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Abstract: The development of remote methods for diagnosing the state of crops using spectral
equipment for remote sensing of the Earth and original monitoring tools is the most promising
solution to the problem of monitoring diseases of wheat agrocenoses. A research site was created
on the experimental field of the Federal Research Center of Biological Plant Protection. Within
the experimental field with a total area of 1 ha, test plots were allocated to create an artificial
infectious background, and the corresponding control plots were treated with fungicides. The research
methodology is based on the time synchronization of high-precision ground-based spectrometric
measurements with satellite and unmanned remote surveys and the comparison of the obtained data
with phytopathological field surveys. Our results show that the least-affected plants predominantly
had lower reflectance values in the green, red, and red-edge spectral ranges and high values in the
near-infrared range throughout the growing season. The most informative spectral ranges when
using satellite images and multispectral cameras placed on UAVs are the red and IR ranges. At the
same time, the high frequency of measurements is of key importance for determining the level of
pathogenic background. We conclude that information acquisition density does not play as significant
of a role as the repetition of measurements when carrying out ground-based spectrometry. The use of
vegetation indices in assessing the dynamics of the spectral images of various survey systems allows
us to bring them to similar values.

Keywords: wheat; pathogens; phytosanitary monitoring; earth remote sensing; hyperspectral analysis;
GIS; spectrometry; spore catcher

1. Introduction

Wheat is the main worldwide staple food. Economically important fungal diseases
of wheat are Fusarium head blight (FHB) (Fusarium graminearum Schwabe.), brown and
yellow rust (Puccinia triticina Erikss., Puccinia striiformis West.), yellow spot (Pyrenophora
tritici-repentis (Died.) Drechsler), septoria (Septoria spp.), and powdery mildew (Blumeria
graminis (DC.) Speer). Diseases are very harmful and widespread around the world [1,2]
and in Russia, especially in its southern region [3,4]. The FAO and UN estimate that about
10% of yield is lost to pathogens in developed countries and 20–50% in developing ones [5].

Effective phytosanitary monitoring is a critical component of pest management pro-
grams. It allows for the timely detection of disease development in crops [6]. Today in
intensive agriculture, traditional phytosanitary monitoring is hampered by the presence of
large sown areas. Hence, there is a lack of proper control by specialists. The most promising
way to solve this problem is the development of remote methods of crop diagnostics, based
on the use of remote sensing equipment and original monitoring tools [7,8].
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Nowadays, hyperspectral equipment is widely used. It allows obtaining data of
high spatial and spectral resolution [9–13]. There are positive results of studies on the
development of remote methods for detecting FHB (F. graminearum Schwabe.) [14–17],
yellow rust (P. striiformis West.) [18–21], powdery mildew (B. graminis (DC.) Speer) [22],
and other wheat diseases based on the analysis of hyperspectral data.

However, despite the impressive research results, the actual application of hyperspec-
tral technologies for monitoring crop diseases is still significantly hindered by a number
of unsolved practical, scientific, and methodological problems [10,12,13]. First is the high
cost of hyperspectral data, as well as the complexity of their processing. Another problem
is the difficulty of taking into account the mutual influence of environmental factors (soil
type, weather conditions, illumination of the Earth’s surface, etc.), which determine the
conditions for obtaining experimental data within a particular research region. The influ-
ence of these factors on the spectral characteristics of crops can be non-uniform during the
growing season. This requires a significant transformation of models created in specific
conditions when applied to a new region [13,23–25].

A great obstacle is the issue of early diagnostics of the development of pathogens,
as well as the accurate detection of a specific disease in the field, when there is a simul-
taneous influence of several stress factors that can cause similar changes in the spectral
characteristics of the objects under study [9,26–29]. The difference in the spectral responses
of different varieties of the same crop also presents significant difficulties. Therefore, the
model for diagnosing the development of the disease in one particular wheat variety may
not be applicable to another variety [14,30,31]. Finally, there is a need to study the dynam-
ics of changes in the spectral images of cultivated crops against the background of the
development of diseases over time during their growing season [10].

Some researchers assume that a big gap in the scientific basis for planning experiments
on the use of Earth remote sensing data to determine the state of plants is associated
with the lack of sufficient interaction between specialists in the field of technology and
biology [10,13]. Therefore, it is necessary to study the possibilities of combining high-
resolution satellite data with the results of surveys obtained using UAVs and ground-
based observations, taking into account the biological aspects of the experiment to build a
consistent time series of remote sensing data [10].

For instance, in Serrano [32]’s research, moisture content, crude protein, and other
characteristics of dryland pastures were evaluated with the NDVI index obtained using
a proximal optical sensor and satellite images. The correlation coefficients showed mod-
erately high accuracy between the spectral data of vegetation and vegetation conditions.
Bausch and Khosla [33] determined the most informative vegetation index for the nitrogen
content estimation in maize according to ground-based sensor data and Quick-Bird images.
It was found that normalized GNDVI is the most correct index for monitoring nitrogen
using satellite images. Mezera et al. [34] evaluated the relationship between nitrogen and
vegetation indices on the basis of proximal and remote sensing methods of Sentinel-2
long-term satellite images. The study showed that vegetation indices show a high cor-
relation with nitrogen content, but their values vary greatly depending on the season.
Stettmer et al. [35] evaluated the dependence of nitrogen content on the spectral charac-
teristics of plants at various phenophases of winter wheat. It was shown that for all key
stages (GS 31, 39, 55, 65), the correlation remains high. Also, to improve the accuracy of the
assessment, it was recommended to use the higher spatial resolution of satellite data (5 m2).

Nevertheless, most studies were aimed at finding connections between the spectral
characteristics of the culture and its macroelements, primarily nitrogen. Much less attention
was paid to the study of crop diseases and, in particular, their early detection.

One supposes that crop-disease-monitoring systems should take into account the
specific features of their occurrence and development. It is known that the number of
spores of phytopathogenic fungi found in the air above the affected crops is an important
indicator of the epiphytotic potential of the pathogen [32,33]. Studies by Russian and
foreign researchers devoted to the phytosanitary monitoring of crops using spore-catching
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equipment indicate the possibility of early (5–7 days before the onset of visible symptoms)
detection of spores of the causative agent of rust fungal diseases in wheat crops [36–39].

Studies on the aerobiology of wheat fungal diseases [40,41] have shown a relationship
between the infestation of crops and the number of uredospores of pathogens in the
surface air layer. Uredospores of pathogens can be detected by special spore-catching
devices installed on aircraft [42,43]. Thus, the ability to assess the degree of the disease
development or even predict its development by the number of uredospores in the air
will ensure the objectivity of the qualitative and quantitative interpretation of remote
sensing data.

The data obtained from aerobiological sounding and spectral response measurements
can complement each other, creating a kind of two-stage monitoring system.

Here, we aim to develop a methodological basis for the use of ground- and aerospace-
based spectral equipment in combination with technical means for controlling phytopathogenic
infection for the remote monitoring of wheat agrocenoses.

2. Results

Various approaches to obtaining spectral data of vegetation were applied: ground-
based spectrometry, surveys using UAVs, and satellite imagery. Of all the above-mentioned
methods, only satellite imagery has a complete and relatively continuous nature of data
acquisition. In addition, these data fully cover the period of field examinations of the
pathogenic background. Consequently, satellite imagery was taken as the main source
of information for analysis. Unfortunately, the spatial resolution of these data does not
allow for estimating the spectral characteristics of the small-plot experiment. To compare
the data from different imaging systems with each other, the spectral brightness values
were reduced to the system containing the smallest number of spectral ranges: the Parrot
SEQUOIA + camera (Parrot, Paris, France) mounted on the UAV.

The study of the spectral characteristics of various survey systems showed that
the highest SBC indicators are typical for aerial survey data. The lowest SBC indica-
tors are standard for satellite imagery. At the same time, the use of vegetation indices,
such as NDVI, makes it possible to bring different survey systems to similar values for
most measurements.

Let us mention that the dynamics of the spectral characteristics of the satellite imagery
correlate well with the aerial survey data, except for the range 712–722. This is due to
differences in the spectral resolution of the corresponding data channel of the systems.
Thus, we can make a preliminary conclusion that satellite images and UAV data can be
interchangeable and complement each other in the remote monitoring of crops (Figure 1).

A careful consideration of the SBC dynamics at different wavelengths using satellite
imagery as an example suggests that the control area with the absence of a pathogenic
background has its own distinctive features. The spectral brightness of the control section
is one of the lowest in the ranges of 550–570 nm, 663–673 nm, and 712–722 nm throughout
the entire observation period. It is the highest at the final development stages, in which
field inspections were not carried out. In the IR range (820–860 nm), the spectral brightness
of the control area is one of the highest during the entire period of satellite observations.
Its NDVI index is also one of the highest throughout the study. There is a tendency for a
similar behavior of the spectral image curve for the plots that are less prone to diseases.
However, a number of plots are inconsistent with this template (Figure 2). Presumably, this
is due to the low contrast of the level of pathogenic background between different test plots
(Figure 1).

Let us compare the values of the spectral image obtained using satellite imagery with
the UAV imagery data only from 19 May to 3 June, when they were taken simultaneously
(Figure 3). However, a similar trend is observed here as well: low values in the green, red,
and red-edge ranges of the spectrum and high values of SBC in the IR range on the plots
with a less developed pathogenic background.
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Figure 1. Dynamics of development of pathogens and SBCs in different spectral ranges, from dif-

ferent sources. Figure 1. Dynamics of development of pathogens and SBCs in different spectral ranges, from different
sources.
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Figure 2. SBC dynamics in different spectral ranges in individual test plots, obtained from satellite
imagery data.

The spectral data analysis in a small-plot experiment with crops of Yuka and Alekseich
varieties revealed that the infectious backgrounds of crops of these varieties were character-
ized by reduced SBC values compared to the control plots in all considered ranges of the
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spectrum (Figure 4). Moreover, the height of plants and the content of chlorophyll had a
positive correlation. Comparison of the spectral characteristics of the infected and control
crops of the two studied varieties showed that the quantitative indicators of the SBC values
of each variety were largely determined by their biometric features and, possibly, by the
different nature of the occurring physiological processes caused by pathogen development.
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Figure 4. SBC dynamics in different spectral ranges in a small-scale experiment with crops of
Alexech and Yuka varieties, obtained from the data of ground-based spectrometric measurements
and UAV surveys.

Based on the results of data processing, correlation dependences of indicators of
the degree of development of diseases with variable SBC values were obtained in dif-
ferent channels of the Planet Dove satellite system and the multispectral camera Parrot
SEQUOIA + (Tables 1 and 2).
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Table 1. The results of the correlation analysis of the dependence between the degree of development
of diseases in the winter wheat crops of the main test plots and the values of the SBC of the spectral
channels of the Dove Planet satellite constellation.

Pathogen Spectral Channels Vegetation Indices
443 490 531 565 610 665 705 865 NDVI NDVI2 GNDVI

GS 40−47 “flag leaf”

Powdery −0.49 0.75 * 0.05 −0.67 * 0.21 0.21 −0.42 −0.09 −0.16 −0.63 * −0.57mildew

Septoria −0.49 −0.17 −0.35 −0.28 0.59 −0.38 0.11 −0.37 −0.12 0.53 0.16

Yellow rust −0.43 0.24 −0.27 −0.62 0.59 −0.18 −0.16 −0.01 0.07 0.05 −0.21

Yellow spot - - - - - - - - - - -

Brown rust - - - - - - - - - - -

GS 50−59 “heading”

Powdery
0.74 −0.43 0.14 0.06 0.48 −0.04 −0.24 −0.40 −0.33 0.12 −0.06mildew

Septoria 0.67 0.79 * 0.13 −0.59 −0.17 −0.50 −0.18 0.06 0.49 0.39 0.17

Yellow rust 0.69 * 0.28 0.46 −0.10 −0.25 0.08 −0.05 −0.04 0.15 0.12 0.02

Yellow spot −0.79 * −0.45 −0.03 −0.18 0.72 * 0.10 0.05 −0.30 −0.32 −0.20 −0.21

Brown rust 0.42 −0.16 −0.13 0.36 0.28 0.30 0.24 −0.19 −0.30 −0.34 −0.29

GS 60−70 “flowering”

Powdery −0.04 −0.23 −0.07 −0.27 0.04 0.09 0.05 −0.27 −0.18 −0.08 −0.24mildew

Septoria 0.40 −0.21 −0.18 0.00 −0.23 0.01 −0.16 −0.03 −0.01 −0.24 0.06

Yellow rust 0.76 * 0.05 −0.14 0.33 0.14 0.22 0.01 −0.28 −0.26 −0.39 −0.19

Yellow spot 0.12 0.38 0.03 −0.04 −0.03 −0.31 −0.06 0.64 * 0.46 0.49 −0.22

Brown rust - - - - - - - - - - -

GS 71−82 “milk−wax ripeness”

Powdery −0.10 −0.19 −0.34 −0.09 0.12 −0.11 −0.15 0.59 0.31 0.00 0.11mildew

Septoria −0.02 −0.18 0.17 −0.35 0.23 −0.43 0.13 0.23 0.44 0.73 * 0.45

Yellow rust −0.34 0.11 −0.15 0.01 0.53 −0.04 0.28 0.42 0.19 0.33 0.06

Yellow spot 0.10 0.29 0.48 0.42 0.35 0.28 0.00 −0.23 −0.33 −0.39 −0.18

Brown rust 0.65 * −0.39 −0.11 −0.15 −0.21 −0.33 −0.56 0.25 0.36 −0.08 0.42

Notes: * Statistical significance of data correlation is confirmed.

Table 2. The results of the correlation analysis of dependence between the degree of disease develop-
ment in winter wheat crops of the main sample areas and the values of SBC spectral channels of the
Parrot SEQUOIA+ multispectral camera are presented.

Pathogen Spectral Channels Vegetation Indices
550 660 735 790 NDVI NDVI2 GNDVI

GS 50–59 “heading”

Powdery
0.73 * 0.68 * 0.44 0.20 −0.63 −0.72 * 0.27mildew

Septoria −0.55 −0.66 * −0.17 −0.28 0.55 0.66 * −0.28

Yellow rust −0.28 −0.15 −0.36 0.00 0.12 0.10 −0.67 *

Yellow spot 0.22 0.07 0.09 −0.22 −0.16 −0.32 0.31
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Table 2. Cont.

Pathogen Spectral Channels Vegetation Indices
550 660 735 790 NDVI NDVI2 GNDVI

Brown rust 0.17 0.17 0.00 0.09 −0.17 0.00 −0.17

GS 60−70 “flowering”

Powdery −0.23 0.22 −0.31 0.50 −0.44 −0.81 * −0.55mildew

Septoria −0.02 −0.20 −0.26 −0.47 0.22 0.56 0.72 *

Yellow rust −0.64 * −0.33 −0.33 0.34 −0.11 −0.10 0.03

Yellow spot 0.12 −0.12 0.15 −0.14 0.39 −0.18 −0.08

Brown rust - - - - - - -

GS 71−82 “milk−wax ripeness”

Powdery −0.43 −0.24 −0.50 0.38 0.31 0.08 0.03mildew

Septoria 0.11 −0.12 0.41 0.25 0.19 0.23 0.25

Yellow rust −0.04 −0.02 −0.18 0.23 0.12 −0.03 0.01

Yellow spot 0.43 0.60 −0.16 −0.45 −0.58 −0.61 −0.59

Brown rust −0.35 −0.08 −0.29 −0.18 −0.02 −0.01 −0.18
Notes: * Statistical significance of data correlation is confirmed.

According to Planet Dove data, in the first considered period of vegetation of winter
wheat plants (GS 40–47 “flag leaf”), a positive and statistically significant correlation be-
tween the degree of powdery mildew development and SBC values in the spectral channel
490 nm, as well as negative correlations in the channel 565 nm and on the values of vege-
tation index NDVI2 were observed. This is explained by the onset of mass manifestation
of disease presence, which was observed at each test plot. Such a statistically significant
and rather high correlation of pathogen development with satellite imagery data indicates
the potential possibility of its detection in winter wheat crops at the earliest stages of
development. Septoriosis and yellow rust were also diagnosed on some plots.

In the second time period associated with the earing phase (GS 50–59 “heading”),
the beginning of the complex manifestation of septoriosis and yellow rust was observed.
According to Planet Dove data, a high and statistically significant positive correlation was
observed for septoriosis and yellow rust in spectral channels 443 and 490 nm and a negative
correlation for yellow spot in spectral channels 443 and 610 nm. According to UAV imagery
data for powdery mildew, a high correlation was observed in spectral channels 550 and
660 nm, as well as for NDVI2 vegetation index values. Thus, satellite imagery and UAV
data turned out to be complementary sources of information.

For the vegetation period of winter wheat development associated with the flowering
phase (GS 60–70 “flowering”), there was a high positive statistically significant correlation
of yellow rust development and NDVI2 values in the 443 nm Planet Dove spectral channel.
UAV imagery data showed a high and statistically significant level of correlation of powdery
mildew development indicators with NDVI2 vegetation index variables. The average level
of correlation of the 550 nm spectral channel with yellow rust development was also shown.

During the milk-wax ripening phase (GS 71–82), a significant decrease in the correla-
tion of powdery mildew development with satellite and drone imagery data was observed.
This is explained by the cessation of pathogen development due to its biological cycle
of transition to the resting phase. The maximum level of development was observed for
septoriosis, which manifested itself in a positive statistically significant correlation with the
variable values of vegetation index NDVI2, obtained from the data of the Planet Dove sys-
tem. In addition, there was a statistically significant correlation of brown rust development
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with variable values of the 443 nm spectral channel, which is obviously associated with a
new phase of its manifestation.

Using the PSL-3 device, we managed to fix the sporulation of almost all listed
pathogens except septoriosis spot disease, since the spreading of this pathogen occurs
exclusively with dripping moisture (rain, dew), and work with the device is carried out in
dry weather.

In phase GS 40–47, “flag leaf”, due to the minimal manifestation of diseases and a
single number of spores for most variants of the experiment, the relationship between the
number of captured spores and the degree of disease development was insignificant or
absent (Table 3). Positive and statistically significant dependence was revealed only for
yellow rust disease with a high correlation coefficient equal to 0.9.

Table 3. The results of the correlation analysis of the relationship between the number of spores
caught using the PSL-3 device and the degree of disease development for three growing seasons
during the study period.

Pathogen Correlation Coefficient Level of Statistical Significance

Phase GS 40–47 “flag leaf”

Powdery mildew 0.7 0.053

Yellow spot −0.1 0.984

Septoria - -

Yellow rust 0.8 * 0.004 *

Phase GS 61 “early flowering”

Powdery mildew 0.7 * 0.040

Yellow spot - -

Septoria - -

Yellow rust 0.8 * 0.004

Phase GS 71–82 “milk−wax ripeness”

Powdery mildew 0.7 * 0.008 *

Yellow spot 0.3 0.339

Septoria - -

Yellow rust 0.9 * 0.001 *
Notes: R is the correlation coefficient index; p is the level of statistical significance (p < 0.05); * statistical significance
of data correlation is confirmed.

In phase GS 61, “early flowering”, the correlation analysis revealed quite high levels
of statistically significant dependence of the number of trapped spores and the degree of
powdery mildew and yellow rust development equal to 0.7–0.8. No correlation relationship
was found for yellow spot disease.

Phase GS 71–82, “milk-wax ripeness”, also revealed a fairly high correlation level of
disease development indicators and the number of powdery mildew spores, which was
0.7. No correlation relationship was found for yellow spot disease. A correlation coefficient
with a high statistically significant value of 0.9 was obtained for yellow rust.

Thus, the influence of weather and the choice of varieties on the development and
spread of fungal leaf diseases of wheat has been established and statistically proven. The
obtained results indicate the potential possibility of using a device for determining the
infestation of plants or other similar spore-catching equipment for compiling a predictive
model for the development of pathogens.

The results of one-factor analysis of variance confirmed the influence of the disease
development factor for all pathogens at a high level of statistical significance (Table 4).
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Table 4. Assessment of the influence of the disease development factor on the spectral characteristics
of winter wheat crops in different ranges of the spectrum (GS 60–70 “flowering”).

Spectral
Range, nm

Powdery Mildew Septoria Yellow Rust Generalized Categories

F p F p F p F p

490 17.3 * 0.00 * 7.2 * 0.00 * 6.4 * 0.00 * 12.6 * 0.00 *

550 13.4 * 0.00 * 5.9 * 0.00 * 5.3 * 0.00 * 9.8 * 0.00 *

660 16.3 * 0.00 * 7.9 * 0.00 * 5.8 * 0.00 * 13.7 * 0.00 *

720 8.5 * 0.00 * 2.6 * 0.03 * 2.1 0.07 6.6 * 0.00 *

845 3.9 * 0.04 * 1.2 0.33 1.9 0.09 4.3 * 0.00 *

1445 7.1 * 0.00 * 2.5 * 0.04 * 3.2 * 0.00 * 5.1 * 0.00 *

1675 8094.3 * 0.00 * 0.9 0.510 1.5 0.202 3.5 * 0.00 *

2005 6.2 * 0.00 * 1.6 0.160 3.1 * 0.01 * 4.1 * 0.00 *

2345 5.4 * 0.00 * 1.6 0.146 2.9 * 0.01 * 3.8 * 0.00 *

Notes: * A mathematically reliable influence of the disease development factor on the value of the spectral
brightness coefficient is found.

Based on the results of posterior analysis, a statistically significant reliable difference
between control plots and infected plots was found (Tables 5–8). Plots with minimal
development of powdery mildew (1.5%) were also singled out in a separate group. Groups
of plots with a gradation of disease development (2.5% and 3.5–4%) were identical in
spectral characteristics (Table 5).

Table 5. Results of a posteriori analysis of the spectral characteristics of winter wheat crops with
different gradations of development of powdery mildew according to the Duncan criterion (GS 60–70
“flowering”). Main plot experiments.

R, %
Spectral Range, nm

490 550 660 720 845 1445 1675 2005 2345

1.5 0.0245
±0.0006 b

0.0563
±0.0011 b

0.0295
±0.0007 b

0.149
±0.0023 b

0.469
±0.0070 c

0.0539
±0.0012 bc

0.145
±0.0027 b

0.0260
±0.0008 b

0.0376
±0.0009 b

2.5 0.0217
±0.0007 a

0.0514
±0.0013 a

0.0259
±0.0009 a

0.139
±0.0028 a

0.444
±0.0087 ab

0.0507
±0.0015 ab

0.135
±0.0034 ab

0.0240
±0.0009 ab

0.0339
±0.0011 a

3.5–4 0.0219
±0.0004 a

0.0514
±0.0009 a

0.0268
±0.0006 a

0.135
±0.0020 a

0.440
±0.0054 a

0.0481
±0.0010 a

0.133
±0.0021 a

0.0223
±0.0006 a

0.0336
±0.0007 a

Control 0.0272
±0.0006 c

0.0608
±0.0010 c

0.0330
±0.0009 c

0.151
±0.0031 b

0.464
±0.0096 bc

0.0568
±0.0016 c

0.143
±0.0037 bc

0.0266
±0.0011 b

0.0383
±0.0013 b

Notes: R—an indicator of the degree of progression of the disease; data represent the average mean value of the
SBC and standard error. In a column, the average values with the same letter do not differ significantly.

Table 6. Results of a posteriori analysis of the spectral characteristics of winter wheat crops with differ-
ent gradations of development of septoria according to the Duncan criterion (GS 60–70 “flowering”).
Main plot experiments.

R, %
Spectral Range, nm

490 550 660 720 845 1445 1675 2005 2345

1–1.5 0.0248
±0.0006 a

0.0523
±0.0009 a

0.0274
±0.0006 a

0.141
±0.0021 a

0.456
±0.0062 ab

0.0512
±0.0011 a

0.139
±0.0024 a

0.0239
±0.0007 ab

0.0354
±0.0008 ab

2 0.0246
±0.0005 a

0.0531
±0.0008 a

0.0275
±0.0006 a

0.142
±0.0019 a

0.446
±0.0056 ab

0.0502
±0.0009 a

0.135
±0.0022 a

0.0235
±0.0006 a

0.0342
±0.0007 a
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Table 6. Cont.

R, %
Spectral Range, nm

490 550 660 720 845 1445 1675 2005 2345

2.5 0.0244
±0.0007 a

0.0523
±0.0019 a

0.0268
±0.0013 a

0.139
±0.0042 a

0.437
±0.0012 a

0.0524
±0.0021 a

0.139
±0.0048 a

0.0248
±0.0014 ab

0.0354
±0.0016 ab

Control 0.0297
±0.0009 b

0.0608
±0.0015 b

0.0330
±0.0010 b

0.151
±0.0033 b

0.464
±0.0098 b

0.0568
±0.0016 b

0.143
±0.0038 a

0.0266
±0.0011 b

0.0382
±0.0013 b

Notes: R—an indicator of the degree of progression of the disease; data represent the average mean value of the
SBC and standard error. In a column, the average values with the same letter do not differ significantly.

Table 7. Results of a posteriori analysis of the spectral characteristics of winter wheat crops with
different gradations of development of yellow rust according to the Duncan criterion (GS 60–70
“flowering”). Main plot experiments.

R, %
Spectral Range, nm

490 550 660 720 845 1445 1675 2005 2345

2.5–3.5 0.0252
±0.0008 a

0.0543
±0.0014b

0.0279
±0.0009 a

0.145
±0.0029 ab

0.460
±0.0087 a

0.0539
±0.0012 a

0.140
±0.0034 ab

0.0247
±0.0010 bc

0.0358
±0.0011 ab

4.0–4.5 0.0249
±0.0008 a

0.0523
±0.0013 a

0.0276
±0.0009 a

0.140
±0.0029 a

0.464
±0.0087 a

0.0507
±0.0015 a

0.139
±0.0034 ab

0.0229
±0.0010 ab

0.0347
±0.0011 ab

5.5–6.0 0.0250
±0.0007 a

0.0498
±0.0009 a

0.0280
±0.0007 a

0.142
±0.0024 ab

0.437
±0.0072 a

0.0481
±0.0010 ab

0.138
±0.0028 ab

0.0248
±0.0008 bc

0.0361
±0.0009 b

8.0–10.0 0.0232
±0.0008 a

0.0573
±0.0018 bc

0.0261
±0.0009 a

0.139
±0.0030 a

0.449
±0.0088 a

0.0549
±0.0020 a

0.130
±0.0034 a

0.0214
±0.0010 a

0.0320
±0.0012 a

15.0 0.0244
±0.0011 a

0.0573
±0.0018 bc

0.0268
±0.0013 a

0.139
±0.0041 a

0.437
±0.0123 a

0.0549
±0.0020 ab

0.140
±0.0047 ab

0.0249
±0.0014 bc

0.0355
±0.0016 ab

Control 0.0297
±0.0008 b

0.0608
±0.0010 c

0.0330
±0.0009 b

0.151
±0.0031 b

0.464
±0.0096 a

0.0568
±0.0016 b

0.143
±0.0037 b

0.0266
±0.0011 c

0.0382
±0.0013 b

Notes: R—an indicator of the degree of progression of the disease; data represent the average mean value of the
SBC and standard error. In a column, the average values with the same letter do not differ significantly.

Table 8. Measurement dates of test plots (main and small-plot experiments).

Type of Research Phase Time Period

Field inspections
Satellite imagery GS 40–47 “flag leaf” 27 April–5 May 2022

Field inspections
Ground spectrometry

UAV
Satellite imagery

Z 50–70 “heading—early
flowering” 8 May–30 May 2022

Field inspections
UAV Z 71–82 “milk-wax ripeness” 31 May–15 June 2022

For septoriosis and yellow rust, despite the significant gradation of their development,
the differences were manifested only in comparison with control plots in spectral channels
490, 550, 620, 720, and 1445 nm (Tables 6 and 7).

3. Discussion

Estimates of the physiological state of crops of cultivated plants based on the analysis
of hyperspectral data are the subject of active study by many researchers [14–22]. Such anal-
ysis can be used to develop precision phytosanitary monitoring methods. It is noteworthy
that a significant number of publications are devoted to the identification of wheat dis-
eases [11–13]. Notable results have been obtained in the detection of diseases such as FHB
(F. graminearum Schwabe) [14–17], yellow rust (P. striiformis West.) [18–21], powdery mildew
(Blumeria graminis (DC.) Speer), and other wheat diseases. [22]. These studies implemented
various data processing algorithms based on the methods of vegetation indexing, cluster
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and discriminant analysis, and machine and deep learning. The areas of application of
hyper-spectral technologies in disease diagnosis also differ. The main objectives are early
detection of pathogens, their identification and differentiation, assessment of the degree of
disease, and assessment of the resistance of a variety of wheat genotypes to diseases [11].

The fundamental novelty of our study is a methodological approach based on the
creation of test plots that allow synchronization of high-precision ground-based spectro-
metric measurements with satellite and unmanned remote surveys with a comparison of
the obtained data with the results of phytopathological field surveys. This approach makes
it possible to scale the developed technologies with the help of remote sensing monitoring
systems. In addition, the proposed scheme for the integrated interpretation of ground and
remote data is supplemented by aerobiological methods for controlling phytopathogenic
infection through the use of special technical means.

According to the data of the Dove Planet satellite system, in the first growing season of
winter wheat growth (GS 40–47 “flag leaf”), a statistically significant correlation was found
between the indicators of the disease development and the variable SBC values of the 490
and 565 nm spectral channels, as well as the values of the vegetation index NDVI2 for the
causative agent of powdery mildew (Table 1). Such a statistically significant and rather high
correlation of pathogen development with satellite imagery data indicates the potential
for its detection in winter wheat crops at the earliest stages of development. In addition,
an average degree of correlation (0.70) was established between the degree of powdery
mildew development and the number of pathogen spores detected using the PSL-3 air
sampler (Table 3). Septoria was detected as a single occurrence in one of ten test plots. Thus,
there was no significant correlation with satellite imagery data for this pathogen. It was
hardly possible to detect the spores of this pathogen, since its spread occurs exclusively
with droplet moisture (rain, dew), and the PSL-3 air sampler can only be operated in dry
weather. There was no statistically significant correlation with the Dove Planet satellite
system data for yellow rust as well. However, a statistically significant relationship between
the degree of disease development and the number of pathogen spores detected using the
PSL-3 air sampler was confirmed (Table 3). On the one hand, it helps to detect the pathogen
in winter wheat crops at the early stages of its development, and on the other hand, it can
serve as a basis for predicting its further development at subsequent stages of winter wheat
ontogeny, taking into account the influence of weather factors.

In subsequent periods of winter wheat ontogeny (GS 50–59 “heading”, GS 60–70
“flowering”, GS 71–82 “milk-wax ripeness”), there were found statistically significant
dependences of disease development and SBC values of the spectral channels of the Dove
Planet satellite system data and the multispectral camera Parrot SEQUOIA + mounted on
the UAV (Tables 1 and 2). The nature of these dependencies for the two compared survey
systems with different central values of the spectral channels was different. For example,
in the GS 50–59 “heading” phase, according to the Dove Planet data, no statistically
significant dependence of powdery mildew development on any of the spectral channels
and values of vegetation indices was revealed. But the UAV data of the same time period
showed an average (0.65–0.70) statistically significant level of correlation of this pathogen’s
development with variable SBC values of the 550 and 565 nm spectral channels, as well as
the values of the NDVI2 vegetation index (Table 2).

It can be concluded that satellite images and UAV data turned out to be complementary
sources of information. On the other hand, for different pathogens, the direction of the
revealed correlation dependencies also differed. So, for example, according to the Dove
Planet data, in the GS 50–59 “heading” phase, the variable SBC values of the 443 nm
spectral channel were characterized by a positive correlation with the development degree
of yellow rust but a negative one with yellow spot (Table 1).

According to the multispectral camera Parrot SEQUOIA+ data in the same growing
season, the variable SBC values of the 660 nm spectral channel showed a positive correlation
for powdery mildew and a negative correlation for septoria (Table 2). The revealed patterns
of correlation, their nature, and their direction can become a potential basis for identifying
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the ratio of the complex development of several pathogens in winter wheat crops. It should
also be noted that for powdery mildew during the growing season, including the GS
50–59 “heading”, GS 60–70 “flowering”, and GS 71–82 “milk-wax ripeness” phases, there
was established an average and statistically significant correlation dependence of disease
development with the number of pathogen spores detected using the PSL-3 air sampler
equal to 0.70 (Table 3). A high and statistically significant correlation level equal to 0.80–0.90
was found for yellow rust.

One-way analysis of variance confirmed the influence of the plant disease develop-
ment factor on the spectral characteristics of the studied winter wheat crops (Table 4). It
also identified statistically significant infected test sites from controls (Tables 5–7). These
differences were most pronounced in the spectral channels of 490, 550, 660, and 720 nm,
which are sensitive to the ratio of the content of chlorophylls A and B, carotenoids, and
anthocyanins in plants, as well as the effects of stress factors. Data for one-way analysis of
variance were obtained as a result of ground spectrometry of winter wheat crops in the GS
60–70 “flowering” phase. The degree of development of powdery mildew on infected test
plots varied between 1.5 and 4.0%; of septoria, it varied between 1.0 and 2.5%; and of yellow
rust, it varied between 2.5 and 10.0%. In the control plot, the average values were 0.62% for
powdery mildew, 1.43% for septoria, and 0.09% for yellow rust. It is noteworthy that the
most pronounced differentiation of spectral characteristics was revealed when grouping
variable SBC values into categories corresponding to different degrees of powdery mildew
development. Thus, infected areas with a minimum pathogen development of 1.5% were
allocated to a separate group. The plot groups with a gradation of disease development of
2.5% and 3.5–4% were identical in terms of spectral characteristics (Table 5). This indirectly
confirms the most pronounced effect of the degree of powdery mildew development on
the spectral characteristics of the studied crops compared to other pathogens.

The low productivity of ground-based spectrometry relative to satellite and UAV
data was noted. At the same time, the multitemporal dynamics of the spectral image of
plants for each of these survey levels remain similar. In this regard, in such studies, it is
recommended to focus on aerial and satellite-based data, especially if there is a task of
scaling. However, since ground spectrometry is based on active sensors with their own
light source and is therefore less dependent on weather, it should not be abandoned entirely.
At the current stage, ground-based spectrometry is used as a method that allows one to
study in detail the changes in the spectral characteristics of crops and over time in order to
identify certain patterns. These data can be used to better interpret the results of space and
unmanned surveys.

Based on the study, we can provide a number of recommendations for the further
development of the experiment. First of all, it is recommended to abandon ground-based
spectrometry, as its low efficiency was revealed when moving to large areas for monitoring.
In addition, in the course of previous seasons, sufficient material was accumulated in this
direction. At the same time, it is desirable to pay more attention to satellite imagery and
surveys using unmanned aerial vehicles, since they allow surveying over a large area, with
a qualitative level of data calibration; they are interchangeable, and also, presumably, less
expensive analogs of spectrometric studies.

Satellite and aerial photography must be performed during the entire observation
period from the moment of plant inoculation. Aerial photography must be carried out at
least once every 5–7 days. Satellite remote sensing data are recommended to be booked in
advance. It is also necessary to organize test plots in such a way as to achieve their maxi-
mum homogeneity, but noticeable differentiation in terms of the degree of development of
the pathogenic background.

Understanding and systematizing the identified technological modes of using spec-
tral equipment in combination with original technical means for pathogen development
diagnostics, as well as the established statistically significant relationships between the
dynamics of the spectral image of various survey systems and the development of the
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pathogenic background of winter wheat crops, will make it possible to formulate the
methodological foundations of remote sensing monitoring of wheat agrocenoses.

4. Materials and Methods
4.1. Arrangement of Test Plots

The studies were carried out in the field conditions of the North Caucasus region
of Russia, on the experimental fields of the Federal State Budgetary Scientific Institution
“Federal Research Center for Biological Plant Protection” (FSBSI FRCBPP) in Krasnodar
(45◦2.413′0′′ N. 38◦58.5598′0′′ E, 29 m a.s.l. m.) during the growing season of 2022. Accord-
ing to the Koppen–Geiger classification, the climate of the study area is transitional from
temperate continental to subtropical (Cfa) [44]. This region is characterized by long, hot
summers and mild to moderately warm winters. Transitional seasons are weakly expressed.
The average amount of precipitation per year is 700–750 mm. The average annual air
temperature is +13.4 ◦C, and the average annual air humidity is 71%. In the growing season
of 2022, the average daily temperatures were 12.2 ◦C in April, 17.5 ◦C in May, and 22.6 ◦C
in June; the average rainfall was 23 mm in April, 54 mm in May, and 159 mm in June. Air
humidity varied from 65 to 70%. The soil cover of the territory is represented by leached
low-humus chernozems [45].

The research site was represented by sowing winter wheat of the promising Alekseich
variety. Ten test plots were allocated to create an artificial infectious background. Accord-
ingly, there were 10 control plots to ensure the comparability of remote sensing survey data
with the results of ground-based spectrometric measurements within the experimental field
with a total area of 1 ha. The size of each test plot was 10 m × 10 m (100 m2) (Figure 5A,B).
In addition to the main test plots, a small-plot experiment was established with Alekseich
and Yuka varieties. The purpose of this experiment was to study in detail the reflectivity
of winter wheat varieties, which are characterized by different degrees of resistance to
phytopathogens and different biometric parameters. The small plots were divided into
infectious background and control plots (Figure 5C). Artificial infection of plants was
carried out on infected plots. The control plots were treated with fungicides to suppress
the development of pathogens and create a relatively clean background. The rest of the
field was not subject to accounting; its examination was not carried out. The studies were
carried out on dedicated and controlled test sites. The remaining field area represents the
background areas, which avoid errors associated with field edge effects.

To create an infectious background on selected test plots, the method of artificial
infection of winter wheat plants with spores of phytopathogens was used. Infection of
winter wheat plants was carried out on 16 April in the “beginning of the tube” phase
(GS 30-32). A 1:100 mixture of urediniospores with talc was used for plant inoculation at
a loading of 5 mg spores/m2. The creation of a clean background (without diseases) was
carried out by 2-fold treatment of the control plots with the systemic fungicide Falcon. EC:
1st treatment on 25 April 2022 (flag list phase), 2nd treatment on 9 May 2022 (phase “early
flowering” GS 61).

The research methodology was based on time synchronization of high-precision
ground-based spectrometric measurements with satellite and unmanned remote surveys
and comparison of the obtained data with the results of phytopathological field surveys
(Table 8).

Three key moments of vegetation timed to specific stages of ontogenesis of winter
wheat plants were identified:

• The first key time period of vegetation is timed to the end of April/beginning of
May, when wheat plants reach the GS 40–47 “flag leaf” phase. This time point is
interesting for the possibility of early detection of infectious onset at the initial stages
of pathogen development.

• The second growing period refers to the second week of May and includes the phases
of “earing and beginning of flowering” (GS 50–70). This time is associated with inten-
sive manifestation of all leaf-stem diseases. This time point is an important link for
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making a predictive model of pathogen development as it allows us to make a compar-
ative analysis of quantitative indicators of their development (degree of development,
number of spores) from the moment of primary signs (after the incubation period) to
the beginning of intensive manifestation.

• The third period under consideration refers to the phase GS 71–82 of milk-wax ripeness
of winter wheat and comes at the end of May/beginning of June. The data obtained
now are the final logical component of the research and can be a potential basis for
yield forecasting.

Plants 2023, 12, x FOR PEER REVIEW  17  of  23 
 

 

 

Figure 5. Remote sensing data obtained for the experimental site: (A) Dove Planet (26 May 2022); 

(B,C) Parrot SEQUOIA+ (27 May 2022). The contours show the areas of the experiment. 

To create an infectious background on selected test plots, the method of artificial infection 

of winter wheat plants with spores of phytopathogens was used. Infection of winter wheat 

plants was carried out on April 16 in the “beginning of the tube” phase (GS 30-32). A 1:100 

mixture  of urediniospores with  talc was used  for plant  inoculation  at  a  loading  of  5 mg 

spores/m2. The creation of a clean background (without diseases) was carried out by 2-fold 

treatment of the control plots with the systemic fungicide Falcon. EC: 1st treatment on 25 April 

2022 (flag list phase), 2nd treatment on 9 May 2022 (phase “early flowering” GS 61). 

The research methodology was based on time synchronization of high-precision ground-

based spectrometric measurements with satellite and unmanned remote surveys and compar-

ison of the obtained data with the results of phytopathological field surveys (Table 8). 

Three key moments of vegetation timed to specific stages of ontogenesis of winter 

wheat plants were identified: 

 The first key time period of vegetation is timed to the end of April/beginning of May, 

when wheat plants reach the GS 40–47 “flag leaf” phase. This time point is interesting 

for the possibility of early detection of infectious onset at the initial stages of patho-

gen development. 

 The second growing period refers to the second week of May and includes the phases 

of “earing and beginning of flowering” (GS 50–70). This time is associated with in-

tensive manifestation of all leaf-stem diseases. This time point is an important link 

for making a predictive model of pathogen development as it allows us to make a 

comparative analysis of quantitative indicators of their development (degree of de-

velopment, number of spores) from the moment of primary signs (after the incuba-

tion period) to the beginning of intensive manifestation. 

 The third period under consideration refers to the phase GS 71–82 of milk-wax ripe-

ness of winter wheat and comes at the end of May/beginning of June. The data ob-

tained now are the final logical component of the research and can be a potential basis 

for yield forecasting. 

Figure 5. Remote sensing data obtained for the experimental site: (A) Dove Planet (26 May 2022);
(B,C) Parrot SEQUOIA+ (27 May 2022). The contours show the areas of the experiment.

4.2. Field Inspections

The assessment of the degree of disease development was based on the visual counting
of the ratio of the proportion of the affected area of the plant leaf lamina to its total area.
Visual counts of winter wheat disease development were carried out along the diagonal
of each plot with an area of 10 m2. During the surveys, 30 plants were selected, and
then for each tier (first, second leaf, etc.), according to international scales, the percentage
of leaf lesions was given. The Peterson scale [46] was used to assess the degree of rust
disease damage, the modified Saari and Prescot scale [47] was used to assess the degree of
pyrenophorosis damage, and special scales developed by CIMMYT [48,49] were used to
assess the degree of powdery mildew, spot blight, and septoriosis damage.

For each test plot, the average indices of the degree of disease development were
calculated according to Formula (1) (Tables 9 and 10):

R =
1
n∑n

i=1 ri (1)

where R is the average degree of development of the disease, %; r is the degree of de-
velopment of the disease of an individual plant, %; n is the total number of registered
plants, pcs.
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Table 9. Average indicators of disease development in winter wheat crops of the main test plots
based on the results of field surveys.

Pathogen
Plots

Control
1 2 3 4 5 6 7 8 9 10

GS 40–47 “flag leaf 28 April 2022

Powdery mildew 1.27 1.07 0.47 1 1.07 2.93 0.87 2.4 1 4 0.4

Septoria 0 0 0 0.67 0 0 0 0 0 0 0

Yellow rust 0 0.4 0 6.67 0 0 0 0 1.33 3.67 0

Yellow spot 0 0 0 0 0 0 0 0 0 0 0

Brown rust 0 0 0 0 0 0 0 0 0 0 0

GS 50–59 “heading” 18 May 2022

Powdery mildew 0.68 2.01 0.83 3.29 1.32 2.14 1.84 2.98 0.76 2.02 0

Septoria 1.36 1.16 1.38 1.06 1.48 0.48 0.92 0.71 2.34 1.79 0.05

Yellow rust 4.08 3.59 6.70 3.67 1.97 1.42 4.78 1.68 1.68 8.31 0.08

Yellow spot 0.01 0 0 0.06 0.06 0 0 0.06 0.03 0 0

Brown rust 0 0 0.01 0.01 0 0 0 0 0 0 0

GS 60–70 “flowering” 25 May 2022

Powdery mildew 4.56 3.27 2.48 3.84 1.38 1.40 3.86 3.86 1.37 2.40 0.62

Septoria 1.09 0.92 2.11 1.79 1.69 1.34 1.73 1.38 1.98 2.44 1.43

Yellow rust 4.28 4.44 7.89 10.12 2.81 6.28 5.89 6.17 3.36 16.89 0.09

Yellow spot 0 0 0 0 0 0 0 0 0 0 0

Brown rust 0 0 0 0 0 0 0 0 0 0 0

GS 71–82 “milk-wax ripeness” 2 June 2022

Powdery mildew 0 0.33 0 0 0 0 0 0 0 0 0

Septoria 3.94 8.14 12.22 3.78 11.20 4.50 5.39 8.33 2.92 4.17 1.17

Yellow rust 12.39 16.17 11.44 7.94 11.11 5.22 5.61 11.06 4.83 9.78 0.6

Yellow spot 0 0.09 0.22 0.31 0.06 0 0.22 0.03 0 0 0

Brown rust 0 0 0 0 0.17 0 4.61 0 0 0 0

Table 10. Indicators of the average development of diseases, chlorophyll content, and plant height of
winter wheat crops in a small-plot experiment.

Variety Powdery Mildew Septoria Yellow Rust

GS 50–59 “heading” 18 May 2022

Alekseich control 0.01 1.73 0.72

Alekseich infectious 0 0.8 12.39

Yuka control 0 10 0.74

Yuka infectious 0.09 5.23 0.34

GS 60–70 “flowering” 25 May 2022

Alekseich control 0.22 0.06 1.17

Alekseich infectious 0 0.89 41.72

Yuka control 0.62 1.43 0.09

Yuka infectious 0 2.03 0.29
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Table 10. Cont.

Variety Powdery Mildew Septoria Yellow Rust

GS 71–82 “milk-wax ripeness” 2 June 2022

Alekseich control 0.24 7.76 2.54

Alekseich infectious 0 1 38.8

Yuka control 0.31 1.17 0.6

Yuka infectious 0 3.21 1.06

Parallel to the accounting of the degree of disease development, air sampling over
winter wheat crops was carried out using the original air sampler PSL-2 developed at FSBSI
FRCBPP [50]. The device is an impactor, inside which there is a slide with the initial size
of the composition (vaseline) in which the spores of phytopathogenic fungi are deposited.
Sampling was conducted along the diagonal of each plot at five points. The sampling time
was one minute. To detect, identify, and quantify phytopathogenic fungi, the samples were
examined under a light microscope at 10x objective magnification.

4.3. Ground Spectrometry

Ground-based spectrometry was carried out non-contact at a height of 1.2–1.4 m
from the Earth’s surface in the electromagnetic radiation range from 350 to 2500 nm
with a spectral resolution of 1–10 nm. To this end, we used the ASD FieldSpec 3 Hi-Res
spectroradiometer (ASD, Boulder, CO, USA) [51] designed to measure the absolute and
relative values of the radiance. We carried out measurements in clear sunny weather with
a minimum amount of clouds at sun heights of more than 35◦ to ensure the comparability
of the obtained data. Under such conditions, lighting conditions change much less, which
reduces the error associated with the influence of this factor. Vegetation measurements
in the small-plot experiment were carried out in two series of five repetitions which were
interrupted by measurements of the calibration white panel. This measure was taken to
reduce the influence of the uneven lighting factor. For each plot of the main experiment,
30 measurements of the vegetation cover were carried out as well as measurements of
the white calibration panel at the beginning and end of each series. Vegetation cover
was measured from one corner of the site to the opposite corner in accordance with the
procedure for conducting field inspections of plants for the presence of pathogens. The
area of one measurement covered by the spectroradiometer sensor was 0.222 m2. This
can be considered as the spatial resolution of ground measurements. Thus, the area of
measurements of each test plot of the main experiment was about 7 m2, and for small plots
of the experiment, it was 2.22 m2. The total measurement area of all test plots was about
60 m2.

Data obtained from ground-based spectrometric measurements are a set of spectral
brightness coefficient (SBC) values that indicate the degree to which sunlight is reflected
from plant surfaces at each wavelength. These data were processed automatically using a
specially written script in the Python programming language.

4.4. UAV Imagery

For aerial photography, a Parrot SEQUOIA+ multispectral camera was used [52]. It
allows multi-zone imaging in four channels with central spectral values of 550 nm, 660 nm,
735 nm, and 790 nm. As a result, a series of images of the experiment from the air was
created, interconnected into a single orthomosaic using the Pix4D software 4.8.0, 4.8.1,
4.8.2. A radiometric calibration target was used to calibrate the images, which allows
one to calibrate and correct the reflectivity of the images in accordance with the specified
values. Three images were taken using the Parrot Sequoia camera. The calculated spatial
resolution for them was about 7 cm, being 7.0 cm for the 19 May survey, 7.1 cm for the
27 May survey, and 7.5 cm for the 3 June 2022 survey. The data density obtained from the
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UAV was 27.8 Mb/ha for one image or 83.5 Mb/ha for the series of three images used in
the study.

4.5. Satellite Imagery Data

For the test plots, ultra-high resolution satellite imagery data were obtained by the
private space company Planet (San Francisco, CA, USA) using the Dove Planet satellite
constellation. The spatial resolution of the images is 50 cm. The spectral resolution is
8 channels with central spectral values of 443 nm, 490 nm, 531 nm, 565 nm, 610 nm, 665 nm,
705 nm, and 865 nm. The amount of data used in the study was calculated to be 57 Kb/ha
for a single satellite image, or 0.92 MB/ha for the series of 16 satellite images used in
the study.

Unfortunately, both the area of the small-plot experiment and the edge effect influ-
ence prevented obtaining valid data. Therefore, the satellite data analysis for the small
experiment was not carried out.

4.6. Data Processing

Spectral ranges of the Parrot SEQUOIA+ camera as well as the NDVI vegetation index
were to ensure the comparability of spectrometric data obtained using different imaging
systems. Aerial and satellite imagery data were processed using the Zonal Statistic tool
provided by the open-source desktop geoinformation system QGIS. As a result, the spectral
data for each area were recorded in the form of a general table as the arithmetic mean of all
pixels that fell within the boundaries of the test areas in the image.

When extracting spectral brightness values, edge pixels were excluded to avoid mixed
pixels. The test sites were marked on the ground with the help of special markers. This
allowed the angles of the sites to be determined. Spectra inside these sites were taken with
a 1 m indentation inside the boundaries.

Correlation analysis of ground-based spectrometry and aerial survey data for 27–28
May (the period where both types of surveys were carried out) showed the following:
despite the different densities of repeated measurements within the main plots and areas of
the small-plot experiment (0.3 meas./m2 versus 5 meas./m2), a stable correlation of the
obtained values can be traced only for the red and IR regions of the spectrum (Table 11).
This suggests that differences in the pathogenic background can be reliably detected using
UAVs only in these ranges. This also suggests that it is not necessary to strive for a high
density of measurements per unit area in order to conduct ground-based spectrometry.

Table 11. SBC correlation coefficients of ground-based spectrometry data and aerial survey data of
test plots.

Test Plots
Spectral Range, nm

550–570 663–673 712–722 820–860

Main plots 0.23 0.70 0.38 0.85

Small-plot experiment −0.12 0.82 −0.22 0.63

Correlation analysis of the relationship between spectral data and disease records was
carried out using the SciPy library of the Python programming language (https://scipy.org/
accessed on 2 August 2023). Correlation analysis of the relationship between the disease
development and air pollution indicator was carried out on the basis of non-parametric
statistics methods using the Spearman test at a high 95% significance level using the
Statistica 2010 program.

The impact of disease development on the spectral characteristics of winter wheat
crops in different regions of the spectrum was assessed using the methods of single-factor
analysis of variance. For data analysis, individual channels of the spectrum were selected
from the total operating range of the spectroradiometer: 490 nm, 550 nm, 660 nm, 720 nm,
845 nm, 1445 nm, 1675 nm, and 2345 nm. These spectral ranges are widely used in the

https://scipy.org/
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study of plants and are closely related to their biophysical characteristics. Statistical data
processing in the selected regions of the spectrum was carried out with the calculation of
the mean value and standard deviation. During the analysis, the variable values of the
coefficient of spectral brightness were grouped into categories corresponding to different
degrees of disease development. Correlation analysis of disease development with the
indicator of the number of detected pathogen spores was carried out on the basis of
nonparametric statistics methods using the Spearman correlation coefficient at a high
significance level of 95%.

All of the above statistical methods of analysis were performed in the Statistica
2010 program.

5. Conclusions

We applied various methods for obtaining spectral information on winter wheat crops
and compared the obtained data with the level of pathogenic background of the test plots.
As a result, it was found that the least disease-prone plants predominantly had lower values
in the green, red, and red-edge ranges of the spectrum and high SBC values in the IR range
during the development phase “flag list”–“wax ripeness”.

Red and IR ranges are the most informative spectral ranges when using satellite
images and multispectral cameras placed on UAVs. In this case, the high frequency of
measurements is more important for determining the level of the pathogenic background
than the spectral resolution. It was also determined that when carrying out ground-based
spectrometry, information acquisition density does not play as significant of a role as the
repetition of measurements. The use of vegetation indices in assessing the dynamics of the
spectral image of various survey systems allows us to bring them to similar values.
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