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Abstract: The accurate prevention and control of pear tree diseases, especially the precise segmen-
tation of leaf diseases, poses a serious challenge to fruit farmers globally. Given the possibility of
disease areas being minute with ambiguous boundaries, accurate segmentation becomes difficult. In
this study, we propose a pear leaf disease segmentation model named MFBP-UNet. It is based on
the UNet network architecture and integrates a Multi-scale Feature Extraction (MFE) module and a
Tokenized Multilayer Perceptron (BATok-MLP) module with dynamic sparse attention. The MFE
enhances the extraction of detail and semantic features, while the BATok-MLP successfully fuses
regional and global attention, striking an effective balance in the extraction capabilities of both global
and local information. Additionally, we pioneered the use of a diffusion model for data augmentation.
By integrating and analyzing different augmentation methods, we further improved the model’s
training accuracy and robustness. Experimental results reveal that, compared to other segmentation
networks, MFBP-UNet shows a significant improvement across all performance metrics. Specifically,
MFBP-UNet achieves scores of 86.15%, 93.53%, 90.89%, and 0.922 on MIoU, MP, MPA, and Dice met-
rics, marking respective improvements of 5.75%, 5.79%, 1.08%, and 0.074 over the UNet model. These
results demonstrate the MFBP-UNet model’s superior performance and generalization capabilities in
pear leaf disease segmentation and its inherent potential to address analogous challenges in natural
environment segmentation tasks.

Keywords: pear leaf disease; segmentation model; multi-scale feature extraction; diffusion model;
dynamic sparse attention mechanism; MFBP-UNet

1. Introduction

Pears occupy a significant position among global fruit tree species, favored widely
by consumers for their nutrient-rich fruit and distinctive taste [1]. Concurrently, the pear
industry’s growth has brought substantial economic benefits to farmers, stimulating the
development of local agricultural economies. However, pear trees frequently encounter
various diseases during their growth process, which often first manifest on the leaves [2],
significantly impacting the tree’s growth and development. These diseases subsequently
lead to a reduction in fruit yield and quality, resulting in economic losses for farmers [3].

In traditional agricultural practices, disease detection and identification in pear tree
leaves were anchored in experiential knowledge and subjective assessment. Given its
inherent limitations in terms of timeliness and precision, this approach falls short of
modern agricultural demands. Accurate segmentation of afflicted leaves is paramount for
the foundation of a robust plant disease prevention and management framework.
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In recent years, machine learning and image recognition technologies have been widely
applied across various domains, including healthcare [4], biomimetics [5], food science [6],
and information technology [7]. In fact, they have also made significant advancements
in agricultural research, enhancing the accuracy and efficiency of plant disease identifica-
tion [8]. For instance, Poornima et al. [9] employed an image processing technique based on
edge and color features for the identification and segmentation of plant disease symptoms,
using multi-class Support Vector Machines for disease classification. Ma et al. [10] achieved
an impressive accuracy rate of 90.67% in imaging segmentation of greenhouse cucumber
downy mildew through a detailed analysis process, employing a decision tree built on a
color feature subset selected via Pearson rank correlation. Jothiaruna et al. [11] introduced
an innovative disease spot segmentation technique using excessive red index, hue, and a
novel color-to-gray conversion algorithm for CCF detection, especially apt for scenarios
with uneven illumination or complex backgrounds. This technique even outperformed
traditional methods like OTSU [12] and K-means clustering [13].

Although the aforementioned methods perform well under specific conditions [14],
their strong reliance on manual feature extraction and selection limits their robustness
when dealing with varied and complex morphologies of diseases, potentially leading to a
significant decline in segmentation accuracy.

With the advancement of deep learning technologies, significant progress has been
made in plant disease identification [15]. Current disease identification approaches can be
categorized into two main types: one utilizes bounding boxes to detect specific areas, offer-
ing the advantage of rapid disease localization, but may not accurately represent the true
extent of the disease. The second is the semantic segmentation approach, which classifies
each pixel, thereby distinguishing disease and healthy regions more accurately. While this
method is more time-consuming in data annotation, it indeed offers a direct visualization of
the actual extent of the disease. As precision and smart agriculture advance, such detailed
information becomes increasingly critical, offering precise assessments of disease severity
and aiding in implementing effective intervention measures [16]. Tassis et al. [17] intro-
duced a deep learning framework that integrates various convolutional neural networks
(Mask R-CNN [18], UNet [19], PSPNet [20], and ResNet [21]) for the automated detection
and recognition of in-field coffee tree disease images. This framework achieved an accuracy
of 73.90% and a recall of 71.90% in instance segmentation tasks. Patil et al. [22] designed an
Enhanced Radial Basis Function Neural Network (ERBFNN) model using the improved
MSFO algorithm for tomato leaf disease segmentation. By processing image noise and
extracting color features, this model outperformed other methods, achieving an accuracy of
98.92%. Wang et al. [23] introduced a strategy for classifying the severity of cucumber leaf
diseases, combining DeepLabV3+ [24] and U-Net. Compared to other methods, this model
demonstrated superior robustness, segmentation precision, and classification accuracy,
with an average accuracy of 92.85%. Zhang et al. [25] proposed an enhanced UNet method
(MU-Net), incorporating residual blocks and paths. This strategy effectively addressed the
gradient vanishing and exploding problems of U-Net and strengthened feature information
transfer. Experimental results indicated improved accuracy and efficiency in plant diseased
leaf image segmentation.

Despite the encouraging performance exhibited by various advanced models in plant
disease identification research, significant challenges remain. Existing models frequently
underperform in segmentation tasks, especially when the disease features are minute,
undergo substantial morphological variations, or present with indistinct boundaries [26].
Addressing these challenges, we first employ multi-scale and multi-type convolutional ker-
nels to capture features at different scales, allowing better adaptability to disease variations
under different conditions. Balancing local and global information has always been a chal-
lenging issue for existing network models. Hence, we introduce dynamic sparse attention
mechanisms and tokenized multi-layer perceptron modules. This not only aids in precisely
extracting lesion edge information but also ensures the model’s robustness in complex
scenarios. The primary contributions of this paper can be summarized in three respects:
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1. We devised and implemented an innovative Multi-Scale Feature Extraction (MFE)
module. This system leverages multi-scale, multi-type convolutional kernels, fre-
quency attention mechanisms, and residual connections to enhance the model’s ability
in complex image feature recognition and generalization.

2. We introduced the Tokenized Multilayer Perceptron (BATok-MLP) module, which
operates on the basis of dynamic sparse attention. By integrating region-level attention
with global attention, this module effectively balances the model’s proficiency in both
global and local information extraction.

3. We pioneered the application of a diffusion model in data augmentation tasks for
pear leaf disease segmentation. In addition to performing standalone tests for various
data augmentation techniques, we have conducted a comprehensive analysis of the
combined effect of different enhancement strategies.

The remainder of this paper is organized as follows: Section 2 introduces the acqui-
sition of the dataset and describes the proposed MFBP-UNet method, Section 3 presents
and discusses the experimental results, and Section 4 delves deeper into a discussion of the
results. Finally, Section 5 concludes the paper.

2. Materials and Methods
2.1. Data Acquisition

The pear leaf disease image dataset utilized in this study was mainly derived from two
sources. To begin, a significant portion of our data was directly collected from a pear orchard
located in Dangshan County, Suzhou City, Anhui Province. This collection was facilitated by
the expert guidance of local arborists (Dangshan County’s geographical location is shown in
Figure 1). This collection utilized a Canon 700D camera with a 5184 × 3456 pixels resolution,
maintaining a shooting distance of 10 cm to 20 cm. To ensure diversity in lighting conditions,
images were taken during various times of day and weather conditions. Through this
process, we obtained images of a range of pear leaf diseases, including 838 instances of Rust,
213 instances of Slug, and 57 instances of Curl.

Figure 1. Location of dataset sources.

To enhance our dataset, we opted to employ the DiaMOS Plant Dataset [27], a public
plant disease image dataset. Although the pear leaf diseases in this dataset can be segre-
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gated into three categories, due to the unbalanced distribution of labels, we decided to only
select images from two disease categories for further analysis; Figure 2 displays partial
pear leaf disease images from different data sources.

Figure 2. Display of disease images from different dataset sources.

After conducting rigorous screening and processing, we curated a final set of 1374 high-
quality images of pear leaf disease for the experimental phase of this research. The selection
process for these images was meticulously controlled to ensure the diversity and efficacy
of the experiments. Consequently, this laid a solid and expansive data foundation for the
following stages of our investigation.

2.2. Dataset Processing and Enhancement

To address the issue of data scarcity and to further augment the generalization perfor-
mance of our model, we innovatively introduced a diffusion model, in conjunction with
data augmentation techniques, to enhance the diversity of our dataset. Our approach incor-
porated a tripartite diffusion model for stable pear leaf disease progression, illustrated in
Figure 3.

1. Text Encoding: Utilizing the CLIP model [28], each token from the input text prompt,
which describes the pear leaf disease, is transformed into an embedding vector.

2. Latent Space U-Net Generator: This component accepts all the token embeddings
and an array of random noise, sequentially generating an array of elements that more
accurately reflects both the input text and the images of pear leaf disease, which the
U-Net has been trained on.

3. Image Decoder: Employing a Variational AutoEncoder (VAE), the acquired latent
arrays are converted into pixel-space representations of pear leaf diseases. Throughout
this workflow, the embedded vectors, derived from the text encoding that describes
the pear leaf disease, regulate the generation of latent space representations by the
U-Net and the decoding process of the VAE.

Figure 3. The diffusion model pipeline for synthetic pear leaf disease image generation.
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We utilized a variety of concrete data augmentation strategies:

1. Random rotation: Involving the rotation of images at arbitrary angles to enhance the
spatial distribution of the data.

2. Random color dithering: Where random adjustments are made to the image’s sat-
uration, contrast, brightness, and sharpness to simulate disease features in varying
conditions.

3. Adding Gaussian noise: To emulate diverse disease characteristics and bolster the
model’s robustness against noise.

4. Mirror flipping: Encompassing both vertical and horizontal flipping, contributing to
an improved spatial distribution of the data.

5. Stable diffusion: To combat sample scarcity and further improve the generalization of
the model.

Figure 4 displays images of pear leaf diseases following data augmentation. These
augmentation techniques enable the model to carry out more effective pear leaf disease
segmentation under complex conditions. Concurrently, Table 1 provides a breakdown and
count of the enhanced datasets of the three types of pear leaf diseases that we gathered.

To efficiently train our segmentation model, we employed the Labelme software to
meticulously annotate the diseased portions of the pear leaves, resulting in the creation of
corresponding mask images. These mask images (as shown in Figure 5) serve as precise
training targets for the model, thereby amplifying the effectiveness of model learning.
The annotation information for each image is stored in the Json format, facilitating easy
reuse and sharing of these annotations.

(a) (b) (c)

(d) (e) (f)
Figure 4. Examples of different data enhancement methods. (a) Original; (b) Adding Gaussian noise;
(c) Random color dithering; (d) Random rotation; (e) Mirror flipping; (f) Stable diffusion.
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Table 1. Number and proportion of pear leaf disease images.

Categories Example Number
(before) Number (after) Proportion

(after)

Rust 838 1676 35.11

Slug 421 1684 35.28

Curl 157 1413 29.60

Figure 5. Presentation of some sample labels.

2.3. Methods
2.3.1. MFBP-UNet Overall Architecture

In our study, mindful of the impact of complex backgrounds and disparate lighting
conditions, we developed a multi-disease segmentation network termed MFBP-UNet, which
is based on the UNet architecture.The overall network architecture is shown in Figure 6.
The novelty of this network lies in its two key feature extraction modules: the MFE module
and the BATok-MLP module. The MFE module fully leverages multi-scale and multi-
type convolution kernels to effectively extract detailed and semantic features. To bypass
traditional pooling operations, we specifically integrated a frequency attention mechanism
to enhance the model’s robustness and amplify its disease feature recognition capability.
In the same vein, the BATok-MLP module, while curbing model complexity, successfully
incorporates a dynamic sparse attention mechanism, enabling the effective utilization of
global information and the attainment of a dynamic trade-off between global and local
features. In terms of optimization, we adopted a combination of cross-entropy loss and
Dice loss methods. This amalgamation empowers the model to effectively recognize and
pinpoint pear leaf disease spots in complex environments, especially as the Dice loss method
can address class imbalance issues more competently. The specific computation formula is
as follows:
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LCE = −
m

∑
i=1

t× log(y) (1)

LDice = 1− 2 ∑n
i=1 y× t + ε

∑n
i=1 y + ∑n

i=1 t + ε
, (2)

where t stands for the true labels while y signifies the model’s predicted output. m denotes
the number of classes, n denotes the number of pixels, and ε is a hyperparameter preset to
1× e−5, serving as a safeguard against zero denominator scenarios.

L = α× LCE + β× LDice. (3)

In this formula, α and β serve as weight coefficients and are respectively configured to
1 and 0.5.
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Figure 6. MFBP-UNet structure diagram. (A) The overall structure of MFBP-UNet. (B) Architecture
of MFE. (C) Architecture of BATok-MLP.

Our research has elucidated that these amendments noticeably bolster the overall per-
formance and precision of our model in comparison to UNet and other advanced networks.
The primary driving force behind this enhancement is the introduction of innovative feature
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extraction modules and optimization strategies. These implementations ensure the model’s
proficient recognition and localization capabilities under the challenges posed by complex
backgrounds and diverse lighting conditions.

2.3.2. MFE Module

The convolution operation within Convolutional Neural Networks plays a critical role
in local feature extraction from images, efficiently encapsulating detailed aspects of the
image while preserving spatial information. Nonetheless, Convolutional Neural Networks
tend to rely on pooling operations as a means to reduce computational complexity and curb
overfitting. This approach, however, can compromise the model’s sensitivity to smaller
targets during the dimensionality reduction process. To address this issue and ensure a
more precise detection and localization of pear leaf disease within intricate environments,
we devised a multiscale type module that incorporates residual connections. As opposed
to conventional Convolutional Neural Networks, this module circumvents the need for
pooling operations. Instead, it harnesses detail-rich and semantic features by operating at
different convolution scales and levels, thereby more effectively preserving the continuity
of information. Figure 6B shows its architecture.

The operation of the Multiscale Feature Extraction (MFE) module is as follows:
First, a 3 × 3 convolution layer is used to extract features from the input feature map
F ∈ RB×H×W×C, producing a base feature map Fc. This basic feature map Fc is then fed into
two separate branches: one uses a 3 × 3 extended convolution to extract a detail-oriented
feature map Fd, rich in local details; the other uses a 5 × 5 convolution layer to extract a
more global, semantic-oriented feature map Fcc. The resulting feature maps Fd, Fcc from
these two branches are then merged along the channel dimension to produce the final
feature map F′.

F′ = Concat(Fd, Fcc), (4)

where Concat denotes the operation of concatenation.
Upon this novel feature map, we implemented depthwise convolution operations with

kernels of sizes 3× 3, 5× 5, and 7× 7. This particular operation significantly mitigates com-
putational complexity and the volume of model parameters while concurrently sustaining
the potent feature extraction capacity. By adopting convolution operations of diverse scales,
we could extract features of varying dimensions, in turn bolstering the model’s expressivity.
We then integrated the outputs across these three branches, thus furnishing a richer and
more comprehensive representation encapsulating expansive disease feature information.

F′′ = φ1
(

D3
(

F′
)
+ D5

(
F′
)
+ D7

(
F′
))

, (5)

where φ1 signifies a 1 × 1 convolutional layer designed for channel compression and
dimensionality reduction. This operation simultaneously merges features of differing
scales, leading to a reduction in the feature map’s dimensionality and an enhancement of
the model’s efficiency. Di symbolizes an i× i(i = 3, 5, 7) dilated convolution layer.

Finally, a frequency attention mechanism was incorporated to bolster the model’s focus
on significant frequency features within the image. This mechanism fortifies the model’s
comprehension of global information by amplifying its capacity to detect disease-related
features, subsequently increasing model robustness. Concurrently, the frequency attention
mechanism is effective in mitigating the effects of superfluous information and noise—such
as random textures and background noise prevalent in the image—thereby elevating the
precision and reliability of the model’s segmentation of pear leaf disease.

In practical applications, the initial step involves partitioning the input feature map
into several groups, each subjected to a two-dimensional discrete cosine transform (2DDCT).
Post-processing via a fully connected layer and function yields the ultimate weighted feature
map. Subsequently, we employ a residual structure to integrate this weighted feature map
with the foundational feature map, thus producing the final output feature map.
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F′′ =
[

F′′0, F′′1, . . . , F′′n−1
]

(6)

Freq = Concat
([

2DDCT
(

F′′
)
, 2DDCT

(
F′′1
)

, . . . , 2DDCT
(

F′′n−1
)])

(7)

Fout = Sigmoid
(

FC
(
2DDCT

(
F′′
)))
× F′′ + φ3(F), (8)

where Sigmoid signifies the activation function, FC stands for the fully connected network
layer, Freq embodies the frequency domain features of the input, which is obtained through
2DDCT transformation, and n is a predetermined value denoting the subdivisions of the
input feature.

Within the MFE module, we harnessed the power of a variety of convolution opera-
tions of different types and scales for feature extraction, thereby amplifying the expressive
power of the features. Subsequently, we incorporated a frequency attention mechanism,
which enhances the model’s focus on significant frequency features of the image by adjust-
ing the features in the frequency domain, resulting in improved robustness and accuracy
of the model. Such a design equips the module with the ability to efficiently detect and
precisely locate pear leaf disease even in complex environments.

2.3.3. BATok-MLP Module

The architecture of UNet is grounded in an encoder-decoder scheme, where a suc-
cession of convolutional and deconvolutional operations are employed for progressive
encoding and decoding, extracting and mapping features across diverse hierarchical levels.
Lower levels primarily focus on fine-grained features (such as edges and textures), while
higher levels concentrate on more abstract and global features (like objects and scenes).
However, traditional convolutional approaches often lack the capacity to fully comprehend
global contextual information, which may lead to the loss of fine-grained features. To ad-
dress this issue, we designed a novel BATok-MLP module that incorporates a dynamic
sparse attention mechanism, as shown in Figure 6C. This module can more effectively
process global contextual information, thereby minimizing the loss of fine-grained features.

The Tok-MLP [29] module effectively captures fine-grained features by moving across
the width and height of the feature map, allowing the model to focus on specific positions
of the convolutional features. However, its extraction of global information is still limited,
as the collection of global information primarily relies on the accumulation of local attention
across various regions.

As a result, we improved the Tok-MLP module by introducing a dynamic sparse
attention [30] mechanism. This mechanism can select different parts of the input sequence
for focus in each computation, allowing the model to understand information from a global
perspective after multiple iterations. This dynamic attention adjustment can both capture
global information and maintain sensitivity to local details.

In the BATok-MLP module, we also introduced a PatchEmbedding layer. This layer
includes a 2D convolutional layer and a layer normalization operation, which can transform
2D features into 1D sequential features while preserving spatial information. This transfor-
mation allows the model to handle 2D spatial information within a 1D sequence, thus better
integrating feature information and enhancing the model’s feature extraction capabilities.

The working principle of the BATok-MLP module can be divided into the follow-
ing steps: First, we apply the PatchEmbedding layer to process the input feature map
X ∈ RB×H×W×C, and then reshape the output one-dimensional sequence Ep into Xreshaped ∈
RB×H×W×C to meet the requirements of subsequent operations. The specific operations are
as follows:

Xt = (Flatten(Conv(X, K)))T (9)

Ep =

(
Xt − µ(Xt, dim=1)/

√
(σ2(Xt, dim=1) + ε)

)
, (10)
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where Conv() represents convolutional operations, µ() and σ() denote mean and vari-
ance, respectively, corresponding to the feature dimension. ε is a hyperparameter, set as
1× e−6. The Flatten() operation converts two-dimensional features into one-dimensional
sequential features, and Ep ∈ RB×N×C(N = H×W) is the output one-dimensional embed-
ded features.

Subsequently, we divide the reshaped input feature map Xreshaped into multiple non-
overlapping regions of size S× S, and each region is integrated into a feature vector. Then,
we perform linear projections on each feature vector to obtain three tensors: Q, K, and V.

Fr = Partition
(

Xreshaped, S
)

(11)

Q = Fr ·Wq, K = Fr ·Wk, V = Fr ·Wv, (12)

where Wq, Wk, and Wv are learnable weight matrices.
Upon acquiring the tensors of queries (Q), keys (K), and values (V), we calculate the

attention scores among regions. Initially, we compute the mean of Q and K on a specific
dimension (dim = 1), to obtain region-level queries and keys (Qr and Kr). Then, we perform
a matrix multiplication of Qr and Kr to generate the adjacency matrix Xr, reflecting the
correlation degree among regions. Following this, we execute a top− k operation, gathering
indices of the k most relevant regions from each region, denoted as Ir. For each region i,
we use Ir to collect the most relevant key-value pairs from K and V, denoted as Kg and Vg.
Ultimately, we perform an attention operation on the collected key-value pairs to yield the
output X′. The corresponding mathematical expressions are as follows:

Qr = µ(Q, dim = 1), Kr = µ(K, dim = 1) (13)

Xr = Qr(Kr)
T (14)

Ir = Top K(Xr, k, axis = 1) (15)

Kg = Gather(K, Ir), Vg = Gather(V, Ir) (16)

X′ = Attention
(
Q, Kg, Vg

)
, (17)

where Qr and Kr are region-level queries and keys; Xr denotes the adjacency matrix
representing the correlation degree among regions; Ir is the indices of the k most relevant
regions for each region; Kg and Vg are the most relevant key-value pairs; and X′ is the
output obtained after the attention operation on the collected key-value pairs.

After the dynamic sparse attention mechanism completes information extraction, we
reshape the attention map X′ into X′ ∈ RB×N×C and input it into the TokMLP module.
In this module, we first perform a shift operation on the width dimension, then utilize a
3× 3 convolution kernel, and convert the channel number into the embedding dimension
E to achieve feature tokenization. Subsequently, these tokens are processed through a
Shi f tedMLP with a hidden layer dimension of H and further processed through a depth-
wise convolution layer. The corresponding mathematical expressions are as follows:

Xshi f ted = Shi f twidth(X) (18)

TW = Tokenize
(

Xshi f ted, kernelsize = 3, channels = E
)

(19)

Y = DWConv(MLP(TW , hiddendim = H)), (20)

where W denotes the width of the feature map and DWConv represents a depthwise
separable convolution.
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During the processing stage after depthwise convolution, we first apply the ReLU [31]
activation function to enhance the nonlinear representation ability of the feature map Y,
obtaining the activated feature map O′. Then, we perform a shift operation on the height
dimension to generate Yshi f ted. Next, using a 3 × 3 convolution kernel and setting the
channel number to the embedding dimension E, we tokenize these shifted features for
the second time, forming tokens TH . These newly formed tokens TH are sent to another
Shi f tedMLP module for processing. This Shi f tedMLP module has an output dimension
of O and its output is denoted as Z. Importantly, to introduce long-range dependency of
features, we add a residual connection here, that is, the original tokens TH are added to Z.

Finally, layer normalization is performed on the features to ensure the stability of
feature distribution among layers, which benefits model training and generalization. We
denote the output of this step as Yf inal . The mathematical expressions for this series of
operations are as follows:

Yshi f ted = Shi f twidth(Y) (21)

TH = Tokenize
(

Yshi f ted, kernelsize = 3, channels = E
)

(22)

Z = MLP
(
ReLU(TH), output dim = O

)
(23)

Yf inal = LN(Z + TH), (24)

where Shi f tedheight represents a shift operation along the height dimension, ReLU denotes
the ReLU activation function, Tokenize stands for tokenization, MLP refers to MLP with
specific output dimensions, and LN represents layer normalization.

We inserted the BATok-MLP module at the end of the feature extraction stage of
the UNet network encoder, which effectively integrates local and global information.
Within the Tok-MLP module, we enhance the capture of fine-grained features by moving
the width and height of the features. Additionally, we address the weakness of traditional
convolutional methods in understanding global contextual information through dynamic
routing sparse attention mechanism, significantly improving the model’s understanding
and representation capabilities.

3. Results
3.1. Experiment Setting and Training Details

To ensure fair comparison of the experiments, we conducted all experiments under a
unified hardware and software environment. The network model was built on the PyTorch
framework, and details of the relevant hardware and software configurations can be found
in Table 2.

Table 2. Hardware and software parameters.

Hardware environment

CPU Intel(R)Xeon(R)Platinum 8350C CPU @ 2.60 GHz

GPU RTX 3090*2

RAM 64 GB

Video Memopry 24 GB

Software environment

OS Ubuntu 18.04.5 LTS

CUDA Toolkit V11.1

CUDNN V8.0.4

Python 3.8.8

torch 1.8.1

torchvision 0.9.1
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3.2. Training Setting

The size of the images is uniformly adjusted to 512 × 512 pixels for research purposes.
Through the application of our finalized augmentation strategy, we expanded the original
dataset to a grand total of 4773 images. To effectively evaluate the model performance and
prevent overfitting, we employed 10-fold cross-validation. Under this strategy, all images
were randomly assigned to training, validation, and test sets, which accounted for 80%
(3819 images), 10% (477 images), and 10% (477 images) of the total dataset, respectively.

To prevent the model from getting stuck in local optima, we used the cosine annealing
strategy during training, which helped accelerate model convergence and improve training
stability. The entire training process consisted of 100 epochs, which was determined based
on our preliminary experimental results to strike the best balance between efficiency and
accuracy. The learning rate was dynamically adjusted between 1× 10−4 and 1× 10−6

to adapt to the model’s needs at different stages of training. We chose Adam with a
momentum of 0.9 as the optimizer because it combines the advantages of RMSProp and
Momentum optimization strategies, which can reduce gradient oscillation and accelerate
model convergence. To optimize computational efficiency and training speed, we set the
batch size to 8. Detailed experimental configurations can be found in Table 3.

Table 3. Experimental settings.

Parameters Value

Size of input images 512 × 512 pixels
Batch size 8

Maximum learning rate 0.0001
Minimum learning rate 0.000001

Optimizer Adam
Momentum 0.9

Number of iterations 100 epochs

3.3. Evaluation Indicators

The present study employs a comprehensive set of metrics, including Mean Intersec-
tion over Union (MIoU) [32], Mean Precision (MPrecision), Mean Pixel Accuracy (MPA),
Dice Coefficient [33], Frames per Second (FPS) [34], and Parameters to evaluate model
performance comprehensively.

Mean Intersection over Union (MIoU) is a critical metric for evaluating image segmen-
tation performance, which represents the average ratio of the intersection to the union of
predicted results and true labels. The calculation formula is as follows:

MIoU =
1

n + 1

n

∑
i=0

pii

∑n
j=0 pij + ∑n

j=0 pji − pii
, (25)

where n represents the number of disease categories, pii denotes the pixel count where the i
disease category is correctly predicted as i category, andpij and pji represent the pixel count,
where the i and j disease categories are mistakenly predicted as each other, respectively.

Mean Precision (MPrecision) and Mean Pixel Accuracy (MPA) are two fundamental
evaluation metrics. They represent the proportion of actually positive samples among the
samples predicted as positive, and the proportion of samples that are actually positive and
are predicted as positive, respectively. The formulas for calculating these two indicators
are as follows:

MPrecision =
∑n

1
TP

TP+FP
n

(26)

MPA =
1

n + 1

n

∑
i=0

pii

∑n
j=0 pij

, (27)
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where TP denotes True Positives while FP denotes False Positives , and n represents the
number of disease categories detected, pij represents the number of pixels where category
i is predicted to be category j, pii denotes the number of pixels correctly predicted to be
category i.

The Dice Coefficient (also known as the Sørensen–Dice coefficient) is used to measure
the similarity between two samples. The formula is as follows:

Dice =
2 ∗ TP

2 ∗ TP + FP + FN
, (28)

where FN denotes False Negatives.
Frames Per Second (FPS) is a key metric for the detection speed of the model, repre-

senting the number of images processed per second. The calculation formula is as follows:

FPS =
1
t

, (29)

where t represents the time taken to process a single image.

3.4. Experimental Results and Analysis
3.4.1. Comparison of Different Data Augmentation Methods

In this study, we systematically investigated the impact of data augmentation on
improving the accuracy of pear tree leaf disease segmentation. As shown in Figure 7,
we conducted independent experiments for different enhancement methods and deeply
explored the effect of combining various enhancement methods. The specific experimental
settings were as follows: one group of the original dataset was not subjected to any data
augmentation, while five groups of experiments each used random rotation, random color
dithering, Gaussian noise addition, mirror flipping, and stable diffusion augmentation
methods. The final group of experiments combined all augmentation methods.
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Figure 7. Comparison experiments of different data augmentation effects.

The experimental results indicate that the model trained on the original dataset has an
accuracy of 65.68%, while the model trained using a single augmentation method has an ac-
curacy ranging from 67.88% to 76.22%. Of particular note is that the stable diffusion method
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provides the highest model accuracy, reaching 79.01%. This strongly demonstrates that data
augmentation can effectively improve model performance by providing neural networks
with richer opportunities for feature learning. The introduction of the stable diffusion model
in data augmentation for pear tree leaf disease is a first, and the experimental results fully
demonstrate its outstanding effectiveness in alleviating the problems of imbalanced dataset
and difficult data acquisition.

Although methods such as random rotation, adding Gaussian noise, and random
mirroring can change the perspective or contrast of images, their effect on improving model
accuracy is not significant. This may be because these methods do not alter the essential
features of the plant disease. On the contrary, a comprehensive enhancement method, which
combines all data augmentation strategies, improved the model accuracy to 86.16%. This
result further confirms that by comprehensively utilizing various enhancement methods,
we can train the model from multiple perspectives, improve its generalization ability,
and better handle new, unseen data.

In summary, the experimental results strongly support the important role of data
augmentation in improving model performance. Particularly, the comprehensive data aug-
mentation method demonstrates significant advantages in enhancing model generalization
ability and accuracy. After careful consideration, we selected five methods for our final
data augmentation strategy: random rotation, mirror flipping, random color dithering,
stable diffusion, and adding Gaussian noise, with a ratio of 1:1:1:2:2.

3.4.2. Experiment Comparing with Different Models

In this study, we conducted an in-depth analysis of the performance of the MFBP-
UNet model and compared it with numerous widely used image segmentation models.
Specifically, we compared it with various well-known UNet-based architectures, such as
UNet, UNet++ [35], and U2Net [36], as well as recent transformer-based variants, such
as TransUNet [37] and SwinUNet [38]. Additionally, the evaluation process included
baseline networks such as FCN [39], DeepLabV3 [40], HRNet [41], PSPNet,Lraspp [42],
and SegNet [43]. The experimental results showed that the MFBP-UNet outperformed all
the compared models in multiple performance metrics, including MIoU, MPrecision, MPA,
and Dice coefficient. Detailed results and training process can be found in Table 4 and
Figure 8.

Table 4. Comparison of the main performance of different methods.

Model MIoU MPrecision MPA Dice FPS Parameters

DeepLabV3 83.39% 90.53% 90.82% 0.902 5.709 58.626628 M
HRNet 81.28% 89.20% 89.33% 0.889 5.625 51.949141 M

TransUNet 62.47% 68.28% 83.27% 0.828 5.620 67.865764 M
UNet 80.40% 87.74% 89.81% 0.848 5.991 17.263042 M

PSPNet 82.06% 89.46% 90.11% 0.859 7.430 49.068488 M
U2Net 83.68% 92.08% 89.65% 0.905 4.142 44.037052 M

UNet++ 74.46% 88.63% 89.85% 0.851 5.873 26.905685 M
FCN 83.21% 90.55% 90.55% 0.904 6.143 9.641661 M

Lraspp 76.06% 85.57% 85.67% 0.847 7.640 3.218648 M
SegNet 77.18% 86.01% 86.78% 0.871 5.321 29.445316 M

SwinUNet 61.84% 72.69% 75.70% 0.681 6.187 41.393124 M
MFBP-UNet 86.15% 93.53% 90.89% 0.922 4.603 22.076297 M
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Figure 8. Loss and MIoU curves of the MFBP-UNet and other methods.

Specifically, MFBP-UNet achieved 86.15% MIoU, which is significantly better than
all other models, such as DeepLabV3, HRNet, PSPNet, and FCN, with MIoU scores of
83.39%, 81.28%, 82.06%, and 83.21%, respectively. As the key indicator for evaluating model
performance in terms of classification accuracy, the superior performance of our model is
mainly attributed to the frequency attention mechanism introduced by the MFE module,
as well as the design of multi-scale and multi-type convolution modules, which effectively
capture enhanced details and semantic features. Meanwhile, the dynamic sparse attention
mechanism introduced by the BATok-MLP module enables the model to capture global
information while remaining sensitive to local details.

According to the results, MFBP-UNet outperformed all other models in terms of
mean pixel accuracy (MPA), achieving an impressive 90.89%. In contrast, Lraspp, U2Net,
and UNet++ scored 85.57%, 89.65%, and 89.85% respectively. MPA is a reliable indicator of
how accurately a model predicts pixel class, and this outcome further confirms our model’s
exceptional performance in extracting details and obtaining semantic information. In the
experiment of the Dice Similarity Coefficient (DSC), the MFBP-UNet model achieved a high
score of 92.18%, thanks to its ability to accurately locate and identify the boundaries of pear
leaf diseases. This experimental result confirms the strong performance of the MFBP-UNet
model in handling complex plant disease image segmentation tasks. Additionally, the result
also indicates that our model performs well in extracting and fusing features at a global
scale, as well as obtaining details and boundary information, which is crucial in image
segmentation tasks.

However, other models, such as SwinUNet and TransUNet, have shown a relatively
weaker performance on these metrics. For instance, TransUNet’s MIoU and Dice coeffi-
cients are 62.47% and 0.828, respectively, which are significantly lower than our model’s.
The reason for this could be that their structural design overlooks the importance of multi-
scale features and has a large number of parameters, leading to significant hardware
requirements for leaf disease image segmentation tasks.

Finally, we report the average inference time when running on a CPU. Considering
that most edge devices operate on low computing power and often lack the computational
advantage of GPUs, we performed forward propagation on ten 512 × 512 pixels resolution
images and reported the average inference time. Although MFBP-UNet did not perform
optimally in the FPS metric, its speed of 4.603 is still acceptable. It is worth noting that
the parameter count of MFBP-UNet is 22.076297M, much lower than that of models such
as TransUNet and SwinUNet. This allows MFBP-UNet to efficiently utilize computing
resources when handling large-scale and complex tasks, and can also be applied effectively
on hardware-limited devices.

3.4.3. Ablation Experiment

To demonstrate the performance improvement resulting from a series of improvements
made to the UNet network model, we trained and tested on an enhanced dataset, with MIoU
selected as the primary evaluation metric. Using the controlled variable method, we
introduced the multi-scale feature fusion (MFE) module and the BATok-MLP module one
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by one, and combined the cross-entropy loss and Dice loss functions to conduct a series of
ablation experiments. Figure 9 shows a comparison of performance evaluation indicators
under different module configurations, including no module enhancement, using only
the MFE module, using only the BATok-MLP module, using the MFE and BATok-MLP
modules in combination, and the optimized MFBP-UNet model using cross-entropy and
Dice loss functions. Meanwhile, Figure 10 details the MIoU variation curves of each ablation
experiment on the training set.
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Figure 9. Ablation experiments of MFBP-UNet.
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Figure 10. Experimental results of ablation experiment effects.

After embedding the MFE module, we observed a 1.1% increase in the model’s MIoU.
This improvement can be mainly attributed to the MFE module’s ability to extract and fuse
feature information from multiple scales. In this way, the module enhances the network’s
understanding of global contextual information while also improving its sensitivity to
subtle local variations. As a result, the model’s ability to recognize small targets is enhanced.

Subsequently, we integrated the BATok-MLP module. By employing this module and
leveraging a dynamic sparse attention mechanism, we enhanced the model’s capacity to
process global and local information, achieving a dynamic equilibrium of features and
thereby improving the model’s performance. This strategy mitigates the model’s reliance on
non-essential information, reinforces the extraction of key information, effectively reducing
redundant data within the model and further fortifying its representational ability.

Finally, we replaced the loss function of the network with a combination of cross-
entropy loss and Dice loss. The cross-entropy loss function helps the model to recognize



Plants 2023, 12, 3209 17 of 23

each category evenly, while the Dice loss function has good robustness for imbalanced sam-
ples, especially for minority classes (small targets), significantly improving the recognition
ability. The design of this loss function enhances the model’s attention to small targets,
further improving the model’s performance.

Overall, our improvement strategy, including the introduction of the MFE module
and BATok-MLP module, as well as the optimization of the loss function, successfully
increased MIoU by 5.4% while keeping the parameter volume relatively small. This result
fully validates the effectiveness and rationality of our improvement strategy.

3.5. Prediction Result Display of MFBP-UNet

As illustrated in Table 5, we demonstrate the disease segmentation results of 12 models
on the test set. Different diseases, such as Rust, Curl, and Slug, are represented in red,
yellow, and green, respectively, while the background is denoted in black. Preliminary
observation reveals that some benchmark models like PSPNet, Lraspp, UNet++, and SegNet
have significant shortcomings in handling pear leaf disease segmentation tasks; particularly
when dealing with leaf veins, shadows, and areas where the background merges, their
disease feature extraction capability is relatively weak, leading to a considerable number
of false negatives and false positives, which directly impact the segmentation results and
model performance.

Table 5. The effect of running various methods.

Rust Curl Slug

Disease image

Ground truth

DeepLabV3

HRNet

TransUNet
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Table 5. Cont.

Rust Curl Slug

UNet

PSPNet

U2Net

UNet++

FCN

Lraspp

SegNet

SwinUNet

MFBP-UNet



Plants 2023, 12, 3209 19 of 23

Further comparative analysis shows that UNet and U2Net reduce the resolution
of feature maps during the downsampling process, potentially limiting their capability
to capture small-scale disease features. However, our MFBP-UNet, through the use of
multi-scale convolutional kernels, has successfully extracted rich detail features while
retaining global semantic information, enabling it to more effectively capture small-scale
disease features.

The challenge of handling large-scale Slug images mainly stems from the fixed recep-
tive field size of models like SegNet and HRNet, which may lead to the loss of context
information when extracting large-scale disease features, affecting the model’s segmenta-
tion performance. Contrary to these models, MFBP-UNet, by incorporating the BATok-MLP
module, manages to balance global and local information, thereby avoiding the loss of
context information when dealing with large-scale disease features.

While models like SwinUNet and TransUNet have made improvements in certain
respects, such as handling large-scale diseases, they still exhibit notable deficiencies in
performance when dealing with complex backgrounds or tiny disease spots, resulting in
less-than-ideal segmentation results.

After a deep comparison of these models, we discovered that our MFBP-UNet not only
reduces the omission of disease spots but also makes significant improvements in edge
detection, noticeably outperforming other models. This fully demonstrates the effectiveness
of our strategy: by introducing the MFE and BATok-MLP modules and adopting weighted
cross-entropy and Dice loss functions, we can extract and balance global and local feature
information, reduce feature information loss, thereby significantly improving the model’s
segmentation performance.

3.6. Model Performance Assessment: Ability to Deal with Different Types of Pear Leaf Diseases

To intuitively assess the performance of the MFBP-UNet model, we have utilized
Grad-CAM [44] to visualize the areas of disease that the model focuses on. As illustrated in
Table 6, we have chosen to compare this model with the top five networks based on Dice
scores. The results show that MFBP-UNet can accurately concentrate on the disease areas
across all types of plant diseases. Subsequently, we will demonstrate this specifically in the
context of Rust, Leaf Curl, and Slug diseases.

Table 6. Heatmaps of different methods using Grad-CAM.

Rust Curl Slug

Disease image

DeepLabV3

HRNet
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Table 6. Cont.

Rust Curl Slug

FCN

U2Net

MFBP-UNet

First, in the detection of Rust disease, characterized by small, dense yellow spots on
the leaves, MFBP-UNet successfully detects all disease areas, including those with smaller
but denser spots.

Next, in the detection of Curl disease, which causes the edges of leaves to curl, our
MFBP-UNet outperforms other networks in its ability to extract disease signs from the
leaf edges.

Lastly, in the detection of Slug disease, which often forms large disease spots on the
leaves, MFBP-UNet exhibits superior global information processing capability, enabling
comprehensive detection of the diseased areas.

In conclusion, MFBP-UNet provides precise and detailed disease area segmentation, re-
gardless of the type of disease or the size and distribution of the disease. This demonstrates
its excellent performance in the task of pear leaf disease segmentation.

4. Discussion

In this study, we have successfully trained and validated an improved network based
on the UNet architecture—the MFBP-UNet. This network is designed to handle pear leaf
disease image segmentation tasks in natural environments and it has been thoroughly
compared with various other segmentation networks. We found that each network archi-
tecture has its strengths and weaknesses in terms of performance on the task of pear leaf
disease segmentation.

The UNet architecture is composed of two stages: contraction and expansion. Its
strength lies in its ability to accurately capture and retain the contextual information of
the image, but its inherent scaling operation might lead to the loss of information from
small-scale targets. Therefore, based on this, we have optimized and designed new feature
extraction modules—MFE and BATok-MLP.

The MFE module, by utilizing convolution kernels of various scales and types, effec-
tively extracts detailed and semantic features. This allows it to understand multi-scale
features, especially the detection ability of small targets, more deeply than the traditional
UNet. To further improve the model’s robustness and enhance its ability to recognize dis-
ease features, we have introduced a frequency attention mechanism to replace traditional
pooling operations. In the final stage of the model, we use the BATok-MLP module to
reduce the complexity of the model. We also adopt a dynamic sparse attention mechanism
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to enhance the model’s use of global information, achieving a dynamic balance between
global and local features.

To optimize the model, we used a combination of cross-entropy loss and Dice loss. This
approach enables the model to effectively identify and locate pear leaf disease spots in com-
plex environments. Compared with UNet and other advanced models, our optimization
has significantly improved the overall performance and accuracy of the model.

We also noted that, while advanced segmentation networks like U2Net, TransUNet,
SwinUNet perform excellently on some standard datasets, they did not perform as well
in handling our task of pear leaf disease image segmentation. This could be due to issues
like inconsistent shooting conditions, diversity of diseases, and scale changes in images
taken in natural environments, or it could be due to insufficient dataset size. In addition,
models with relatively fewer parameters, such as PSPNet, SegNet etc., might not have used
pre-trained weights for training, which is crucial for small datasets. This could potentially
lead to an inability to accurately capture the diverse features in our dataset.

Despite the excellent performance of our model in the current task, we recognize
that there is much room for improvement in future research. For instance, we can further
optimize the network architecture to better adapt to complex natural environments, or try to
use more data augmentation and model fusion strategies to further enhance the robustness
and accuracy of the model.

5. Conclusions

In this study, we focused on segmenting pear leaf disease images taken in natural
environments and successfully developed an enhanced MFBP-UNet network. To effec-
tively minimize the loss of small-scale target information and strengthen the integration
capability of disease region edge details, we introduced innovations to the UNet structure.
By integrating the MFE and BATok-Mlp modules, our network is equipped to capture and
fuse features across different scales. The MFE module, utilizing multiple convolutional
kernels, increases the sensitivity to smaller disease-affected regions. In contrast, the BATok-
Mlp module, with its dynamic sparse attention mechanism and tokenized multi-layer
perceptron components, strikes a balance between local and global information. More-
over, by combining cross-entropy loss with Dice loss, we have enhanced the accuracy in
identifying and locating pear leaf lesions.

Compared to the original UNet, our modified network model shows superior segmen-
tation performance. Specifically, our method achieved scores of 86.15%, 93.53%, 90.89%,
and 0.922 on performance metrics such as MIoU, MP, MPA, and Dice, respectively.

While our method is effective at segmenting pear leaf lesions, the network model
is notably larger. To further optimize the model’s performance and efficiency in the
future, we plan to continuously enrich the dataset on pear leaf diseases, explore new
strategies to simplify the model, and integrate our solution into the latest disease de-
tection platforms. This approach aims to achieve higher segmentation precision and
efficiency, making it more suitable for real-world production applications. Code is avail-
able at https://github.com/Lancelot-wy/MFBP-UNet-A-Network-for-Pear-Leaf-Disease-
Segmentation-in-Natural-Agricultural-Environments (accessed on 23 August 2023).
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