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Abstract: Numerous factors can impact the efficiency of callus formation and in vitro regeneration in
wheat cultures through the introduction of exogenous polyamines (PAs). The present study aimed
to investigate in vitro plant regeneration and DNA methylation patterns utilizing the inter-primer
binding site (iPBS) retrotransposon and coupled restriction enzyme digestion–iPBS (CRED–iPBS)
methods in wheat. This investigation involved the application of distinct types of PAs (Put: pu-
trescine, Spd: spermidine, and Spm: spermine) at varying concentrations (0, 0.5, 1, and 1.5 mM). The
subsequent outcomes were subjected to predictive modeling using diverse machine learning (ML)
algorithms. Based on the specific polyamine type and concentration utilized, the results indicated
that 1 mM Put and Spd were the most favorable PAs for supporting endosperm-associated mature
embryos. Employing an epigenetic approach, Put at concentrations of 0.5 and 1.5 mM exhibited the
highest levels of genomic template stability (GTS) (73.9%). Elevated Spd levels correlated with DNA
hypermethylation while reduced Spm levels were linked to DNA hypomethylation. The in vitro and
epigenetic characteristics were predicted using ML techniques such as the support vector machine
(SVM), extreme gradient boosting (XGBoost), and random forest (RF) models. These models were
employed to establish relationships between input variables (PAs, concentration, GTS rates, Msp
I polymorphism, and Hpa II polymorphism) and output parameters (in vitro measurements). This
comparative analysis aimed to evaluate the performance of the models and interpret the generated
data. The outcomes demonstrated that the XGBoost method exhibited the highest performance
scores for callus induction (CI%), regeneration efficiency (RE), and the number of plantlets (NP),
with R2 scores explaining 38.3%, 73.8%, and 85.3% of the variances, respectively. Additionally, the
RF algorithm explained 41.5% of the total variance and showcased superior efficacy in terms of
embryogenic callus induction (ECI%). Furthermore, the SVM model, which provided the most robust
statistics for responding embryogenic calluses (RECs%), yielded an R2 value of 84.1%, signifying its
ability to account for a substantial portion of the total variance present in the data. In summary, this
study exemplifies the application of diverse ML models to the cultivation of mature wheat embryos
in the presence of various exogenous PAs and concentrations. Additionally, it explores the impact
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of polymorphic variations in the CRED–iPBS profile and DNA methylation on epigenetic changes,
thereby contributing to a comprehensive understanding of these regulatory mechanisms.

Keywords: DNA methylation; genomic template stability; iPBS; machine learning

1. Introduction

Polyamines (PAs), possessing elevated biological activity, constitute a class of low
molecular weight aliphatic nitrogenous organic compounds harboring two or more amino
groups [1]. Among these, putrescine (Put), spermine (Spm), and spermidine (Spd) stand as
the most prevalent forms of polyamines. Their significance is underscored by their pivotal
roles in an array of biological processes, encompassing tissue growth, cell division, cell
differentiation, and programmed cell death [2]. Furthermore, polyamines exhibit notable
involvement in responding to both biotic and abiotic stresses [3], which constitute just a
fragment of their multifaceted physiological functions. Of specific note is their pronounced
impact on somatic embryogenesis across diverse plant species [4]. Recent investigations
have illuminated the pivotal role of polyamine metabolism in the context of somatic
embryogenesis within wheat. Notably, the collective balance of endogenous polyamine
levels and the ratios among individual polyamine species have been identified as critical
factors during the initial phases of somatic embryogenesis [5,6]. To engineer a triumphant
in vitro regeneration strategy, meticulous modulation of input parameters within plant
tissue culture becomes imperative [7]. Following the induction of callus formation, the
subsequent phase of regeneration establishment emerges as a pivotal stride in realizing the
ultimate success of plant tissue culture endeavors. Deeper insights into the intricacies of
callus induction and the subsequent regeneration process are attainable through the adept
application of plant tissue culture methodologies.

Profoundly dynamic processes, referred to as epigenetic mechanisms, intricately or-
chestrate the regulation of gene expression. The comprehensive analysis of the epigenetic
landscape within plant cell cultures assumes increasing significance, particularly as more
sophisticated and potent epigenetic analysis technologies become accessible, spanning
a wider array of plant species [8]. In the realm of plant biology, the spectrum of epi-
genetic variations encompasses diverse phenomena, such as point mutations, deletions,
transposable element activations, rearrangements, and changes in ploidy [9,10], as well
as alterations to the DNA structure itself [11]. Various molecular markers, including
single nucleotide polymorphisms (SNPs), microsatellites (SSRs), simple sequence repeat
polymorphisms (ISSRs), fragment length polymorphisms (RFLPs), and random amplified
polymorphic DNA (RAPD) markers [12], alongside the inter-primer binding site (iPBS)
retrotransposon [13,14], are currently harnessed for detecting polymorphic states and
DNA methylation patterns [15–18]. Within the context of epigenetic modulation, DNA
methylation emerges as a pivotal process, universally governing gene expression and the
repression of transposable elements. This process involves the addition of a methyl group
to the fifth position of cytosine. Remarkably, DNA methylation stands as an inheritable
yet reversible phenomenon, as the methyl group can be enzymatically removed. A pivotal
method in the precise investigation of DNA methylation in plants is the coupled restriction
enzyme digestion (CRED) technique [14]. Through the CRED methodology, DNA profiling
is facilitated utilizing an ensemble of molecular markers. Furthermore, the integration
of linked restriction enzyme digestion and inter-primer binding site analysis, known as
CRED–iPBS, stands as an indispensable approach for investigating the methylation status
of plant genes. This technique discerns alterations in cytosine methylation patterns within
plant genomes that arise due to environmental stressors [19]. A plethora of studies have
collectively elucidated the multifaceted roles of polyamines. These include safeguarding
DNA replication from oxidative damage, stimulating DNA and RNA biosynthesis [20],
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and more intriguingly, selectively modulating cytosine DNA methylation through intricate
interactions and binding mechanisms [21].

The utilization of diverse machine learning (ML) algorithm models within the domain
of plant biotechnology stands as a recent and burgeoning area of exploration aimed at
predicting and optimizing variables within intricate biological systems [22,23]. ML serves
as a paradigm of data science that confronts intricate challenges spanning diverse scientific
disciplines. This approach surpasses conventional unidirectional analyses, facilitating a
nuanced comprehension and precise interpretation of results [24]. The application of ML
has thus far demonstrated successful outcomes across various domains of plant science,
encompassing in vitro germination [22,24], regeneration studies [22,25–28], in vitro mutage-
nesis [29], and more. In the landscape of ML algorithms, diverse models rooted in artificial
intelligence principles, coupled with an array of performance metrics, are harnessed to
validate predicted outcomes. Among these models, the support vector machine (SVM)
emerges as a widely adopted machine learning algorithm, adeptly addressing both classifi-
cation and regression tasks [30]. The random forest (RF) algorithm, an ensemble learning
methodology, orchestrates the amalgamation of numerous decision trees [31]. Likewise, XG-
Boost, renowned for extreme gradient boosting, epitomizes a gradient-boosting technique
applicable to the realms of both classification and regression tasks [32]. The current era is
witnessing a confluence of advanced computational techniques with plant biotechnology,
offering novel avenues for insights into intricate biological phenomena and the prospect of
refining interventions within this complex domain.

Contemporary investigations across a spectrum of plant species necessitate the incor-
poration of current insights into in vitro plant tissue culture technologies and the intricate
tapestry of epigenetic variations. Grasping the intricate ramifications of diverse hormones,
such as auxins and cytokinins, along with polyamines, within the context of plant tissue
culture and DNA methylation, particularly in the paradigm of wheat tissue culture, is a
formidable undertaking. The formulation of informed decisions based on scientific find-
ings in this context constitutes a challenging endeavor. This challenge, however, can be
mitigated through the strategic implementation of diverse models and algorithms, thereby
elevating the precision and accuracy of predictive assessments. The application of math-
ematical frameworks and artificial intelligence-based models under in vitro conditions,
with a focus on comprehending the intricate dynamic of callus induction, regeneration
efficiency, and the DNA methylation process, remains conspicuously constrained within the
scope of wheat. The objectives of this study were: (1) to investigate the effects of different
PAs on in vitro regeneration; (2) to detect changes in DNA methylation using the CRED
method applied to iPBS markers; and (3) to statistically analyze and then validate the data
through supervised machine learning modeling of in vitro regeneration and wheat DNA
methylation in different PAs.

2. Results
2.1. In Vitro Parameters

Plant tissue culture research requires the efficient development of in vitro conditions.
Polyamines (PAs) are a class of naturally occurring chemical compounds that play an
important role in cell growth and development and in the stress response to a wide range
of environmental stresses. The results of the analysis of variance showed that the main
effect of the type and concentration of PAs was significant for all parameters evaluated
(Table 1). Although callus induction from endosperm-assisted maturation began almost
simultaneously for all types of PAs, the rate of callus induction was most significant for Put
concentrations of 0.5 and 1 mM. The highest callus induction was observed in Murashige
and Skoog (MS) medium supplemented with Put 1 mM (97.50%), while the lowest callus
induction occurred in medium containing Spm 1 mM (83.75%). Callus induction ranged
from 87.50% to 93.75% depending on different types and concentrations of polyamine.
Moreover, the callus induction rate decreased with increasing polyamine concentrations.
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The most suitable concentrations for callus induction were 0.5 mM and 1 mM for Put and
Spd (Table 1).

Table 1. Callus induction (CI) (%), embryogenic callus induction (ECI) (%), responsive embryogenic
callus (REC) (%), regeneration efficiency (RE), and plantlet number (PN) (number) responses to
different polyamine types and their concentrations.

Polyamine Types Concentration (mM) CI% 1 ECI% 2 REC% 3 RE 4 PN 5

Putrescine (Put)

0 92.50 abcd 6 77.50 bcd 77.50 ab 1.15 abc 7.75 b

0.5 95.00 ab 79.30 bcd 89.30 a 1.14 abc 8.50 b

1 97.50 a 91.80 ab 65.00 bc 1.17 abc 12.25 a

1.5 90.00 bcde 85.00 abcd 50.60 cde 1.29 ab 3.00 de

Means 93.75 A 83.43 A 70.62 A 1.19 A 7.87 A

Spermidine (Spd)

0 92.50 abcd 77.50 bcd 77.50 ab 1.15 abc 7.75 b

0.5 93.75 abc 77.50 bcd 82.50 a 0.95 c 8.75 b

1 92.50 abcd 87.50 abc 92.50 a 1.09 bc 12.00 a

1.5 92.50 abcd 100.00 a 57.50 cd 1.07 bc 2.50 e

Means 92.812 A 85.62 A 77.50 A 1.07 AB 7.75 A

Spermine (Spm)

0 92.50 abcd 77.50 bcd 77.50 ab 1.15 abc 7.75 b

0.5 87.50 cde 67.50 d 47.50 de 1.01 bc 5.25 c

1 83.75 e 70.00 cd 45.00 de 1.40 a 4.50 cd

1.5 86.25 de 67.50 d 35.00 e 0.37 d 2.00 e

Means 87.50 B 70.625 B 51.25 B 0.98 B 4.87 B

Mean square of polyamine (P) 181.77 ** 1050.52 ** 2964.58 ** 0.17 ** 46.08 **
The mean square of concentration (C) 19.96 ns 241.84 ns 2076.04 ** 0.22 ** 110.5 **
The mean square of P×C 38.71 ns 235.59 ns 619.79 ** 0.29 ** 15.91 **

** significant at p ≤ 0.01, ns non-significant at p ≥ 0.05. 2 The means of columns, rows, and factors all beginning
with the same letter do not vary statistically (p > 0.05). 1 (Callus number/explant number) × 100. 2 (Embryogenic
callus number/explant number) × 100. 3 (Responded embryogenic callus number/explant number) × 100.
4 (Number of Regenerated Plants/Number of RECs. 5 (number of regenerating plants from each explant). 6 Upper
and lower-case letters denote items of importance.

The induction of embryogenic callus under the influence of different polyamine types
and concentrations is shown in Table 1. According to the data obtained, the highest
induction embryogenic callus (100.00%) in MS medium was obtained with Spd 1.5 mM
treatment. As the concentrations of Put and Spd media increased, the rate of embryogenic
callus also increased. However, there was a decrease in the embryogenic callus rate with
Spm compared to the control group.

A plant’s ability to develop embryogenic callus is linked to its ability to regenerate.
However, not all embryos and embryogenic calluses will develop into fully functional,
regenerating plants. Therefore, we identified embryogenic calluses that gave rise to roots
and shoots as responsive embryogenic calluses (RECs) and calculated RE. Spd type and
concentration were more effective than Put and Spm for RECs. The lowest REC was 35% at
an Spm concentration of 1.5 mM (Table 1).

The number of regenerated plants per explant (RE) under different types and concen-
trations of polyamine ranged from 0.98 to 1.19. The highest RE was observed with a Put
treatment of 1.5 mM (1.29). The lowest RE value was obtained with Spm 1.5 mM treatment
(0.37). Increasing polyamine concentration led to an increase in Put treatment, while Spm
treatment led to a decrease. In the interaction between polyamine type and concentra-
tion, Put and Spd were the most effective polyamines in wheat endosperm-assisted plant
regeneration through mature culture (Table 1).

The average count of regenerated plants manifested discernible responsiveness to the
interplay of polyamine types and concentrations. The calculated average tally of regener-
ated plants per explant exhibited a spectrum spanning from 2.0 to 12.25, contingent upon
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the distinct polyamine types and their corresponding concentrations. Notably, among the
diverse polyamines investigated, the culture medium supplemented with 1 mM putrescine
yielded the most pronounced effect, yielding the highest mean count of regenerated plants
per explant, at 12.25. The observed variance in the mean count of regenerated plants was
primarily governed by the diverse concentrations of polyamines. Specifically, the regimen
featuring 1.5 mM spermine registered the lowest mean regeneration efficiency, with a count
of 2.0 plants per explant. Upon meticulous scrutiny of the data, it becomes evident that a
reduction in the concentrations of polyamines engenders an augmentation in the count of
regenerated plants, as delineated in Table 1.

2.2. iPBS Analysis

A multitude of fundamental cellular processes, including, but not limited to, DNA
replication, transcription, translation, cell proliferation, modulation of enzyme activity,
maintenance of cellular cation balance, and preservation of membrane integrity, fall under
the regulatory purview of polyamines (PAs). Within the realm of this investigation, the
intricate genetic and epigenetic ramifications ensuing from the application of diverse
polyamine types and concentrations within wheat plants were systematically elucidated
through the employment of iPBS and CRED–iPBS methodologies. The selection of iPBS
primers was executed with precision and guided by their capability to engender distinctive
and readily quantifiable band patterns (Figure 1).
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Figure 1. iPBS profiles for various PA experimental groups with 2384 primers. M: 100–1000 bp DNA
ladder; 1: control; 2: 0.5 mM Put; 3: 1 mM Put; 4: 1.5 mM Put; 5: 0.5 mM Spd; 6: 1 mM Spd;7: 0.5 mM
Spd; 8: 0.5 mM Spm; 9: 1 µM Spm; 10: 1.5 mM Spm.

The amassed data unveiled discernible alterations within wheat plants when subjected
to distinct polyamine types and concentrations. The investigation encompassed an evalua-
tion of the total count of polymorphic bands, which stood at 69 in the control iPBS group
(as expounded upon in Table 2). The polymorphic prevalence within varying polyamine
types exhibited a range spanning from 26.10% to 29.00% for Put (at concentrations of 0.5,
1.0, and 1.5 mM), 30.40% to 37.70% for Spd (across concentrations of 0.5, 1.0, and 1.5 mM),
and 27.5% to 43.5% for Spm (across concentrations of 0.5, 1.0, and 1.5 mM), as graphically
delineated in Figure 2A.

The polymorphism rates exhibited variability contingent upon the distinct polyamine
types and concentrations under examination. Notably, the most conspicuous polymorphism
rate was recorded at 43.50% for Spm at a concentration of 1.5 mM, closely followed by
a rate of 37.70% observed at an Spd concentration of 0.5 mM. Furthermore, a notable
polymorphism rate of 34.80% manifested at an Spm concentration of 0.5 mM (Figure 2B).
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Table 2. Molecular sizes (bp) of bands present/absent in profiles of wheat genotypes with different polyamines and their concentrations.

iPBS
Primer ± 1 Control 2

Experimental Groups

Putresince (Put) Spermidine (Spd) Spermine (Spm)

0.5 mM 1.0 mM 1.5 mM 0.5 mM 1.0 mM 1.5 mM 0.5 mM 1.0 mM 1.5 mM

2075
+

6
- 590 689; 590 590 590 - 571 - 461

- - - - - - - - - -

2077
+

6
- 1120; 918; 659;

467; 372 379 1600; 1100;
900; 475 1140; 843; 379 1600; 1060; 957;

475; 379 491; 379 - 1600; 1080

- 813; 700 - - - - - - - 311

2087
+

4
- 1600; 452; 416 - 1100; 480 - 425 - - 1340

- - - - 727; 648 831; 500 - 831; 727; 500 831; 500 727; 648; 500

2278
+

9
- 1200; 950 1250 1357 1357 1320; 1200; 950 1320 1320; 1200 1320; 1200

- 752; 520 - 520 520 752 - 520 - 752; 400; 310

2375
+

10
- 1371; 970;

852; 536 1371 1357 1357 1375; 1285; 1200;
1157; 985; 575 1371 1375; 1285; 1157 1375; 1285

- 779; 607 - 607 607 779 - 607 - 779; 718; 486; 308

2377
+

9
- - - - - - - - 1214

- 1057; 970; 710;
582; 431 431 970; 582; 487; 431 582; 487; 431 900; 710; 637;

582; 520; 487; 431 487; 431 487; 431 710; 487; 431 487; 431

2380
+

5
- - 548 1060; 837 - 1060; 920 1040; 858 858; 560 -

- - - - - - - - - -

2381

+

9

- - - - - - - - -

- 1300; 1200; 833;
420; 376 472; 376 1300; 1200; 972;

833
1300; 1200; 972;

472; 420; 324 972; 376 472; 376
1300; 1200; 972;
833; 651; 472;

420; 376

1200; 833; 472;
376

1300; 1200; 833;
472; 376

2382
+

6
936 917 - 1000 - 1040; 413 - - -

- - - - 521 521 - 589; 500 521 870; 589; 521

2384
+

5
- - 525; 239 - - - - - -

- 282 800 - - 282 - - 392; 282 -

1, 2 appearance of a new band (+), disappearance of a normal band (-), and without PAs, respectively.



Plants 2023, 12, 3261 7 of 20Plants 2023, 12, x FOR PEER REVIEW 6 of 21 
 

 

 

 

 

Figure 2. DNA methylation changes in the wheat exposed to PAs: (A) total band; (B) polymorphism; 
(C) GTS value as estimated using different MSH experimental groups. 

The polymorphism rates exhibited variability contingent upon the distinct polyam-
ine types and concentrations under examination. Notably, the most conspicuous polymor-
phism rate was recorded at 43.50% for Spm at a concentration of 1.5 mM, closely followed 
by a rate of 37.70% observed at an Spd concentration of 0.5 mM. Furthermore, a notable 
polymorphism rate of 34.80% manifested at an Spm concentration of 0.5 mM (Figure 2B). 

In accordance with distinct variations in polyamine types and concentrations, the 
most prominent genomic template stability (GTS) percentage was ascertained to be 
73.90% within the Put group (at concentrations of 0.5 and 1.5 mM). Conversely, the lowest 

18
20

18

26

21
23 24

19

30

0

5

10

15

20

25

30

35

0.5 mM 1.0 mM 1.5 mM 0.5 mM 1.0 mM 1.5 mM 0.5 mM 1.0 mM 1.5 mM

Put Spd Spm

To
ta

l B
an

d 
(N

um
be

r)

Experimental Groups

A

26.1
29

26.1

37.7

30.4 33.3 34.8

27.5

43.5

0

10

20

30

40

50

0.5 mM 1.0 mM 1.5 mM 0.5 mM 1.0 mM 1.5 mM 0.5 mM 1.0 mM 1.5 mM

Put Spd Spm

Po
ly

m
or

ph
is

m
 (%

)

Experimental Groups

B

73.9 71 73.9
62.3

69.6 66.7 65.2
72.5

56.5

0

20

40

60

80

0.5 mM 1.0 mM 1.5 mM 0.5 mM 1.0 mM 1.5 mM 0.5 mM 1.0 mM 1.5 mM

Put Spd Spm

G
TS

 V
al

ue
(%

)

Experimental Groups

C

Figure 2. DNA methylation changes in the wheat exposed to PAs: (A) total band; (B) polymorphism;
(C) GTS value as estimated using different MSH experimental groups.

In accordance with distinct variations in polyamine types and concentrations, the
most prominent genomic template stability (GTS) percentage was ascertained to be 73.90%
within the Put group (at concentrations of 0.5 and 1.5 mM). Conversely, the lowest GTS
percentage of 62.30% was observed within the Spd group at a concentration of 0.5 mM.
Corroborating the gleaned dataset, a discernible pattern emerged wherein an escalation
in concentration correlated with a diminishment in GTS percentages and an elevation
in polymorphism rates. This trend is exemplified in the case of 1.5 mM Spm, wherein
a polymorphism rate of 43.5% was registered, contrasting the lowest GTS percentage of
56.5% (Figure 2C).

Within the purview of the CRED–iPBS investigation, a comprehensive set of ten dis-
tinct primers was judiciously employed to elucidate diverse cytosine methylation patterns
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embedded within the genomic DNA (gDNA). The outcomes derived from the CRED–iPBS
research are concisely consolidated as the mean percentage of cytosine methylation poly-
morphism associated with each concentration level (Table 3). These averages encapsulate
the polymorphism percentages of cytosine methylation, unraveling the nuanced dynamics
across diverse polyamine types and concentrations, thereby furnishing the cornerstone of
CRED–iPBS insights. The results of the CRED–iPBS assay are indicated as the percentage
of polymorphisms in CRED–iPBS assays that were digested by Msp I and Hpa II (Figure 3).
Notably, discerning from the accumulated data, the maximal polymorphism rate attributed
to Msp I digestion was attained within the ambit of Spd treatment at 1.5 mM, amounting to
52.50%. In contrast, the nadir of polymorphism was documented within Spm treatment at
a concentration of 0.5 mM, registering at 29.51%. Within the diverse polyamine types and
concentrations, a total of 94 novel bands were distinctly identified in association with Msp I
relative to the control group. Additionally, 126 pre-existing bands were observed to abate
under the influence of Msp I (Table 3 and Figure 4).
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Figure 3. CRED–iPBS profiles for various PA experimental groups with iPBS 2384 primers; M,
100–1000 bp DNA ladder; 1: control Hpa II; 2: control Msp I; 3: 0.5 mM Put Hpa II; 4: 0.5 mM Put Msp I;
5: 1 mM Put Hpa II; 6: 1 mM Put Msp I; 7: 1.5 mM Put Hpa II; 8: 1.5 mM Put Msp I; 9: 0.5 mM
Spd Hpa II; 10: 0.5 mM Spd Msp I; 11: 1 mM Spd Hpa II; 12: 1 mM Spd Msp I; 13: 1.5 mM Spd Hpa
II; 14: 1.5 mM Spd Msp I; 15: 0.5 mM Spm Hpa II; 16: 0.5 mM Spm Msp I; 17: 1 mM Spm Hpa II;
18: 1 mM Spm Msp I; 19: 1.5 mM Spm Hpa II; 20: 1.5 mM Spm Msp I.
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Figure 4. The effect of PAs on polymorphism percentages in different experimental groups of wheat
in the seedling growth stage.
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Table 3. Results of CRED–iPBS analysis; molecular size of bands and polymorphism percentage.

iPBS
Primer M/H 1 ± 2 Control 3

Experimental Groups

Putresince (Put) Spermidine (Spd) Spermine (Spm)

0.5 mM 1.0 mM 1.5 mM 0.5 mM 1.0 mM 1.5 mM 0.5 mM 1.0 mM 1.5 mM

2075
M

+
7

- - - - - - 315 - -
- 393 - - - - 393 - 393; 271 271

H
+

7
- - 376 - - - 626 - -

- 400 - - - 400 400 - - 266; 180

2077

M
+

6
465 1416; 1216;

1033; 918; 465 1416; 1216 1433;
1050; 918

1416;
1016; 918

1416; 1016;
900; 613;
491; 377

1416;
1016; 880 1413; 1016 1433; 1033

- - - - 575; 415;
356; 312 415; 312 415; 312 415; 312 312

H
+

6
818 1450;

1033; 936
1433;

1033; 918
1416;

1183; 1050 1433; 1050
1433; 1033;
984; 900;
800; 739

1433;
1300; 1033;

1416;
1000; 918

1433;
1266; 1016

- - - 600 356; 318 318 - - 318 415; 318

2087

M

+

7

522; 400; 350 - - - - - - - -

- 1300; 1075 1300;
1075; 815

1075; 922; 815;
700; 600; 489

1075; 922; 815;
700; 489

1300; 1075;
922; 700; 600;

1075; 922; 815;
700; 600;

1300; 1075;
922; 700; 600

1075; 922;
815; 600;

1300; 1075;
922; 815;
700; 600

H

+

8

1100; 427 1250 - - - - - - -

- - 700; 567; 418 1125; 629; 418 922; 815; 700;
567; 500

1125; 922; 815;
629; 567; 418

815; 567;
500; 418

1125; 922;
815;700;
629; 418

1125; 922; 815;
629; 567; 418

1125; 922; 815;
629; 567; 418

2278
M

+
8

500 - - - - - - - -

- 1100; 900 1100; 900 900; 750;
650; 450

900; 815;
750; 450

1100; 900;
750; 450

900; 815;
750; 450 1100; 900; 750 900; 815; 1100; 900;

815; 750

H
+

5
1100; 427 1250 - - - - - - -

- - 760; 465 1125; 465 1125; 760 760; 465 1125; 760; 465 - 1125;465 1125; 760

2375

M
+

5
1040 1100; 851; 811 1100; 866 - 837 851 - 938; 811 824; 326

- - - - 405 - - - - -

H
+

4
- 1280;

1060; 589 1040; 589; 468 1020; 589 1020; 454 1100;
1020; 589

1080; 1020;
651; 589 1020 1020; 680; 365

- 866;811; 709 - - - 709 - - - -
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Table 3. Cont.

iPBS
Primer M/H 1 ± 2 Control 3

Experimental Groups

Putresince (Put) Spermidine (Spd) Spermine (Spm)

0.5 mM 1.0 mM 1.5 mM 0.5 mM 1.0 mM 1.5 mM 0.5 mM 1.0 mM 1.5 mM

2377

M
+

6

640; 583; 492;
338; 264

964; 739;
682; 632 913 - 926 1075; 939; 762;

648; 616; 492 1100 1087 1112

- - - - - - - - 548 400

H
+

6
- 1260;

1087; 762 1262 1262 - 1275; 1087 - 1287 1275

- - - 431; 394 431; 394 431 - - 431; 394 729; 500

2380

M
+

5
- 607 732; 607;

568; 450 875; 607; 527 607 944; 880;
613; 580 - 961 912

- - - - - - - - 400 -

H
+

5
- 673 600; 500 607; 500 - 981 944; 527 1000; 555 591

- - 846 - - 400 - - - -

2381

M

+

5

- 1325; 1025;
750; 334 - - - - - 325; 269

- - - 833; 466 537 921; 633; 537 466 921; 633;
466; 409 537; 466; 409 921; 633

H
+

4
- 1325;

1100; 679 900; 679 - - - - - -

- - - - 611 427 - 819; 427; 353 819; 353 819; 427; 353

2382

M
+

4
753; 529 1016; 848 586; 369 408 - 545 529 - -

- - - - - 492 - - - -

H
+

8
- - - - - - - - -

- 940 940; 753; 645 645 940; 537 940; 753 940; 753;
645; 537 - 940; 537

2384

M

+

8

- - - - - - - - -

- 958; 830; 540;
461; 391; 346 958; 346 958; 830 - 958; 461; 346 830; 461; 346 - - 958; 346; 281

H

+

6

- - - - 461 - 700; 480 - 1020; 452

- 958; 830;
551; 408 958 - 958 - 958; 830 - 958; 408 -

1, 2 and 3: M—Msp I and H—Hpa II; (+) appearance of a new band, (-) disappearance of a normal band; and without hormone, respectively.
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The highest polymorphism rate for Hpa II was 42.40% in the Spm 0.5 Mm treatment,
while the lowest value was 23.7% in the Put 0.5 Mm treatment. For Hpa II, 86 new bands
appeared compared to the control group. In addition, 116 old bands disappeared for Msp I.
According to the data obtained, it was determined that the rate of polymorphism due to
the Msp I enzyme was higher than Hpa II (Table 3 and Figure 4).

2.3. Machine Learning (ML) Analysis

The process of machine learning algorithms entails the utilization of statistical and
computational methodologies to extract patterns from data, construct predictive models,
and subsequently employ these models for making informed predictions or decisions.
In the context of this study, the support vector machine (SVM), the random forest (RF)
algorithm, and the extreme gradient boosting (XGBoost) approach were deployed to an-
ticipate the intricate relationships between input variables and output parameters. This
exercise encompassed a comprehensive evaluation and comparative analysis of model
performances guided by the need to dissect the intricate dataset emerging from both tissue
culture and molecular analyses. For the purpose of model training and validation, the
dataset was systematically partitioned into two subsets: a training dataset, constituting
70.00% of the overall dataset, and a separate testing dataset accounting for the remain-
ing 30.00%. The model’s efficacy was assessed through meticulous testing against the
reserved test dataset while the training dataset facilitated the iterative learning process
employed by the model. This approach enables the extrapolation of insights from smaller
datasets to predict outcomes in larger datasets, thereby enhancing the generalizability
of the model. The input variables in this study encompassed three discrete polyamines
under experimental conditions (Put, Spd, and Spm) alongside the corresponding range
of polyamine concentrations (0, 0.5, 1, and 1.5 mM). Additionally, the input dataset inte-
grated the outcomes of genomic template stability (GTS) rates, Msp I polymorphism, and
Hpa II polymorphism within the context of wheat, each influenced by the experimental
configurations. Consequently, the predictions concerning the observed variables (CI, ECI,
REC, RE, PN) were derived as a cumulative outcome of the intricate interplay between
exogenously administered polyamines and the resultant genomic DNA variations. The
tabulated outcomes of the machine learning models employed in this investigation are
meticulously presented in Table 4.

Table 4. The goodness of fit criteria for machine learning algorithms.

Traits 1 ML Criteria 2
SVM RF XGBoost

Test Train Test Train Test Train

CI (%)

R2 0.254 0.407 0.379 0.486 0.383 0.529
MSE 4.364 4.121 3.981 3.838 3.889 3.673
MAPE 3.816 3.401 3.662 3.204 3.289 3.057
MAD 3.540 3.958 3.386 3.136 3.243 2.841

ECI (%)

R2 0.351 0.312 0.415 0.48 0.231 0.501
MSE 9.744 11.160 9.245 9.005 9.608 9.800
MAPE 10.535 11.202 9.435 10.217 9.473 10.243
MAD 7.624 7.528 7.063 6.087 7.064 6.977

REC (%)

R2 0.841 0.776 0.781 0.792 0.699 0.812
MSE 9.699 9.336 10.367 9.386 10.459 9.918
MAPE 14.405 12.603 15.691 12.653 16.585 12.690
MAD 7.197 6.950 7.783 7.184 8.282 7.490

RE

R2 0.482 0.356 0.646 0.548 0.738 0.613
MSE 0.271 0.198 0.224 0.166 0.193 0.154
MAPE 42.415 15.433 34.323 14.739 23.748 11.776
MAD 0.219 0.125 0.185 0.120 0.165 0.110
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Table 4. Cont.

Traits 1 ML Criteria 2
SVM RF XGBoost

Test Train Test Train Test Train

PN

R2 0.782 0.833 0.775 0.880 0.853 0.905
MSE 1.761 1.363 1.791 1.155 1.445 1.029
MAPE 19.548 24.429 17.156 22.011 11.653 18.343
MAD 1.137 0.899 1.192 0.815 0.926 0.770

1 CI (%); Callus induction, ECI (%); embryogenic callus induction, REC (%); responding embryogenic callus and
regeneration efficiency (RE) and plantlet number (PN) responding to different polyamine types and concentrations.
2 R2: Coefficient of determination, mean squared error (MSE), mean absolute percentage error (MAPE), mean
absolute deviation (MAD).

The evaluation of algorithm performance is predicated on metrics encompassing mean
squared error (MSE), mean absolute percentage error (MAPE), and mean absolute deviation
(MAD). Reduced values of these metrics signify a closer alignment between the model’s
prognostications and the actual observed values. Upon scrutinizing the test performance
outcomes of MSE, MAPE, and MAD, distinct trends surfaced: XGBoost < RF < SVM for CI,
RE, and PN. For the ECI variable, the sequence of RF < XGBoost < SVM emerged based on
the MSE, MAPE, and MAD results, whereas for REC, the order was SVM < RF < XGBoost.
Delving into the R2 outcomes furnished by the XGBoost algorithm, renowned for yielding
optimal performance outcomes concerning CI, RE, and PN, the percentages of variance
elucidated were 38.30%, 73.80%, and 85.30%, respectively. Meanwhile, the R2 result derived
from the RF algorithm accentuated its explanation of 41.50% of the overall variation,
showcasing superior performance, especially with regards to ECI. Further, the R2 outcome
from the SVM algorithm, which attained the highest performance metrics for REC, distinctly
encapsulated 84.10% of the comprehensive variance evident in the dataset.

3. Discussion

This research endeavors to elucidate the influence of diverse polyamine species and
varying concentrations thereof on the initiation of callus formation and the ensuing re-
generative processes in plants. The response rate of responded embryogenic calluses
(RECs) and the propensities of mature embryos to undergo callus induction exhibited
discernible alterations in response to polyamine concentrations. Notably, Spd treatment
at 1.5 mM engendered a 100.00% rate of embryogenic callus induction, although a subse-
quent concentration of 1.5 mM led to a decrement of 35% in REC. It was evident that the
frequency of embryogenic callus formation exhibited a direct correlation with increasing
levels of Put and Spd, while Spm administration was characterized by a lowered rate
compared to the control group. The regeneration efficiency (RE) values for the diverse
polyamines and their respective concentrations ranged between 0.98 and 1.19. Signifi-
cantly, the most notable RE was achieved through Put treatment at 1.5 mM, attaining a
value of 1.29, while a RE value of 0.37 was obtained in the context of Spm treatment at
1.5 mM. Notably, Put treatment exhibited an augmenting trend with increasing polyamine
concentrations, whereas the converse was evident in the case of Spm treatment. The inter-
action between polyamine type and concentration underscored that the most favorable
conditions for callus induction were associated with 0.5 mM of Put and 1 mM of sper-
midine. Elevated regenerative potential was observed in tandem with augmented levels
of Put and spermidine within somatic embryos and shoots [33]. The discerned roles of
Spm and Spd come to the fore when developmental progression is impeded, while Put
assumes significance in the early embryogenic stages characterized by heightened cellular
division rates [34]. Notably, Put emerges as the predominant polyamine subtype, suc-
ceeded by Spd and Spm [35]. These findings are fortified by antecedent research conducted
by Martinez et al. [36], Dewi et al. [37], Tang et al. [38], Li et al. [39], Purwoko et al. [40],
Paul et al. [41], Aydin et al. [5], Rakesh et al. [42], Xiong et al. [43], and Liu et al. [44]. The
supplementation of the regeneration medium with polyamines, specifically spermidine
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and Put, during in vitro induction demonstrated improved gynogenetic embryo and hap-
loid plantlet development [45]. Further evidence in studies indicates that the potency of
spermine and spermidine in enhancing somatic embryogenesis and plant regeneration is
notably observed in lower dosages in comparison to putrescine.

DNA methylation, histone methylation/demethylation modifications, and the expres-
sion of short RNAs all bear pivotal significance in the context of plant tissue culture [46–49].
Furthermore, a discernible void exists within in vitro studies pertaining to the intricate
interplay of polyamines with DNA damage in Triticum aestivum L. It is noteworthy that
the impact of polyamines on DNA methylation in plants remains relatively unexplored, as
per the existing corpus of literature. As such, the primary thrust of this study dissected
the ramifications of polyamines on DNA damage, polymorphism, and genomic stability
within the milieu of wheat plants under in vitro conditions. The study by Temel et al. [50]
propounds that DNA methylation is optimally elucidated within tissue culture research
through the prism of the CRED methodology. The amalgamation of iPBS and CRED
methodologies [14–18] constitutes a boon for tissue culture investigations, empowering
the delineation of both genetic and epigenetic transformations. In the current research, the
synergy of iPBS and CRED was harnessed to unravel the polyamine-induced perturbations
in the genetic and epigenetic landscapes of wheat. Within this paradigm, polymorphism
is encapsulated by the emergence of novel bands or the vanishing of canonical bands,
with point mutations, insertions, and deletions at loci attributed to the employed markers
representing potential causal factors. Cumulatively, the iPBS control group exhibited a
total of 69 polymorphic bands. The dynamic spectrum of polymorphic bands spanned
from 26.10% to 26.60% for Put (0.5 to 1.0 to 1.5 mM), 30.30% to 37.70% for Spd (0.5 to
1.0 to 1.5 mM), and 27.50% to 43.50% for Spm (0.5 to 1.0 to 1.5 mM). Diverging from the
discerned augmentation in GTS values with heightened concentrations in the cases of
Put and Spd, Spm exhibited an inverse correlation. While the GTS value demonstrated
an attenuation concomitant with escalated concentration, the highest polymorphism rate
(43.50%) transpired within the Spm treatment. The discerned outcomes collectively hint at
the preferential attributes of putrescine, as it emerges as a safeguard against the deleterious
impacts of in vitro medium-induced stress on wheat DNA, with demethylation exerting a
favorable influence on stress tolerance. DNA methylation emerges as a pivotal enzymatic
modification, engendering chemical transformations within the DNA molecule. This, in
turn, substantiates its cardinal role in the regulation of gene expression and the preservation
of genomic integrity [51]. Despite the escalated polymorphism rate, this study reveals the
ability of diverse polyamines and their concentrations to impede the retrotransposon migra-
tion process. In the context of potential adversities impinging on plants, such as heightened
polyamine levels [52], plants might instigate molecular defense mechanisms. Elevated Spm
content, as suggested by the diminished GTS ratio, bears the potential imprint of genotoxic
consequences. Intriguingly, polyamines not only shield DNA from enzymatic degradation
and X-ray irradiation but also confer stability to RNA, thereby inhibiting ribosomal dis-
persal [21]. Moreover, polyamines have been reported to fortify replicating DNA against
oxidative harm and to expedite the biosynthesis of DNA and RNA, as evidenced by certain
studies [20]. The protective attributes of putrescine might conceivably be attributed to its
positively charged nature. A recent exploration of methylation in maize plants disclosed a
decline in GTS rates [53]. The iPBS methodology emerges as a sentinel for DNA damage,
aptly detecting shifts in the iPBS profile through the lens of a GTS rate downturn vis-à-vis a
control group [54]. The outcomes unravel a dynamic: DNA hypermethylation is linked to
elevated Spd levels and DNA hypomethylation is associated with diminished Spm levels.
By unequivocally demonstrating hypomethylation arising from subdued polyamine con-
centrations, this study contributes to a robust understanding of the dichotomy. Evidently,
hypermethylation herald’s gene silencing, while hypomethylation heralds heightened
transcriptional activity [55]. The holistic spectrum of epigenetic alterations underscores
how cells undergo differentiation in response to environmental cues [56]. Cellular differ-
entiation manifests through distinctive expressions of epigenetic hallmarks such as DNA
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methylation and histone modifications [57,58]. Reflecting on the prevailing findings, the
discerned protective attributes of putrescine could conceivably be attributed to its prowess
in radical scavenging, potent antioxidant activities, and fundamental net charge.

This investigation encompassed the pursuit of output variables (namely, CI, ECI, REC,
RE, and PN) by leveraging input factors and molecular values, which were subsequently
subjected to analysis through the prism of machine learning (ML) algorithms. The aptitude
of ML algorithms in the assessment and validation of projected output variables finds
resonance in their inherent capacity to incorporate the input parameters underlying the
outcomes [24,25,59,60]. Notably, the past years have witnessed the burgeoning utilization
of ML models for data validation within in vitro regeneration research, manifested across a
diverse array of inquiries characterized by distinct objectives and focal points [25,27]. These
investigations have embraced a heterogeneous spectrum of models, hyper-parameters,
and performance metrics, effectively spanning the gamut of plant tissue culture processes
encompassing in vitro germination [59,60], somatic embryogenesis [61], in vitro steriliza-
tion [27], in vitro mutagenesis [29], in vitro shoot regeneration [22], and the optimization of
basal medium [62]. To the best of our knowledge, this study marks a seminal endeavor,
pioneering the integration of machine learning (ML) algorithms in conjunction with both
polyamines and their corresponding concentrations as input variables. The ascertained out-
comes of our investigation underscore the burgeoning potential and steadfast performance
of XGBoost in the domain of modeling and prognostication pertinent to the parameters of
CI, RE, and PN. Analogously, RF emerged as a promising contender, yielding favorable
outcomes in modeling ECI, while SVM exhibited its prowess as a potent algorithm primed
for REC. Notably, within the realm of wheat, the XGBoost algorithm emerged as the most
adept in modeling three out of the five observed parameters. Drawing parallels to cognate
studies, the efficacy of XGBoost in prognosticating chickpea shoot counts exemplifies its
capacity to demonstrate superior modeling proficiency [28]. Analogously, RF and XGBoost
emerged as apt contenders for forecasting shoot counts and shoot length in Alternanthera
reineckii [25]. The work by Aasim et al. [59] highlighted the prowess of Cannabis sativa L.
in engendering an optimal model via the RF algorithm, catering to the prediction and
validation of germination and growth indices. In conclusion, the findings collectively
advocate for a computational paradigm wherein the synergy of XGBoost, SVM, and RF can
manifest as a viable modus operandi for the prediction and optimization of select in vitro
parameters pertaining to wheat.

4. Materials and Methods
4.1. In Vitro Conditions
4.1.1. Plant Material, Callus Initiation, Embryogenic Callus Formation,
and Plant Regeneration

Seeds of the Kırik wheat (Triticum aestivum L.) variety were used as test material. First,
the seeds were surface sterilized (in 70% (v/v) ethanol) for five minutes, rinsed twice with
sterile distilled water, incubated in bleach containing a few drops of Tween (5% sodium
hypochlorite) for twenty-five minutes, and rinsed twice with sterile distilled water. The
seeds were then soaked in sterile water (at 4 ◦C) for 16–17 h. The shoot axes of mature
embryos, as well as their scales, were trimmed both longitudinally and horizontally without
detaching them from the seeds. The prepared seeds were cultured on callus induction
medium [13]. The callus induction media consisted of Murashige and Skoog [63] base salts,
12 mg L–1 dicamba (3,6-dichloro-2-methoxybenzoic acid), 0.5 mg L–1 IAA (Indole-3-acetic
acid), 20 g L–1 sucrose, 2 g L–1 phytagel, 1.95 g L–1 MES, and different polyamine types
(Put: putrescine, Spd: spermidine, and Spm: spermine) and concentrations (0, 0.5, 1, and
1.5 mM). The pH was adjusted with 1 N NaOH to a final value of 5.8 in all media. To
sterilize the media solutions, they were autoclaved for 15 min at 121 ◦C. The solutions
contained basic salts and a solidifying agent. Filter sterilization was used for vitamins
and plant growth regulators. The percentage of callus induction was determined 21 days
after the explants were grown at 25 ◦C in the dark. The mature callus was then isolated
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from the seeds. A number of seedlings responding to different types and concentrations of
polyamines, callus induction (CI) (%), embryogenic callus induction (ECI) (%), the ratio
of responding embryogenic calluses (RECs) (%), and regeneration efficiency (RE) were
determined. After four weeks, the ratios of responded embryogenic calluses (RECs) and
regeneration efficiency (RE) were determined. Number of callus/number of explants (×100)
was used to calculate CI (%). Number of embryogenic callus/number of explant (×100)
was used to calculate REC (%) and number of responded embryogenic callus/number of
explant (×100) was used to calculate REC%. The number of regenerated plants/number of
RECs was used to calculate RE.

The media required for plant regeneration and embryonic calluses were placed in
MS medium containing 0.5 mg L–1 TDZ (N-Phenyl-N’-1,2,3-thiadiazol-5-ylurea, Thidi-
azuron), 20 g L–1 sucrose, and 7 g L–1 agar. They were then cultured at 25 ◦C for 30 days
with a photoperiod of 16 h of light (light intensity 62 mol m–2 s–1) and 8 h of darkness.
After 4 weeks, the number of regenerating plants from each explant was counted. When
the regenerating plants reached a height of 10–12 cm, they were transplanted into ma-
genta boxes containing the same regeneration medium and maintained at the same plant
regeneration settings.

4.1.2. Statistical Analysis

The present experiments were performed using a factorial randomized complete block
design [3 different polyamines (Put, Spd, Spm) × 4 different concentrations of polyamine
(0, 0.5, 1 and 1.5 mM)] with four replications and ten explants per replicate. Each Petri
dish was considered as experimental unit, and ten mature embryos were cultured on each
dish. The Genstat v. 23 statistical software package [64] was used to perform an analysis
of variance (ANOVA) using a general linear model procedure. Treatment means and
interactions were compared using Duncan’s multiple range test.

4.2. Genotypic Assay
4.2.1. Isolation of Genomic DNA, iPBS, and CRED–iPBS PCR Assays and Electrophoresis

According to Zeinalzadehtabrizi et al. [65], genomic DNA was isolated from cul-
tured reactive embryogenic callus using cetyltrimethylammonium bromide buffer [66].
The concentration and purity of genomic DNA were assessed on an agarose gel con-
taining 1.5% (w/v) using a Nanodrop spectrophotometer (Thermo Fisher Scientific
(Waltham, MA, USA)). The PCR reaction for iPBS analysis was carried out using 20 mL
PCR mixture containing 50 ng mL–1 DNA sample, 1 U Taq DNA polymerase, 10 pmol
random primer, 25 mM MgCl2, 10 mM dNTP mix, ddH2O, and 10 X PCR buffer. The
tubes were vortexed and then amplified in a thermocycler (Sensoquest GmbH, Labcy-
cler Gradient, Germany). The PCR protocol included a 5-min initial denaturation at
95 ◦C, 40 cycles of 1-min denaturation at 95 ◦C, 1-min annealing at 41.4–49.9 ◦C, 2-min
extension at 72 ◦C, and a 10-min final primer extension at 72 ◦C, followed by a drop
to 4 ◦C. CRED–iPBS analysis required digestion of 1 mg of DNA samples from each
treatment with 1 L (1 FDU) Hpa II (Thermo Scientific) and 1 L (1 FDU) Msp I (Thermo
Scientific) at 37 ◦C for 2 h. Nondigested gDNA was replaced by DNA, which was
digested by the appropriate endonuclease. Amplification was performed using the
primers shown in Table 5. PCR procedures were identical to those used in iPBS anal-
ysis [15–18]. Electrophoresis in 1X SB buffer at 100 V for 120 min with a 100–1000 bp
DNA ladder (Sigma Aldrich No: P1473-1VL) was used to determine the approximate
molecular weight of iPBSs and CRED–iPBS PCR products separated on a 1.50% agarose
gel containing 0.05 mL mL–1 ethidium bromide. The gels were fixed in a Universal
Hood II (Bio Rad, Hercules, CA, USA) illuminated by ultraviolet light [14].
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Table 5. Ten iPBS primers’ sequences and annealing (Ta) temperatures are provided.

Primer Name Sequence (5′–3′) Tm (◦C) 1 CG (%) 2

iPBS-2075 CTCATGATGCCA 42.1 50.0
iPBS-2077 CTCACGATGCCA 46.1 58.3
iPBS-2087 GCAATGGAACCA 43.5 50.0
iPBS-2278 GCTCATGATACCA 42.3 46.2
iPBS-2375 TCGCATCAACCA 45.1 50.0
iPBS-2377 ACGAAGGGACCA 47.2 58.3
iPBS-2380 CAACCTGATCCA 41.4 50.0
iPBS-2381 GTCCATCTTCCA 49.9 50.0
iPBS-2382 TGTTGGCTTCCA 44.9 50.0
iPBS-2384 GTAATGGGTCCA 40.9 50.0

1, 2; Tm: primer temperatures; CG: percentage of cytosine (C) and guanine (G) in the primary sequence, respectively.

4.2.2. Genetics Analysis

TotalLab TL120 (Non-linear Dynamics Ltd. R brand, Northumberland, UK) was used
to evaluate iPBS and CRED–iPBS banding patterns. The iPBS profiles showed polymor-
phism when the expected band disappeared and a new band appeared compared to the
control. Changes in average polymorphism were determined for each treatment group
(different polyamine concentrations) and expressed as a percentage relative to the value
obtained from the control (set to 100%) [19]. Genomic template stability (GTS%), a quanti-
tative measure, was calculated for iPBS using the formula (1 − a/n) × 100, where a is the
average number of polymorphic bands in each treated template and n is the total number of
bands in the control [14,19]. The average polymorphism values (%) for each concentration
were determined using the formula 100 a/n [16].

4.3. Modeling Using Machine Learning Algorithms

Machine learning (ML) [30], random forest [31], and extreme gradient boosting [32]
algorithms were used to train the model and estimate the output variables of tissue culture
parameters (callus induction, embryogenic callus induction, embryogenic callus rate, re-
generation efficiency, and number of seedlings). In the data set for this study, the inputs
that were used included three different experimental polyamines (Put, Spd, and Spm)
at different concentrations (0, 0.5, 1 and 1.5 mM). In addition, the results of GTS indices,
Msp I polymorphism and Hpa II polymorphism in wheat as a result of the influence of
these experimental groups, were also included in the data set. Estimates on the observed
variables (CI, ECI, REC, RE, and PN) were therefore obtained as a result of the influence
of both exogenously applied polyamines and changes in gDNA. The wheat dataset was
divided into two separate datasets, namely, the training and test sets, with a partition
ratio of 70% and 30%, respectively. A leave-one-out cross-validation (LOO-CV) method
was used so that the performance of the models could be assessed [67]. A total of four
different performance indicators (R2, MSE, MAPE, and MAD) were used to evaluate the
effectiveness of each model. The coefficient of determination (R2) quantifies the degree of
correlation between the model and the dependent variables (Equation (1)). Mean squared
error (MSE) is a statistical measure used to assess the accuracy of a regression model by
quantifying the mean squared difference between predicted and actual values. The mean
squared error (MSE) is calculated as the average of the squared deviations between ob-
served and predicted values (Equation (2)). Mean absolute percentage error (MAPE) is a
commonly used measure of error in regression analysis that quantifies the extent to which
model predictions deviate from the actual values, expressed as a percentage of true values.
Mean absolute percentage error (MAPE) calculates the average of the absolute differences
between predicted and actual values for each data point, expressed as a percentage of the
actual value. Mean absolute percentage error (MAPE) has the property of scale indepen-
dence, meaning that changes are represented as percentages, making it possible to evaluate
different data sets. This feature allows comparison of different data sets (Equation (3)).
Mean absolute deviation (MAD) is calculated by obtaining the absolute difference between
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the actual value and the predicted value for each data point, and then calculating the
average of these absolute differences. The MAD metric denotes the arithmetic mean of
the absolute values of the residuals. The mean absolute deviation (MAD) metric shows
sensitivity to significant outliers due to the use of absolute differences values (Equation (4)).

R2 = 1−
(

∑n
i=1
(
yi − yip

)2

∑n
i=1(yi − y)2

)
(1)

MSE =

√
1
n

n

∑
i=1

(
yi − yip

)2 (2)

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − yip

yi

∣∣∣∣× 100 (3)

MAD =
1
n

n

∑
i=1

∣∣yi − yip
∣∣ (4)

Here, n is the training/testing sample size in the data set, yi is the measured real value,
yip is the predicted value, and y is the measured values mean. The R-4.3.1 software was
utilized to compute the ML algorithms and performance indicators (R Core Team).

5. Conclusions

The success of improving plant species by biotechnological methods depends on the
response of the tissue culture, specifically in the regeneration of plants. Research on the
effects of polyamines on plant growth and development is widespread. To our knowledge,
this is the first study that focused on elucidating the effects of polyamines on DNA methy-
lation in vitro using the ML approach. The CRED–iPBS method was also used to determine
how different polyamines and doses affect DNA methylation patterns. Changes in DNA
methylation at high concentrations of polyamine were also detected. Re-testing showed
that the highest RE was obtained with 1.5 mM Put. Additionally, the result clearly showed
that 1.5 mM Spd was associated with DNA hypermethylation, while hypomethylation
occurred at 0.5 mM Spm. In addition, four different performance indicators (R2, MSE,
MAPE, and MAD) were used to evaluate the performance of each model. According to the
results, a computational technique using a combination of XGBoost, SVM, and RF may be a
promising way to predict and improve selected wheat in vitro parameters.
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