [29], using the maximum
likelihood algorithm, supported using 500 bootstrap replicates, and selecting the best
substitution model computed (LG + G) implemented.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/plants12183300/s1, Table S1: Primers used for detection and Sanger sequencing of Peni-
cillimonavirus gammaplasmoparae RNA 1 and RNA2 genomic segments, Table S2: Results of the
BLASTN analysis performed for detection of P. gammaplasmoparae RNA1 and RNA2 detection in
SRAs (Bioproject PRJNA613358), Table S3: Metagenomic CZ IDSeq analysis results for sample Pin1,
Table S4: Metagenomic CZ IDSeq analysis results for IVIA 49.3, Figure S1: Co-sedimentation of P.
gammaplasmoparae RNA1 and RNA2 in a sucrose gradient.
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