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Abstract: Rosa species are widely used in folk medicine in different countries of Asia and Europe,
but not all species are studied in-depth. For instance, Rosa beggeriana Schrenk, a plant which grows
in Central Asia, Iran, and some parts of China, is little described in articles. Column and thin-layer
chromatography methods were used to isolate biologically active substances. From a study of fruits
and leaves of Rosa beggeriana Schrenk, a large number of compounds were identified, seven of which
were isolated: 3β,23-dihydroxyurs-12-ene (1), β-sitosterol (2), betulin (3), (+)-catechin (4), lupeol (5),
ethyl linoleate (6), and ethyl linolenoate (7). Their structures were elucidated by 1H, DEPT and
13C NMR spectroscopy, mass spectrometry, and GC-MS (gas chromatography–mass spectrometry).
The study also identified the structures of organic compounds, including volatile esters and acids.
Consequently, comprehensive data were acquired concerning the chemical constitution of said
botanical specimen.

Keywords: Rosa beggeriana Schrenk; 3β,23-dihydroxyurs-12-ene; β-sitosterol; betulin; (+)-catechin;
lupeol; ethyl linoleate; ethyl linolenoate

1. Introduction

The genus Rosa holds big commercial significance and is renowned in the domain of
folk medicine. Numerous wild species within this genus have played a pivotal role in the
development of valuable and economically viable cultivars of ornamental roses [1]. Despite
the relative under-examination of certain rose species, several of them possess significant
potential due to the presence of rosehip fruits. Commercially traded rosehip fruit is derived
from several different species. They are long-lived woody perennials found mainly on
forest margins and in disturbed habitats, such as roadsides and open fields. The genus
Rosa (Rosaceae) has around 150–200 species [1–3]. Roses have also been cultivated since
ancient times as medicinal plants in many countries across Europe and Asia. Rosehips
contain many pharmacologically active compounds, such as organic acids, vitamin C and
E, flavonoids, carotenoids, and tannins. Therapeutic properties and benefits of rosehips
are their nourishing, mild laxative, mild diuretic, mild astringent, diuretic, ophthalmic
and tonic effects [1,4–6]. Rosa extracts derived from these plants are also widely used in
cosmetics, promising antioxidant and moisturizing effects [1,5–8]. All parts of this wild
rose have been used in Asian folk medicine [4,5,9–11].

The intrinsic value of rosehip fruit has been acknowledged for centuries; however,
efforts have only recently been made to domesticate and cultivate wild roses specifically
for their fruit and to advance agronomic techniques in this regard. This shift in focus can
be attributed to an enhanced comprehension of the pivotal role that dietary fruits play in
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enhancing human health and mitigating disease risks [12]. The Rosaceae family is one of the
most employed as a consolidated source of phytoproducts with functional properties [13].
Within this family, the genus Rosa provides various species, and their essential oils possess
a wide range of applications as flavor, fragrance, and additive in cosmetic and toiletries [14].
In addition to their aromatic composition, many Rosa species from all over the word have
been evaluated for their food-related biological properties and multiple functional uses have
been suggested [15–19]. For example, teas made from the fruits of Rosa canina have mild
laxative and diuretic tendencies [12]. Rosehips have a longstanding history of utilization in
folk medicine spanning centuries, primarily for the prevention and treatment of various
ailments such as the common cold, influenza-like infections, fever, infectious diseases,
vitamin C deficiency, general exhaustion, gastritis and gastric ulcers prevention, diarrhea,
gallstones and gallbladder discomforts, urinary tract diseases and discomforts, as well as
for their potential anti-inflammatory, anti-obesity, anticancer, and diabetes management
properties. Furthermore, rosehips have been employed to address inadequate peripheral
circulation concerns [5,6,15–18,20,21]. Mixed with small amount of vinegar, rosehips were
used as an antidote for the treatment of iron toxicity [20,22]. For nutritional purposes, fruits
are used for the production of different products like tea, marmalade, jam, stewed fruit,
wine, and juices [23]. Ground in a hand mill and cooked with milk, they could be used as
children’s snack and baby food as reported by the latter authors. The functional properties
of some Rosa species are attributable to a wide range of bioactive ingredients, such as
minerals, flavonoids, tannins, anthocyanin, organic acids, phenolic compounds fatty acids,
volatile oils, ascorbic acid, phenols, and sugar. Through the examination of a species within
the same taxonomic family as the subject of investigation, co-occurring within the identical
geographical region, it becomes feasible to assess the potential anticancer properties of
compounds derived from Begger’s rosehip [5,24–28].

Rosa beggeriana Schrenk is an indigenous species predominantly distributed in Cen-
tral Asia (Kazakhstan, Kyrgyzstan), China (Xinjiang Uygur Autonomous Region), and
Iran [29–33]. It has been identified as an essential resource for hybridization purposes,
particularly in the development of cold-resistant germplasm, when combined with con-
temporary rose varieties [29]. Begger’s rosehip contains a large number of compounds
with antioxidant activity, including activity against cancer cells. Rosehip hips have a high
concentration of the carotenoid lycopene, which is considered a compound with a powerful
antioxidant effect and is used as a therapeutic and prophylactic agent for various diseases,
including cancer. Begger’s rosehip extracts display cytotoxicity and antiproliferative prop-
erties against human liver and breast cancer cells, which might be associated with the
presence of polyphenols in it [34].

According to the studies mentioned earlier, we can tell that Begger’s rosehips have
not been studied sufficiently even though other species are very well known in the folk
medicine of different countries.

2. Results
2.1. Identification of the Isolated Compounds from Leaves of Rosa beggeriana Schrenk

Utilizing column chromatography, a total of seven distinct substances were success-
fully isolated from both the fruits and leaves of the wild rose species known as Begger (Rosa
sp.). The isolated substances encompassed a diverse range of chemical classes, including
triterpenoids, catechins, and fatty acid esters. Remarkably, 3β,23-dihydroxyurs-12-ene
had not been previously reported in this particular plant species. Additionally, no NMR
characterization data were available for this newly isolated substance [35–37]. Apart from
this novel isolate, the triterpenoids, catechins, and a mixture of fatty acid esters were also
successfully identified and isolated from the aforementioned plant material.

2.2. GC-MS Data

GC-MS analysis was used to obtain data on the fatty acid composition of the leaves
(Table 1) and fruits (Table 2) of Rosa beggeriana Schrenk.
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Table 1. GC-MS data for the leaves of Rosa beggeriana Schrenk.

RT Compound Name Match Factor Area, %

L-2-1—Hexane fraction
40.944 Octadeca-9,12,15-trienoic acid 95.8 5.38

L-2-11—n-hexane/ethyl acetate fraction (6/4)
28.259 Methyl dodecanoate 98.0 0.95
32.897 Methyl tetradecanoate 97.5 2.61
37.087 Methyl hexadecanoate 98.6 14.45
39.021 Methyl heptadecanoate 95.0 0.47
40.244 Methyl octadeca-9,12-dienoate 99.2 13.16
40.335 Methyl octadeca-9,12,15-trienoate 99.3 32.94
40,387 Methyl trans-9-octadecenoate 91.9 5.86
40.483 Methyl (9Z)-9-octadecenoate 96.5 3.06
40.878 Methyl octadecanoate 98.6 6.37
44.340 Methyl icosanoate 96.2 1.92
47.540 Methyl docosanoate 95.1 2.16
51.111 Methyl tetracosanoate 95.3 1.45
55.902 Methyl Hexacosanoate 90.3 1.67

CH-21—dichloromethane/ethyl acetate fraction (7/3)
37.078 Methyl hexadecanoate 90.4 5.04

CH-39—dichloromethane/ethyl acetate fraction (6/4)
14.411 2-Ethylhexan-1-ol 96.4 1.85
32.897 Methyl tetradecanoate 96.3 4.83
37.078 Methyl hexadecanoate 93.1 2.00
40.225 Methyl octadeca-9,12-dienoate 96.3 3.76
40.297 Methyl octadeca-9,12,15-trienoate 97.6 9.75
28.259 Methyl dodecanoate 96.6 0.58
35.521 6,10,14-Trimethylpentadecan-2-one 96.3 0.58
35.649 7,11,15-Trimethyl-3-methylidenehexadec-1-ene 92.9 0.33

36.125 (2E,7R,11R)-3,7,11,15-Tetramethylhexadec-2-en-1-yl
acetate 92.3 0.53

36.502 3,7,11,15-Tetramethyl-2-hexadecen-1-ol 93.2 2.10
37.078 Methyl hexadecanoate 98.4 12.43
40.302 Methyl octadeca-9,12,15-trienoate 99.2 4.85
40.874 Methyl octadecanoate 96.8 13.58
41.440 Ethyl (9Z,12Z)-octadeca-9,12-dienoate 94.6 14.49
44.340 Methyl icosanoate 90.1 10.66

L-2-27—ethyl acetate/methanol fraction (8/2)
37.697 Hexadecanoic acid 94.1 6.28
40.926 Octadeca-9,12,15-trienoic acid 93.1 7.28

Table 2. GC-MS data for the fruits of Rosa beggeriana Schrenk.

RT Compound Name Match Factor Area, %

B—Ethanol extract
26.198 Trimethyl 2-hydroxybutane-1,2,3-tricarboxylate 91.7 13.47
39.397 Ethyl hexadecanoate 92.4 5.25
42.430 Ethyl (9E,12E)-octadeca-9,12-dienoate 92.5 6.71
42.506 Ethyl (9E,12E,15E)-octadeca-9,12,15-trienoate 90.0 6.55
39.397 Ethyl hexadecanoate 92.7 4.97
42.430 Ethyl (9E,12E)-octadeca-9,12-dienoate 92.6 6.47
42.506 Ethyl (9E,12E,15E)-octadeca-9,12,15-trienoate 91.6 6.29
42.430 Ethyl (9Z,12Z,15Z)-octadeca-9,12,15-trienoate 91.2 3.55
38.068 Methyl hexadecanoate 96.6 4.32
38.959 Ethyl 9-hexadecenoate 92.1 0.83
41.216 Methyl octadeca-9,12-dienoate 99.0 11.16
41.292 Methyl octadeca-9,12,15-trienoate 98.0 8.22
41.364 Methyl (9Z)-9-octadecenoate 93.5 4.57
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Table 2. Cont.

RT Compound Name Match Factor Area, %

41.864 Methyl octadecanoate 90.8 1.53
42.435 Ethyl (9Z,12Z,15Z)-octadeca-9,12,15-trienoate 97.9 15.56
42.516 Ethyl (9E,12E,15E)-octadeca-9,12,15-trienoate 98.3 11.37
42.573 Ethyl (E)-octadec-9-enoate 93.2 6.22
43.059 Ethyl octadecanoate 93.8 1.50
42.425 Ethyl (9Z,12Z)-octadeca-9,12-dienoate 90.6 4.82
42.430 Ethyl (9Z,12Z,15Z)-octadeca-9,12,15-trienoate 92.8 3.09

48.811
14-(5-Ethyl-6-methylheptan-2-yl)-2,15-

dimethyltetracyclo
[8.7.0.0ˆ{2,7}.0ˆ{11,15}]heptadec-7-en-5-ol

93.9 30.29

56.445 Nonacosane 92.1 13.69
B-M1-16—ethyl acetate/methanol fraction (1/1)

37.621 Methyl (Z)-pentadec-8-enoate 96.1 0.85
38.073 Methyl hexadecanoate 98.5 4.23
38.968 Ethyl 9-hexadecenoate 97.9 1.81
39.402 Ethyl hexadecanoate 98.7 7.97
41.221 Methyl octadeca-9,12-dienoate 99.2 5.82
41.297 Methyl octadeca-9,12,15-trienoate 98.8 7.00
41.373 Methyl (9Z)-9-octadecenoate 93.0 2.84
41.873 Methyl octadecanoate 92.2 0.53
42.449 Ethyl (9Z,12Z,15Z)-octadeca-9,12,15-trienoate 98.4 27.71
42.530 Ethyl (9E,12E,15E)-octadeca-9,12,15-trienoate 98.8 28.61
43.068 Ethyl octadecanoate 93.2 0.80

60.378
(2R)-2,7,8-Trimethyl-2-[(4R,8R)-4,8,12-

trimethyltridecyl]-3,4-dihydro-2H-1-benzopyran-6-
ol

91.4 1.66

B-M2-18—ethyl acetate/methanol fraction (3/7)
32.478 Methyl dodecanoate 96.9 0.61
36.706 Tetradecanoic acid 99.6 3.22
38.321 (9Z)-Hexadec-9-enoic acid 97.9 3.81
38.854 Hexadecanoic acid 98.1 29.50
42.002 (9Z,12Z)-Octadeca-9,12-dienoic acid 97.7 27.43
42.135 (E)-Octadec-9-enoic acid 97.4 23.95
42.492 (E)-Octadec-2-enoic acid 96.6 3.19

26-A—ethyl acetate/methanol fraction (2/8)
40.549 Hexadecanoic acid 95.8 8.32
40.549 Hexadecanoic acid 98.6 29.85
43.535 (9Z,12Z,15Z)-Octadeca-9,12,15-trienoic acid 91.1 3.47

62.859

(8S,9S,10R,13R,14S,17R)-17-[(2R,5R)-5-Ethyl-6-
methylheptan-2-yl]-10,13-dimethyl-

2,7,8,9,11,12,14,15,16,17-decahydro-1H-
cyclopenta[a]phenanthrene

90.0 6.04

When comparing the two tables, a richer composition of the fatty acids in fruits can be
observed (Tables 1 and 2).

2.3. NMR Data
2.3.1. Identification of the Isolated Compounds from Leaves of Rosa beggeriana Schrenk

From the ethanol extract (45 g) of Rosa beggeriana Schrenk (553 g), 3β,23-dihydroxyurs-
12-ene (1) [35–37] (21 mg) was isolated. The chemical structures are shown in Figure 1.

NMR data for Compound 1 were not found in literature. Hence, the analysis of the
NMR spectra (Figures S1–S4) and the comparison of the spectroscopic data (Table 3) with
those compounds that have a similar structure and described in the literature [35–37]
allowed the identification of the compound 1. The mass spectra also allowed us to identify
compound 1. Also, the melting point for compound 1 was 226–229 ◦C.
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Figure 1. Chemical structure of 3β,23-dihydroxyurs-12-ene (1).

Table 3. Spectral data of 1H NMR and 13C NMR of 3β,23-dihydroxyurs-12-ene (1) in CDCl3 and the
structures of similar molecules.

No.
13C NMR

Compound 1

Ref. 13C NMR
(3β,24-Dihydroxyurs-

12-ene)
[35]

Ref. 13C NMR
(3β,28-Dihydroxyurs-

12-ene)
[36]

1H NMR
Compound 1

Ref. 1H NMR
(3β,24-Dihydroxyurs-

12-ene)
[35]

Ref. 1H NMR
(3β,28-Dihydroxyurs-

12-ene)
[36]

1 38.3 38.5 38.78 -
2 27.3 27.2 26.63 -
3 79.0 80.9 78.44 3.32, m 3.45 dd, 11.5/4.4 Hz 3.17
4 42.0 42.0 38.60 - - -
5 55.2 55.8 55.15 -
6 18.4 18.6 18.20 -
7 32.9 33.1 32.72 -
8 40.0 40.0 39.86 - - -
9 47.7 47.7 47.56 -
10 36.9 36.6 36.75 - - -
11 23.4 23.6 23.22 -
12 124.4 124.2 124.96 5.26, m 5.12 br t, 3.6 Hz 5.1
13 139.5 139.6 138.67 - - -
14 42.7 42.7 42.32 - - -
15 28.1 28.0 26.24 -
16 26.6 26.6 23.70 -
17 33.7 33.7 37.79 - - -
18 59.1 59.0 54.07 - - -
19 39.6 39.5 39.62 -
20 39.7 39.6 39.33 -
21 31.2 31.2 30.80 -
22 41.5 41.5 35.15 -
23 63.0 22.4 27.89 3.72, m 1.25 0.80
24 15.6 64.5 16.44 1.33, s 4.23/3.34 d,11.0 Hz 0.93
25 15.7 16.2 15.51 1.06, s 0.90 0.92
26 16.9 16.7 16.44 1.10, s 0.97 0.92
27 23.3 23.3 23.70 1.16, s 1.06 1.09
28 28.8 28.7 69.20 0.89, s 0.79 3.52
29 17.5 17.5 17.23 0.88, s 0.78 0.81
30 21.4 21.4 21.20 0.89, s 0.91 1.00

From the ethanol extract (45 g) of Rosa beggeriana Schrenk (553 g), betulin (3) [38,39]
(42.5 mg) and (+)-catechin (4) [40–42] (40.0 mg) were isolated. The chemical structures are
shown in Figure 2.
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Compound 3 (betulin) was identified by its characteristic 1H NMR (400 MHz; CDCl3)
δ: 1.57, 1.27 (2H, s, H-1), 1.70 (2H, s, H-2), 3.21 (2H, dd, H-2), 0.96 (1H, s, H-5), 1.38 (2H, s,
H-6), 1.57, 1.38 (2H, s, H-7), 1.38 (2H, s, H-11), 1.38 (2H, s, H-12), 1.57, 1.27 (2H, s, H-15),
1.57, 1.27 (2H, s, H-16), 1.92 (1H, m, H-19), 1.57, 1.27 (2H, s, H-21), 1.57, 1.27 (2H, s, H-22),
0.78 (3H, s, H-24), 0.81 (3H, s, H-25), 0.96 (3H, s, H-23), 0.99 (3H, s, H-27), 1.05 (3H, s, H-26),
1.70 (3H, s, H-30), 3.20 (d, H-28a), 3.65 (d, H-28b), 4.58 (dd, H-29a), 4.71 (d, H-29b). 13C
NMR (CDCl3) δ: 38.73 (C-1), 27.41 (C-2), 79.01 (C-3), 38.73 (C-4), 55.32 (C-5), 18.34 (C-6),
34.30 (C-7), 40.84 (C-8), 50.45 (C-9), 37.18 (C-10), 20.95 (C-11), 25.15 (C-12), 37.18 (C-13),
42.84 (C-14), 27.41 (C-15), 29.39 (C-16), 47.99 (C-17,C-19), 48.31 (C-18), 150.94 (C-20), 29.73
(C-21), 33.30 (C-22), 28.01 (C-23), 15.40 (C-24), 16.14 (C-25), 15.99 (C-26), 14.57 (C-27), 63.67
(C-28), 109.36 (C-29), 16.00 (C-30) (Figures S7–S14), all in agreement with values in the
literature [39,43]. The melting point of compound 3 was 248–250 ◦C.

For compound 4 (m.p.175–177 ◦C, optical rotation [α]D +17.2◦), a detailed analysis of
the NMR data led to the proposed structure, confirmed by the analysis of the spectra and
comparison of the NMR resonances (Figures S15–S18) with the literature data summarized
in the Table 4 [40].

Table 4. Spectral data of 1H NMR and 13C NMR of (+)-catechin (4) in MeOD and chemical structures
of the molecules.

No. 13C NMR Ref. 13C NMR 1H NMR

2 82.9 83.0 4.59 (d, J = 7.44 Hz)
3 68.9 68.9 4.00 (q, J = 8.2 Hz)

4 28.6 28.6 2.88 (dd, J = 16.12, 5.36 Hz)
2.52 (dd, J = 16.08, 8.08 Hz)

5 157.6 157.7
6 96.5 96.4 5.89 (d, J = 2.3 Hz)
7 157.9 157.9
8 95.7 95.6 5.96 (d, J = 2.3 Hz)
9 157.0 157.0

10 101.0 100.9
1′ 132.3 132.3
2′ 115.4 115.4 6.86 (d, J = 1.96 Hz)
3′ 146.3 146.4
4′ 146.3 146.3
5′ 116.3 116.2 6.78 (d, J = 8.16 Hz)
6′ 120.2 120.2 6.74 (dd, J = 8.16, 2.0 Hz)
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2.3.2. Identification of the Isolated Compounds from Fruits of Rosa beggeriana Schrenk

β-sitosterol (2), lupeol (5), ethyl linoleate (6), and ethyl linolenoate (7) were isolated
from the ethanol extract (35 g) of Rosa beggeriana Schrenk (400 g). The chemical structures
are shown in Figure 3.
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Compound (2) was identified as β-sitosterol (Figures S5 and S6) according to the
literature [44,45].

Lupeol (5) (m.p. 215–218◦C): (Figures S19–S21) 1H NMR (CDCl3) δ: 0.77 (3H, s, H-24),
0.80 (3H, s, H-28), 0.84 (3H, s, H-25), 0.96 (3H, s, H-23), 0.98 (3H, s, H-27), 1.04 (3H, s, H-26),
1.69 (3H, s, H-30), 4.58 (1H, s, H-29a), 4.70 (1H, s, H-29b). 3.19 (1H, dd, H-3); 13C NMR
(CDCl3, 400 MHz): δ 150.92 (C-20), 109.37 (C-29), 78.99 (C-3), 55.32 (C-5), 50.45 (C-9), 48.31
(C-18), 47.99 (C-19), 43.01 (C-17), 42.84 (C-14), 40.84 (C-8), 40.02 (C-22), 38.87 (C-13), 38.73
(C-4), 38.06 (C-1), 37.18 (C-10), 35.60 (C-16), 34.30 (C-7), 29.86 (C-21), 28.01 (C-23), 27.46
(C-15), 27.40 (C-12), 25.15 (C-2), 20.95 (C-11), 19.33 (C-30), 18.34 (C-6), 18.03 (C-28), 16.14
(C-25), 16.00 (C-26), 15.40 (C-24), 14.57 (C-27) [39,41,46,47]. Optical rotation [α]D +27.1◦.

The analysis of the NMR spectra (Figures S22–S28) and the comparison of the spectro-
scopic data with those described in the literature allowed the identification of the mixture
of two fatty acids known as ethyl linoleate (6) and ethyl linolenoate (7), and GC-MS helped
to verify the accuracy of our assumptions. 1H NMR (CDCl3) δ: 2.30 (2H, t, H-2), 1.63
(2H, t, H-3), 1.35 (14H, s, H-4, 5, 6, 7, 15, 16, 17), 2.07 (4H, m, H-8, 14), 5.41— 5.30 (4H,
m, H-9, 10, 12, 13), 2.77 (2H, t, J_7.0 Hz, H-11), 5.37 (4H, m, H-9, 10, 12, 13), 4.14 (2H, m,
–OCH2–), 0.90 (3H, t, H-18) 1.26 (3H, m, H-20). 13C NMR: 174.06 (C-1), 33.76 (C-2) 25.21
(C-3) 26.84(C-4) 29.32 (C-5) 29.45 (C-6) 29.45 (C-7) 27.84 (C-8) 131.36(C-9) 129.49 (C-10) 25.81
(C-11) 129.56(C-12) 129.69 (C-13), 28.81(C-14) 29.45 (C-15) 31.74 (C-16) 22.40 (C-17) 59.97
(–OCH2–) 13.24 (C-18) 14.35 (C-20) [48].

3. Discussion
3.1. GC-MS Data

The GC-MS analysis uncovered a heterogeneous chemical composition encompassing
various classes of volatile compounds, which has been meticulously documented and
organized in Tables 1 and 2. Considering the paucity of scholarly investigations on the
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phytochemical composition of R. beggeriana, the GC-MS data were juxtaposed with data
obtained from other species belonging to the Rosa genus, as cited in [49–52]. The compara-
tive analysis of compositions, specifically the leaves and fruits, revealed a higher degree of
complexity in the composition of the latter. It is noteworthy that this study represents the
inaugural examination of the fatty acids’ profiles pertaining to this plant species.

Table 1 presents the GC-MS data in the analysis of fractions L-2-1, L-2-11, L-2-27,
CH-21, CH-39, and HIJK obtained from leaves of R. beggeriana. The richest one was L-2-11—
n-hexane/ethyl acetate fraction (6/4).

The composition of leaves was found to include various compounds such as ter-
penoids, specifically (-)-aristolene, as well as phytosterols like stigmastan-3,5-diene. Ad-
ditionally, saturated and unsaturated fatty acids, along with their corresponding esters,
were identified. The majority of the fatty acids detected exhibited unsaturation, includ-
ing 9-hexadecenoic acid methyl ester (Z)-, 9,12-octadecadienoic acid (Z,Z)-methyl ester,
9,12,15-octadecatrienoic acid methyl ester (Z,Z,Z)-, methyl linoleate, methyl linolenate,
methyl elaidate, 9-octadecenoic acid methyl ester (E)-, 9-octadecenoic acid (Z)- methyl ester,
9,12,15-octadecatrienoic acid (Z,Z,Z)-, and cis-13-eicosenoic acid methyl ester.

The GC-MS data obtained from the analysis of ethanol extract (B) and various fractions
(B-1, B-2, B-3, B-4, B-5, B-DCM, B-M1-16, B-M2-18, 26-A, 26-S8) derived from R. beggeriana
fruits are presented in Table 2. Among these fractions, the most abundant one was B-4,
which corresponded to the chloroform/ethyl acetate fraction with a ratio of 1:1.

The fruits of the plant exhibited a comprehensive array of both saturated and unsatu-
rated fatty acids, along with their respective esters. Moreover, several additional fatty acids
were identified, including myristic acid, palmitic acid, palmitoleic acid, ethyl linoleate,
(e)-9-octadecenoic acid ethyl ester, ethyl oleate, alpha-linolenic acid, 11-octadecenoic acid
(z)-, 11-octadecenoic acid (e)-, oleic acid (z)-, stearic acid, 9,12-octadecadienoic acid (z,z)-,
and 2-hydroxy-1-(hydroxymethyl)ethyl ester. The abundance of unsaturated fatty acids in
the composition of the fruits holds significant potential for application in the food industry.

In addition, the fruits were found to encompass phytosterols such as beta-sitosterol,
gamma-sitosterol, stigmastan-3,5-diene, gamma-tocopherol, and lupeol.

Upon comprehensive analysis of the collective findings presented in Tables 2 and 3, it
becomes evident that both the leaves and fruits of R. beggeriana exhibited a substantial abun-
dance of saturated and unsaturated acids, terpenoids, and various other substances. These
results collectively indicate a highly diverse and rich composition within the examined
plant components.

3.2. Isolation and Identification of Individual Compounds

Identification of the isolated compounds (1–5) was based on spectroscopic analyses
(1H, DEPTQ, DEPT135, 13C NMR) compared with the data published in the literature.

In this study, the presence of 3β,23-dihydroxyurs-12-ene (compound 1—white and
crystalline) in the leaves of R. beggeriana was established and confirmed using NMR data
analysis, coupled with relevant literature sources [35–37]. A structurally similar compound,
3β,24-dihydroxyurs-12-ene, had been previously isolated from Protium heptaphyllum. By
comparing the 1H- and 13C-NMR spectra of the two compounds, it was observed that
all peaks were identical, except for those corresponding to C-23 and C-24. For 3β,23-
dihydroxyurs-12-ene, the chemical shifts for C-23 and C-24 were 63.0 and 15.6 ppm, re-
spectively, whereas for 3β,24-dihydroxyurs-12-ene, these values were reversed [35]. The
presence of an oxygen moiety at C-23 in 3β,23-dihydroxyurs-12-ene was deduced based on
the chemical shift at 63.0 ppm. The 1H-NMR spectrum displayed signals corresponding
to seven methyl groups: 1.25 (H-24), 0.98 (H-25), 1.02 (H-26), 1.08 (H-27), 0.81 (H-28), 0.80
(H-29), and 0.81 (H-30). The 13C-NMR spectrum exhibited two peaks at 124.4 (C-12) and
139.5 (C-13), indicating the presence of a double bond in the ring. Overall, the number of
observed peaks suggested the presence of 30 carbon atoms in compound 1. Importantly,
this study represents the first isolation of 3β,23-dihydroxyurs-12-ene from the Rosa genus.
Compound 1 was further compared to 3β,28-dihydroxyurs-12-ene, which contained a
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-CH2OH group at the 28th carbon atom, resulting in a chemical shift of 69.20 ppm. Consis-
tent correlations were observed in the 1H-NMR spectra, supporting the structural analysis.
High-resolution mass spectrometry (HR MS), as depicted in Figure S4, furnishes valuable
insights pertaining to the molecular attributes of the compound under investigation. Specif-
ically, it elucidated a molecular weight of 442 m/z, thereby affording a comprehensive
breakdown of constituent particles within this compound. For instance, it is reasonable to
deduce the presence of two highly mobile hydrogen atoms (m/z 440). Furthermore, the
observation of protonation events at 424 [M + H2O]+ and 406 [M + H2O]+ suggests the
existence of two hydroxyl (-OH) groups.

In addition, the HR MS data imitate the potential stability of a fragment with an m/z
value of 273, indicative of a cleavage point that partitions the molecule into two relatively
stable subunits. Moreover, the ensuing particles predominantly originated from the cleav-
age of the molecule at the central region of its third ring, yielding fragments with m/z
values of 133, 189, 203, and 234. These findings contribute to a more intricate understanding
of the compound’s structural composition and fragmentation pattern. Notably, structurally
related compounds (although not identical) [37,43,53,54] have been identified within the
Rosa family, specifically in the fruits of R. multiflora and the roots of R. taiwanensis, and have
been associated with anti-inflammatory activity. Based on the available data, it is plausible
to postulate that 3β,23-dihydroxyurs-12-ene may possess similar activities to those of the
structurally related compounds mentioned earlier. However, further investigation and ex-
perimental studies are necessary to validate and ascertain its potential biological activities.
This compound have potential for use in medicine because there many studies of almost
structurally identical compounds that have different types of activities [37,55,56].

Betulin (3) and (+)-catechin (4) have been identified in various Rosa species, present
not only in leaves, but also in the roots, stems, with (+)-catechin present in the fruits and
flowers [43,57–59]. The identification of compound 3 (betulin—solid and white crystalline)
was accomplished through the analysis of its characteristic 1H NMR (400 MHz; CDCl3)
and 13C NMR (CDCl3) spectra. The carbon peaks were meticulously examined, reveal-
ing the presence of 30 carbon atoms in this compound. Utilizing the DEPT135 method,
it was determined that betulin comprises 12 -CH2 groups, 5 unhydrolyzed carbons (be-
cause we can see them in 13C NMR spectra but not there), 13 -CH3 and/or -CH groups,
two oxygenated carbons (63.06 and 79.01), and one double bond (109.35). Proton magnetic
resonance spectra further confirmed these structural features. Specifically, the 1H NMR
spectra exhibited signals corresponding to six methyl groups: 0.78 (3H, s, H-24), 0.81 (3H,
s, H-25), 0.96 (3H, s, H-23), 0.99 (3H, s, H-27), 1.05 (3H, s, H-26), and 1.70 (3H, s, H-30).
Additionally, signals of methylene groups were observed at 1.57, 1.27 (2H, s, H-1), 1.70
(2H, s, H-2), 3.21 (2H, dd, H-2), 1.38 (2H, s, H-6), 1.57, 1.38 (2H, s, H-7), 1.38 (2H, s, H-11),
1.38 (2H, s, H-12), 1.57, 1.27 (2H, s, H-15), 1.57, 1.27 (2H, s, H-16), 1.57, 1.27 (2H, s, H-21),
1.57, and 1.27 (2H, s, H-22). Based on the data presented in Figures S10–S14, encompass-
ing 2D nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry
(GC-MS) spectra, it is discernible that compound 3 corresponds to betulin. The GC-MS
spectra provides essential information such as the retention time and molecular weight
of this compound. Additionally, compound (+)-catechin (4) has been identified through a
combination of NMR analysis, which was previously elucidated, and mass spectrometry.
The mass spectra of compound 4 exhibited a discernible molecular weight of approximately
290 units. This determination is in accordance with our NMR-based assumption of it being
catechin. Notably, the mass spectra also revealed distinct ions with molecular weights
of 110, 138, and 55 units. These observations are congruent with the structural features
of catechin, particularly with regard to the presence of vulnerable chemical bonds in its
structure. Betulin was isolated from the roots of Rosa taiwanensis [43], and catechin was
reported in the roots of R. taiwanensis [43], rosehips of Rosa canina [57,58]. Notably, betulin
was reported to have anti-inflammatory and anticancer properties [60]. The structural
identification of (+)-catechin (4) was established based on the analyses of the 1H NMR,
DEPT135, and 13C NMR signals.
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The NMR data of β-sitosterol (2) were subjected to a comprehensive comparison with
relevant literature data [44,45,61].

Lupeol (5) is a triterpenoid that was found in the fruits of R. beggeriana and identified
through comparison with NMR data from the literature data [39,46,47]. R. rugosa was also
reported to have lupeol [62]. Using carbon nuclear magnetic resonance, it was found that
the compound had 30 carbon atoms, 10 of which were methylene groups. The presence of
a hydroxyl group and a double bond due to the presence of a shift was also established.
Also, thanks to proton magnetic resonance, it was possible to establish the structure by
calculating the number and area of peaks.

Ethyl linoleate (6) and ethyl linolenoate (7) were isolated together, and structure was
elucidated by GC-MS data (Figures S21 and S22) and NMR, which were compared to
literature [48].

Regardless of the precise study of several species, like R. canina, R. rugosa, and others,
there are many species in the Rosa genus with minimal data. Many species of the Rosa family
grow in diverse conditions, hence they can have different chemical composition [1,4,5].

4. Materials and Methods
4.1. Plant Material

The plant was harvested at a 23–25 ◦C temperature near Ili River and in the Almaty
oblast N44◦79.3959, E76◦29.8245 in September 2021, by a biologist employee of the Botanical
Garden in Almaty, Madina Ramazanova. Then, the plant was dried in the drying cabinet at
35 ◦C for 6 h and 48 h at room temperature, And it was deposited at the herbarium collection
at the Institute of Botany and Phytointroduction of the Ministry of Higher Education and
Science, Almaty, Kazakhstan (0002540).

4.2. General Experimental Procedures

Solvents used in this work, n-hexane, chloroform, dichloromethane (DCM), ethyl
acetate (EtOAc), methanol (MeOH), and ethanol (EtOH), were purchased from Fisher
Scientific, Waltham, MA USA. Deuterated solvents (Sigma-Aldrich, Darmstadt, Germany),
including methanol (MeOD) and chloroform (CDCl3), were used for nuclear magnetic
resonance (NMR) spectroscopic analyses. Column chromatography (CC) was performed
using silica gel 60 (0.063–0.200 mm; Merck, Darmstadt, Germany) or Sephadex LH-20
(0.25–0.1 mm, GE Healthcare, Cytiva, Sweden). Vacuum liquid chromatography column
(VLC) (diameter 15 cm × length 30 cm, 300 g) at room temperature was used to isolate
substances from five main fractions. Thin-layer chromatography (TLC) analyses were
carried out using pre-coated silica G plates w/UV254 (20 cm × 20 cm, 200 µm in thickness;
Sorbent Technologies, Norcross, GA, USA). An ultraviolet lamp (UVP, LLC, Spectroline,
Westbury, NY, USA) was used for the visualization of spots on thin-layer chromatograms
at 254 and/or 365 nm. Spots were visualized by spraying with 2% vanillin–sulfuric acid
in ethanol followed by heating at 110 ◦C on a hot plate. Moreover, 1H, DEPT135, DEPTQ
and 13C NMR spectra were recorded on a Bruker Avance 400 MHz instrument (Bruker,
MA, USA). An LTQ Orbitrap XL mass spectrometer (Agilent Technologies, Santa Clara, CA,
USA) was used for high-resolution-electrospray ionization-mass spectrum (HR-ESI-MS).
The GC-MS analysis was performed with a Agilent 7890A gas chromatograph (Agilent
Technologies, Santa Clara, CA, USA) coupled with an Agilent 5975C single quadrupole
mass spectrometer (Agilent Technologies, Santa Clara, CA, USA).

4.3. Extraction and Isolation
4.3.1. Extraction and Isolation of Leaves

The air-dried leaves (553.0 g) were macerated with ethanol 95% (1.5 L × 3 times) at
room temperature. The ethanol extracts were combined, and the solvent was distilled
under reduced pressure at low temperature to afford a 10.0 g yield.

The ethanol extract was processed using vacuum liquid chromatographic techniques
with silica gel in a column (600 g, 0.063–0.200 mm; Merck, Darmstadt, Germany). The
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extract was eluted using a gradient system with n-hexane, DCM, ethyl acetate, and ethanol,
with growing polarity as a mobile phase starting with 100% n-hexane and ending with
100% methanol, and 5 fractions were obtained. Fractions were grouped depending on
their chemical similarity and monitored using thin-layer chromatography and concentrated
using a rotary evaporator. The obtained fractions were L-F1 (1.35 g), L-F2 (0.56 g), L-F3
(0.74 g), L-F4 (1.85 g), and L-F5 (2.37 g).

L-F1, L-F2, and L-F3 were concentrated together to fraction L-F1 according to similar
spots on TLC. L-F4 and L-F5 was collected to fraction L-F2. Then, each fraction was
separated using chromatographic fractionation in a glass column with silica gel 60 (200 g,
0.063–0.200 mm; Merck, Darmstadt, Germany) and Sephadex LH-20 (Lipophilic, 25–100 µm,
Sigma). The mobile phase was n-hexane and ethyl acetate, and 12 fractions were obtained.

Some fractions that were isolated from fractions L-F1 and L-F2 were studied by GC-
MS. To analyze fatty acids by GC-MS, it was prepared by refluxing 20 mg of the isolated
fractions with 20 mL CH3OH and 2 mL H2SO4 for 4 h.

4.3.2. Extraction and Isolation of Fruits

The air-dried fruits (400.0 g) were macerated with ethanol 95% (1.5 L ×3 times) at
room temperature. The ethanol extracts were combined, and the solvent was distilled
under reduced pressure at low temperature to afford a 15.0 g yield.

The ethanol extract was processed using vacuum liquid chromatographic techniques
with silica gel premium-grade C18 (40–63 µm; 60Å; Sorbtech, Norcross GA, USA) in a
column. The extract was eluted using a gradient system with DCM, methanol, and water,
with decreasing polarity as a mobile phase starting with 100% water and ending with 100%
DCM, and 6 fractions were obtained.

Fractions were grouped depending on their chemical similarity and monitored using
thin-layer chromatography and concentrated using a rotary evaporator. The obtained
fractions were B-F1 (2.32 g), B-F2 (2.56 g), B-F3 (2.15 g), B-F4 (1.85 g), and B-F5 (1.37 g).

Subsequently, the fractions were separated on Sephadex LH-20 (0.25–0.1 mm, GE
Healthcare, Sweden) using methanol as the eluent. As a result, compounds 2, 5, 6, and 7
were obtained.

Some fractions that were isolated from fractions B-F1, B-F2, B-F3, B-F4, and B-F5 were
studied by GC-MS. To analyze fatty acids by GC-MS, it was prepared by refluxing 20 mg of
the isolated fractions with 20 mL CH3OH and 2 mL H2SO4 for 4 h.

5. Conclusions

Previously, this type of rosehip (Rosa beggeriana Schrenk) had not been studied in
terms of chemical composition, hence there are no articles on isolated compounds from this
plant. However, there are many research articles about species from the genus Rosa, which
are very well known in traditional medicine. The fractionation of Rosa beggeriana Schrenk
leaves and fruits resulted in the isolation and structural elucidation of seven compounds,
including phytosterol, triterpenoids, polyphenol, and mixture of fatty acids. β-sitosterol
(2), betulin (3), (+)-catechin (4), lupeol (5), ethyl linoleate (6) have already been isolated
from the genus Rosa but not from Rosa beggeriana Schrenk. And compounds like 3β,23-
dihydroxyurs-12-ene (1) and ethyl linolenoate (7) were isolated for the first time for both
Rosa and Rosa beggeriana Schrenk.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants12183297/s1, Figure S1: 1H NMR spectrum of 3β,23-
Dihydroxyurs-12-ene (1); Figure S2: DEPT135 NMR spectrum of 3β,23-Dihydroxyurs-12-ene (1);
Figure S3: 13C NMR spectrum of 3β,23-Dihydroxyurs-12-ene (1); Figure S4: Mass spectrum of
3β,23-Dihydroxyurs-12-ene (1); Figure S5: 1H NMR spectrum of β-sitosterol (2); Figure S6: DEPTQ
NMR spectrum of β-sitosterol (2); Figure S7: 1H NMR spectrum of Betulin (2); Figure S8: DEPT135
NMR spectrum of Betulin (2); Figure S9: 13C NMR spectrum of Betulin (2); Figure S10: HSQC NMR
spectrum of Betulin (2); Figure S11: HSQC NMR spectrum of Betulin (2); Figure S12: HSQC NMR
spectrum of Betulin (2); Figure S13: HSQC NMR spectrum of Betulin (2); Figure S14: GC-MS spectrum
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of Betulin (2); Figure S15: 1H NMR spectrum of (+)-Catechin (3); Figure S16: DEPT NMR spectrum
(+)-Catechin (3); Figure S17: 13C NMR spectrum of (+)-Catechin (3); Figure S18: Mass spectrum of
(+)-Catechin (3); Figure S19: 1H NMR spectrum of Lupeol (4); Figure S20: DEPT135 NMR spectrum of
Lupeol (4); Figure S21: GC-MS Data of Lupeol (4); Figure S22: 1H NMR spectrum of Ehyl linoleate (5)
and Ethyl linolenoate (6); Figure S23: 1H NMR spectrum of Ehyl linoleate (5) and Ethyl linolenoate
(6); Figure S24: DEPT135 NMR spectrum of Ehyl linoleate (5) and Ethyl linolenoate (6); Figure S25:
13C NMR spectrum of Ehyl linoleate (5) and Ethyl linolenoate (6); Figure S26: GC-MS Data of Ethyl
linoleate (5) and Ethyl linolenoate (6); Figure S27: GC-MS Data of Ethyl linolenoate(6); Figure S28:
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