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Abstract: Climate change can exert a considerable influence on the geographic distribution of many
taxa, including coastal plants and populations of some plant species closely related to those used
as agricultural crops. East Asian wild radish, Raphanus raphanistrum subsp. sativus, is an annual
coastal plant that is a wild relative of the cultivated radish (R. sativus). It has served as source of
genetic material that has been helpful to develop and improve the quality and yield of radish crops.
To assess the impact of climate change on wild radish in East Asia, we analyzed its distribution
at different periods using the maximum entropy model (MaxEnt). The results indicated that the
precipitation of the driest month (bio14) and precipitation seasonality (bio15) were the two most
dominant environmental factors that affected the geographical distribution of wild radish in East
Asia. The total potential area suitable for wild radish is 102.5574 × 104 km2, mainly located along
the seacoasts of southern China, Korea, and the Japanese archipelago. Compared with its current
distribution regions, the potentially suitable areas for wild radish in the 2070s will further increase
and expand northwards in Japan, especially on the sand beach habitats of Hokkaido. This research
reveals the spatiotemporal changes for the coastal plant wild radish under global warming and
simultaneously provides a vital scientific basis for effective utilization and germplasm innovation for
radish cultivars to achieve sustainable agriculture development.

Keywords: climate change; coastal plant; MaxEnt modeling; wild radish; potentially suitable habitat

1. Introduction

The effects of climate change are a concern all over the world due to the unprecedented
occurrence of extreme weather events, especially with regard to temperature and rainfall [1].
The Sixth Assessment Report (AR6) proclaimed that the global temperature rise could reach
1.5 ◦C or could be at risk of temporarily breaching it [2]. The AR6 stresses that the increasing
severity of extreme climate events has caused the death and disappearance of plants over
many local regions [3]. Thus, scores of plant species have been forced to migrate to new
areas to exploit more suitable habitats because of climate change. Due to the thermal
expansion of waters and the melting of glaciers and ice sheets caused by global warming,
the sea level is rising and this has a strong influence on coastal plants. Because of their
distinct linear distributions, coastal plants are easily affected by the formation of land
bridges during glacial periods. In addition, further climate change is projected to greatly
affect crop plants in various aspects, including productivity, growing season, crop variety,
and tolerance thresholds to environmental factors [4], and will result in severe impacts
on the global crop yield. During domestication, crops go through a genetic bottleneck
and end up with much less genetic variation than wild species [5]; thus, they are more
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likely to be more susceptible to and could be more significantly impacted by climate
change. A more variable environment could benefit the wild relatives of crops in the
selection of specific desirable traits such as resistance to abiotic stresses and their ability
to survive and adapt well [6]. Thus, the wild relatives of plant species used in agriculture
continue to serve as a rich source of genetic material, providing a broad pool of potentially
valuable genetic resources to improve agricultural production and maintain sustainable
agroecosystems [7,8].

East Asian wild radish, Raphanus raphanistrum subsp. sativus (L.) Domin [9,10], for-
merly known as R. sativus var. hortensis f. raphanistroides Makino, is a member of the
Brassicaceae family and is widely distributed along the coast of East Asia [11]. It is an
annual coastal plant and a close relative of the cultivated radish (R. sativus), which is an
important and popular vegetable crop for its fleshy and edible root, which is consumed
worldwide [12,13]. Compared with cultivated radish in East Asia, wild radish presents
distinct morphological characteristics, including non-fleshy roots, sparsely to densely hairy
stems, pink or purple flowers, cylindric to narrowly lanceolate fruit, and non-shattering
mature siliques that mostly contain 1–10 seeds, and robust growing habits, especially in
mixed sand and clay soil [14]. It is frequently found as a weed on farmlands, waysides,
and seashores in Japan and Korea [12]. It is used as an oil crop to extract cooking oil, a
cover crop to fertilize the soil, and also as a promising forage crop in the southwest of
China, mainly in the Yunnan and Sichuan Provinces [15]. The extracts of wild radish seeds
are rich in sulforaphane, which is regarded as a medicinal resource in foods and has an
impact on the development of new functional antimicrobial agents [16]. Various reports
have further documented the properties of radish for alleviating constipation [17] and
having antimicrobial [18,19], anticancer [20], antioxidant [21,22], and anxiety-reducing
activities [23]. Furthermore, the root extract of wild radish is expected to be a potential food
product that can deaden neuroinflammation in the brain [24]. As a relative of cultivated
radish, wild radish is considered to be a germplasm reservoir of valuable traits, including
diverse and effective forms of resistance to insects and diseases and tolerance for drought,
salinity, and other abiotic stresses [25]. Thus, it is very important to explore the population
dynamics and distribution characteristics of East Asian wild radish from the viewpoint of
radish crop evolution and further improvement.

Recently, species distribution models have been broadly adopted to evaluate the
impact of climate change on the suitable distribution areas of many species [26]. These
models construct statistical connections between the geographical distribution of targeted
species and their respective habitats’ environmental variables and then project potentially
suitable regions and the future distribution of species under different times frames in
the context of global climate change [27]. Most species distribution models call for the
collection of geographical distribution using presence and absence data, whereas the
maximum entropy model (MaxEnt) only requires the presence data and involves species
distribution records and environmental variables [28]. MaxEnt can build distribution maps
and variable response curves by testing the retained portion of the training data. Plenty of
studies have documented that MaxEnt holds excellent predictive ability in simulation and
evaluation; thus, it has been predominantly applied to predict the potential distribution of
plant species under current and future scenarios [29–31].

Exploring the potentially suitable distribution of wild radish on a large scale is helpful
to understand its population dynamics under climate change. Thus, it is worthwhile to uti-
lize ecological modeling to predict the suitable distribution of wild radish and its decisive
environmental factors in historic, current, and future periods to reveal the spatiotemporal
changes of coastal plant distributions under global warming scenarios and to provide a
theoretical basis for cultivating and improving radish crops to accomplish sustainable agri-
culture development. In this study, the objectives were to (1) identify the key environmental
factors that have an impact on the geographical distribution of wild radish in East Asia;
(2) predict the areas that are suitable as habitats for wild radish in the Last Glacial Maxi-
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mum (LGM), current, and future periods; and (3) investigate the climate-change-induced
temporal and spatial changes of wild radish’s distribution in Eas Asia.

2. Materials and Methods
2.1. Species Occurrence Data

Data points documenting the locations of East Asian wild radish (R. raphanistrum
subsp. sativus) occurrence records were extracted based on the following herbarium
databases: the Global Biodiversity Information Facility (GBIF, https://www.gbif.org/,
accessed on 15 May 2023), the China Virtual Herbarium (CVH, https://www.cvh.ac.cn/,
accessed on 15 May 2023), the National Species Information Infrastructure (NSII, http:
//www.nsii.org.cn/, accessed on 15 May 2023), and National Museum of Nature and
Science in Japan (Snet, http://science-net.kahaku.go.jp, accessed on 15 May 2023). We also
extensively reviewed the existing literature and carried out field surveys in East Asia to
ensure that we were using the most comprehensive geographic distribution information
available. The representative plants were dried and stored as herbariums in our laboratory.
We applied Google Earth (http://ditu.google.cn/, accessed on 15 May 2023) to determine
and verify the latitude and longitude information of each existence record. After removing
all duplicate points, those remaining were subjected to carry out the spatial filtering.
Accordingly, a single point was mapped into each grid cell (5 × 5 km). Taken together, 152
unrepeated and high-quality geographically referenced occurrence records for wild radish
in East Asia were collected (Figure 1).
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Figure 1. Distribution records for wild radish in East Asia.

2.2. Environmental Factors

The 19 bioclimatic variables (Table 1) for the LGM (about 22,000 years ago), current
(1970–2000), and future (2070s) scenarios were collected from the Worldclim database
(version 2.1, http://www.worldclim.org/, accessed on 10 May 2023) [32] with a resolution
of 2.5′. Therein, bioclimatic data for the 2070s represent the average values from 2061 to
2080. Pearson’s correlation coefficient was calculated to avoid potential correlations among
climatic variables that may affect the prediction accuracy of models. The general circula-
tion model (GCM) predictions under shared socioeconomic pathway (SSP) scenarios that
were produced by the Coupled Model Intercomparison Project Phase 6 (CMIP6) of the
Intergovernmental Panel on Climate Change (IPCC) were used to estimate future climate
change [33]. Additionally, the GCM was the Beijing Climate Center climate system model
(BCC-CSM2-MR) that was developed by the National Climate Center [34]. Two scenarios,
i.e., SSP1-2.6 (minimum emission hypothesis) and SSP5-8.5 (maximum emission hypothe-
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sis), were chosen for use in this study. In detail, SSP1-2.6 is an updated scenario based on
the representative concentration pathway (RCP) 2.6, where a low radiative forcing reaches
2.6 W/m2 in 2100, whereas SSP5-8.5 represents an extreme scenario in which no policies
are applied regarding greenhouse gases and this causes radiative forcing to be 8.5 W/m2

in 2100.

Table 1. Description of bioclimatic factors used for preliminary screening and final construction of
the maximum entropy model (MaxEnt) model.

Variables Description Units

bio01 Annual Mean Temperature ◦C

bio02 Mean Diurnal Range (Mean of the monthly
(maximum–minimum temperatures))

◦C

bio03 Isothermality (bio02/bio07) (×100) -
bio04 Temperature Seasonality (Standard Deviation ×100) -
bio05 Maximum Temperature of the Warmest Month ◦C
bio06 Minimum Temperature of the Coldest Month ◦C
bio07 Temperature Annual Range (bio05-bio06) ◦C
bio08 Mean Temperature of the Wettest Quarter ◦C
bio09 Mean Temperature of the Driest Quarter ◦C
bio10 Mean Temperature of the Warmest Quarter ◦C
bio11 Mean Temperature of the Coldest Quarter ◦C
bio12 Annual Precipitation mm
bio13 Precipitation of the Wettest Month mm
bio14 Precipitation of the Driest Month mm
bio15 Precipitation Seasonality (Coefficient of Variation) -
bio16 Precipitation of the Wettest Quarter mm
bio17 Precipitation of the Driest Quarter mm
bio18 Precipitation of the Warmest Quarter mm
bio19 Precipitation of the Coldest Quarter mm

Note: The climatic factors in bold were ultimately used to build the model.

2.3. MaxEnt Model Accuracy Verification

MaxEnt 3.4.4 was applied to assess the potentially suitable habitat for East Asian wild
radish under the LGM, current, and future climate scenarios [35]. The prediction model
was established by randomly selecting 75% of the existing points of wild radish as training
data and the remaining 25% as test data. The algorithm was run with 1000 iterations
and 10 replicates in each training partition and finally average the results. The dominant
environmental factors were mainly chosen by a jackknife test [36]. The default values were
retained for other parameters [37].

Threshold-independent receiver-operating characteristic analysis (ROC) was con-
ducted to calibrate the model and validate its robustness. The area under ROC curve (AUC)
was tested for additional precision. In general, the AUC values range from 0.5 to 1.0, and
the scores could be categorized as 0.5–0.6 fail, 0.6–0.7 poor, 0.7–0.8 fair, 0.8–0.9 good, and
0.9–1.0 excellent [38]. The higher the value of AUC (closer to 1.0), the more accurate the
performance of the model [28].

2.4. Suitable Habitat Grade Classification

We converted the ASC II format output files of the MaxEnt model into raster files
using the ArcGIS format conversion tool to obtain the potential habitat suitability areas
for wild radish in East Asia. The potential distribution habitat suitability indexes (0–1.0)
were then calculated. Here, 0 is a completely unsuitable habitat and the higher the degree
of fitness, the higher is the value. Therefore, the fitness index could be classified into four
grades [39]: 0–0.2 unsuitable areas, 0.2–0.4 low suitability areas, 0.4–0.6 medium suitability
areas, and 0.6–1.0 high suitability areas.
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3. Results
3.1. Evaluation of MaxEnt Model Prediction Accuracy

The accuracy of MaxEnt software in predicting the potentially suitable distribution of
wild radish in East Asia was tested by assessing the AUC value. Under the current period,
the mean AUC value of 10 replicated runs was 0.941 (Figure 2), indicating a fantastic level
of accuracy. The AUC values of the LGM and the two 2070s scenario simulations were
0.928, 0.947 (2070s, SSP1-2.6), and 0.939 (2070s, SSP5-8.5), respectively, suggesting that
the prediction outcomes of the MaxEnt model in our study were accurate and suitable
(Figure S1).

Plants 2023, 12, x FOR PEER REVIEW 5 of 13 
 

 

were then calculated. Here, 0 is a completely unsuitable habitat and the higher the degree 
of fitness, the higher is the value. Therefore, the fitness index could be classified into four 
grades [39]: 0–0.2 unsuitable areas, 0.2–0.4 low suitability areas, 0.4–0.6 medium suitability 
areas, and 0.6–1.0 high suitability areas. 

3. Results 
3.1. Evaluation of MaxEnt Model Prediction Accuracy 

The accuracy of MaxEnt software in predicting the potentially suitable distribution 
of wild radish in East Asia was tested by assessing the AUC value. Under the current pe-
riod, the mean AUC value of 10 replicated runs was 0.941 (Figure 2), indicating a fantastic 
level of accuracy. The AUC values of the LGM and the two 2070s scenario simulations 
were 0.928, 0.947 (2070s, SSP1-2.6), and 0.939 (2070s, SSP5-8.5), respectively, suggesting 
that the prediction outcomes of the MaxEnt model in our study were accurate and suitable 
(Figure S1). 

 
Figure 2. The receiver-operating characteristic (ROC) curve and area under ROC curve (AUC) value 
under the current period (mean for 10 replicated runs). 

3.2. Evaluation of the Importance of Climatic Variables 
The pairwise correlations between 19 climate variables (Table 1) were detected by 

Pearson’s correlation coefficients (Figure 3). If the correlation coefficient of any two varia-
bles was ≥ 0.75, only the one with a higher rate of contribution was selected for the later 
models. For example, the correlation between temperature seasonality (bio04) and tem-
perature annual range (bio07) was found to be 0.94. and bio07 displayed a greater contri-
bution in a tentative jackknife test (Figure S2). Thus, we picked bio07 and simultaneously 
eliminated bio04 for the subsequent analyses. Finally, a total of 10 variables (bold font in 
Table 1) were retained for the projection of potentially suitable habitats for wild radish. 

In the prediction for the current period, the percent contribution of bio14 was as high 
as 62.18% and the cumulative contribution rose to 82.21% with the inclusion of bio15 and 
bio02, indicating that these variables best explained the data. The two variables with the 
highest permutation of importance were those of the minimum temperature of the coldest 
month (bio06) and the annual range of temperature (bio07), producing a cumulative value 
of 66.44% (Table S1). The contribution rate of each environment varies greatly in different 
periods. However, one thing that they have in common is that bio14 always shows the 
largest contribution rate (Table S1), highlighting its unassailable dominance. 

Figure 2. The receiver-operating characteristic (ROC) curve and area under ROC curve (AUC) value
under the current period (mean for 10 replicated runs).

3.2. Evaluation of the Importance of Climatic Variables

The pairwise correlations between 19 climate variables (Table 1) were detected by
Pearson’s correlation coefficients (Figure 3). If the correlation coefficient of any two variables
was ≥0.75, only the one with a higher rate of contribution was selected for the later models.
For example, the correlation between temperature seasonality (bio04) and temperature
annual range (bio07) was found to be 0.94. and bio07 displayed a greater contribution in a
tentative jackknife test (Figure S2). Thus, we picked bio07 and simultaneously eliminated
bio04 for the subsequent analyses. Finally, a total of 10 variables (bold font in Table 1) were
retained for the projection of potentially suitable habitats for wild radish.

In the prediction for the current period, the percent contribution of bio14 was as high
as 62.18% and the cumulative contribution rose to 82.21% with the inclusion of bio15 and
bio02, indicating that these variables best explained the data. The two variables with the
highest permutation of importance were those of the minimum temperature of the coldest
month (bio06) and the annual range of temperature (bio07), producing a cumulative value
of 66.44% (Table S1). The contribution rate of each environment varies greatly in different
periods. However, one thing that they have in common is that bio14 always shows the
largest contribution rate (Table S1), highlighting its unassailable dominance.
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Figure 3. Pearson’s correlation coefficient between climate variables. Interpretations of the abbreviations
of climatic variables are listed in Table 1. The values in the circles represent the correlation coefficient
|r| and the positive and negative values represent positive and negative correlation, respectively.

The MaxEnt model’s internal jackknife test of environmental variable importance
showed that precipitation of the driest month (bio14) and precipitation seasonality (bio15)
contributed the most to the model, followed by the mean diurnal range (bio02), mean
temperature of the driest quarter (bio09), temperature annual range (bio07), and minimum
temperature of the coldest month (bio06) (Figure 4). The cumulative contribution of
the above-described six factors is 93.86% (Table S1). These results collectively showed
that precipitation and temperature are the primary environmental factors affecting the
geographical distribution of wild radish in East Asia.
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Depicting the relationship between environmental variables and species occurrence
probability, species response curves exhibit the biological tolerances for target species and
their habitat preferences. Based on the species response curves that were constructed,
wild radish prefers the precipitation of the driest month (bio14) to range from 40.6464 to
112.8912 mm, precipitation seasonality (bio15) to be <52.1592, mean diurnal range (bio02)
to be >3.66 ◦C, temperature of driest quarter (bio09) to be <11.7251 ◦C, temperature
annual range (bio07) to be <30.4412 ◦C, minimum temperature of coldest month to be
(bio06) > −5.72 ◦C; this is when the probability of the presence of wild radish was greater
than or equal to 0.5 (Figure 5).
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(bio09), (e) temperature annual range (bio07), and (f) min temperature of coldest month (bio06).

3.3. Distribution and Change in Potentially Suitable Habitat under Different Climate Conditions

The total suitable area of the current distribution of wild radish was about
102.5574 × 104 km2, with the low-, medium- and high-suitability areas comprising about
73.7610 × 104 km2, 15.7760 × 104 km2, and 13.0204 × 104 km2, respectively (Table 2).
Guangxi, Guizhou, Hunan, Jiangsu, Zhejiang, Taiwan, the southern region of Korea, and
almost all of Japan were determined to be suitable areas for wild radish. The coastal areas
of Japan, Korean Jeju Island, and China’s Jiangsu, Zhejiang, and north Taiwan were the
highly suitable areas. Guangxi, Guizhou, and Hunan had a few fragmented suitable areas
(Figure 6a). From the LGM to the current period, the distribution pattern of suitable habitats
of East Asian wild radish showed clear and evident differences that were mainly due to the
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decline and even disappearance of highly suitable habitats (Figure 6b). In summary, the
percentage of high-, medium- and low-suitability areas shrank by approximately 29, 20,
and 10 × 104 km2, respectively. Southeastern China and the seacoasts of Korea and Japan
lost a large quantity of area suitable for sustaining the wild radish population in the wild.

Table 2. Area of each suitable habitat under the Last Glacial Maximum (LGM), current, and
future periods.

Time Period
Area of Each Suitable Habitat

(The Change in Area Compared with the Current Period) 104 km2

Lowly Suitable Habitat Moderately Suitable Habitat Highly Suitable Habitat Total Suitable Habitat

LGM 83.0800 (−9.3200) 35.4804 (−19.7044) 42.2017 (−29.1812) 160.763 (−58.2055)
Current 73.7610 (0.0000) 15.7760 (0.0000) 13.0204 (0.0000) 102.5574 (0.0000)

2070 (SSP1-2.6) 67.9276 (−5.8334) 18.8107 (3.0348) 13.0591 (0.0387) 99.7975 (−2.7599)
2070 (SSP5-8.5) 84.2481 (10.4871) 28.8238 (13.0479) 11.8967 (−1.1238) 124.9686 (22.4112)

Plants 2023, 12, x FOR PEER REVIEW 8 of 13 
 

 

wild radish showed clear and evident differences that were mainly due to the decline and 
even disappearance of highly suitable habitats (Figure 6b). In summary, the percentage of 
high-, medium- and low-suitability areas shrank by approximately 29, 20, and 10 × 104 
km2, respectively. Southeastern China and the seacoasts of Korea and Japan lost a large 
quantity of area suitable for sustaining the wild radish population in the wild. 

Table 2. Area of each suitable habitat under the Last Glacial Maximum (LGM), current, and future 
periods. 

Time Period 

Area of Each Suitable Habitat 
(The Change in Area Compared with the Current Period) 104 km2 

Lowly Suitable Habitat 
Moderately Suitable 

Habitat 
Highly Suitable 

Habitat Total Suitable Habitat 

LGM 83.0800 (−9.3200) 35.4804 (−19.7044) 42.2017 (−29.1812) 160.763 (−58.2055) 
Current 73.7610 (0.0000) 15.7760 (0.0000) 13.0204 (0.0000) 102.5574 (0.0000) 

2070 (SSP1-2.6) 67.9276 (−5.8334) 18.8107 (3.0348) 13.0591 (0.0387) 99.7975 (−2.7599) 
2070 (SSP5-8.5) 84.2481 (10.4871) 28.8238 (13.0479) 11.8967 (-1.1238) 124.9686 (22.4112) 

Under the SSP1-2.6 scenario framework in the 2070s, the highly suitable habitat 
(13.0591 × 104 km2) remained almost the same as the current levels; however, the area of 
low-suitability habitat and the total suitable area in 2070 declined by 5.8334 and 2.7599 × 
104 km2, respectively (Table 2), indicating a downward trend in preferred habitat availa-
bility (Figure 6c). By contrast, in scenario SSP5-8.5, the poorly and moderately suitable 
habitats locally expanded in central and southern China and their corresponding areas 
increased by 10.4871 and 13.0479 × 104 km2, respectively (Table 2). As a result, the total 
suitable area increased significantly, reaching approximately 124.96 × 104 km2, 21.85% 
more than the current distribution area. In Hunan, Guizhou, and Guangxi Provinces a 
large area will change from low to moderate suitability (Figure 6d). Interestingly, the 
northernmost boundary of the distribution was predicted to move to the north of Hok-
kaido, Japan’s northernmost island, under each future climate scenario. 

 
Figure 6. Potential distribution of wild radish in East Asia: (a) Current; (b) LGM; (c) 2070 for shared 
socio-economic pathway (SSP)1-2.6; (d) 2070 for SSP5-8.5. 

  

Figure 6. Potential distribution of wild radish in East Asia: (a) Current; (b) LGM; (c) 2070 for shared
socio-economic pathway (SSP)1-2.6; (d) 2070 for SSP5-8.5.

Under the SSP1-2.6 scenario framework in the 2070s, the highly suitable habitat
(13.0591 × 104 km2) remained almost the same as the current levels; however, the area of
low-suitability habitat and the total suitable area in 2070 declined by 5.8334 and
2.7599 × 104 km2, respectively (Table 2), indicating a downward trend in preferred habi-
tat availability (Figure 6c). By contrast, in scenario SSP5-8.5, the poorly and moderately
suitable habitats locally expanded in central and southern China and their corresponding
areas increased by 10.4871 and 13.0479 × 104 km2, respectively (Table 2). As a result, the
total suitable area increased significantly, reaching approximately 124.96 × 104 km2, 21.85%
more than the current distribution area. In Hunan, Guizhou, and Guangxi Provinces a
large area will change from low to moderate suitability (Figure 6d). Interestingly, the north-
ernmost boundary of the distribution was predicted to move to the north of Hokkaido,
Japan’s northernmost island, under each future climate scenario.
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4. Discussion

Potentially suitable areas for wild radish were predicted based on 152 global occur-
rence records and 10 environmental variables using the MaxEnt model. The AUC value
offers a threshold-independent measure of the overall accuracy of the model and is an
important model quality indicator for evaluating the accuracy of the applied model [40,41].
The AUC value of this study under each scenario framework, i.e., LGM, current, and future,
is much greater than 0.9, suggesting that the prediction model exhibits an excellent fitting
ability. Thus, the results of MaxEnt model prediction can objectively reflect the distribution
of wild radish in East Asia.

Through the division of the fitness grade, the distribution maps of the potential suitable
areas of wild radish in East Asia under different climatic conditions were obtained. The
results showed that the potential distribution areas of wild radish are mainly concentrated
in the Taiwan, Zhejiang, Sichuan, Yunnan, Guangxi, and Fujian Provinces of China and
the southern border of Korea, as well as the coastal areas of Ryukyu and mainland of
Japan. This is essentially in line with its current actual distribution in East Asia [42]. In
addition, wild radish, as a newly recorded species, has been discovered in coastal areas
in Fujian [43], Shanghai [44], and Wenzhou [45], which is consistent with the potential
distribution obtained in this study, indicating the robustness and reliability of the model.

Among the 10 environmental factors used in the model, the total contribution rate of
precipitation-related factors was 72.43% and that of temperature-related factors was 27.57%,
indicating that precipitation is the primary environmental factor affecting the distribution of
wild radish in East Asia. The precipitation of the driest month (bio14) is between 40.6464 to
112.8912 mm, and it was found to be the most predominant variable with a contribution
rate of 62.18% indicated by the jackknife test. Precipitation may play a major role in
shaping the ecological adaptation of wild radish and has a great impact on its geographical
distribution. Previous studies implemented on radish have shown that storage roots, plant
height, leaf area, photosynthesis, and seed development were significantly affected when
there was a decrease in water availability [46,47]. The precipitation of the driest month
was consistently reported to be one of the most significant bioclimatic variables in the
control of the distribution of Zingiber species in China [48]. Therefore, the availability of
water should be the most critical factor in crop plant growth and dominantly affects its
distribution and survival.

Temperature has been reported to affect the vegetative growth [25], flowering time [49],
seed dormancy, and germination [50] of wild radish. Among the studied temperature
factors, the minimum temperature of the coldest month (bio06) had the largest contribution
(11.45%), with the threshold being >−5.72 ◦C, implying a possible wild radish preference
for a cold climate. This is in agreement with previous studies that reported radish is a
seed vernalization type of plant and needs a period of cold treatment (about 4 ◦C) for
vernalization to initiate flowering availability [51,52]. In addition, except for the minimum
temperature of the coldest month (bio06), other temperature-related factors including
mean diurnal range (bio02), isothermality (bio03), maximum temperature of the warmest
month (bio05), the annual temperature annual range (bio07), mean temperature of the
wettest quarter (bio08), and the mean temperature of the driest quarter (bio09) collectively
contributed 16.13% to the distribution model for wild radish. This suggests that the
survival and growth of this species was less sensitive to the temperature of the habitat
than rainfall. This relatively wide temperature adaptation range for the ecological niche or
strong adaptability to habitat is also reflected in the report in [53], in which vernalization is
not absolutely necessary for wild radish populations in southern Japan, where the wild
radish exhibits a facultative vernalization requirement.

Wild radish has a wide distribution encompassing southwest China, South Korea,
and Japan. Our model indicated that the total suitable habitat area encompassed ca.
102.55 × 104 km2 for the species under current climate conditions. During the LGM period,
the sea level in East Asia was decreased by about 120–150 m compared with the current
sea level, thus Japan was connected to the East Asian continent and formed the East China
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Sea Shelf [54]. The land bridges had a strong influence on the geographic distribution
of plants [55]. In addition to predicting the distribution range of wild radish in East
Asia during the LGM, we speculate that it was likely the “corridor” that allowed wild
radish to migrate eastward to escape the unsustainable cold and dry climate. Wild radish
significantly shifted eastward to the coastal areas in central Japan and the Ryukyu Islands
in the south. In addition, in our field survey the natural population of wild radish in
Fujian, Guizhou, and Guangxi was found to be sparse and discontinuous. The possible
reason for this might be the strong impact of human activities, especially the destruction of
coastal habitats.

For year 2070, the suitable range of wild radish was slightly reduced under the
RCP 2.6 but greatly increased under the RCP 8.5. This finding is consistent with that
of previous studies [29,56], which indicated that temperature had a favorable effect on
plants by accelerating phenological processes and extending the growing season. However,
other studies have reported that temperature might have a negative effect on crop plants,
e.g., potato [57], Zingiber [48], and maize [58]. The impacts that climate change produced
on crops may vary among species and this might contribute to their different survival
temperature thresholds. Our study found that the presence of wild radish was less sensitive
to temperature, implying a strong ecological adaptability. In future climate conditions
where microclimatical temperature continues to rise, the predicted temperature along
the northern border of Japan would reach the low temperature threshold for wild radish
growth, which might give rise to the northward shift of the suitable regional boundary
for wild radish to survive. These results are consistent with speculation that, with global
warming, plants will expand towards higher latitudes [59].

Apart from increasing temperature, the rising atmospheric CO2 concentration will be
a fiercely changing environmental factor in the future [60]. From the perspective of CO2
concentration, the total suitable distribution area of wild radish in a high CO2 concentration
(124.9686 × 104) environment will be much larger than that in a low CO2 concentration
(99.7975 × 104) environment. This finding indicates that an elevated atmospheric CO2
concentration will have a positive effect on wild radish growth, which is in agreement
with Bhargava and Mitra’s reports on crop plants [61]. Increases in atmospheric CO2
concentration are expected to boost photosynthesis and the accumulation of carbohydrates
to fertilize plant growth [62]. CO2 enrichment in the atmosphere is expected to drive a crop
yield increase over time by promoting stomatal closure and saves water [63]. However,
studies of maize crops have described that the low positive effect of CO2 and adaptation
are insufficient to offset the negative effects of increasing temperature and will eventually
lead to yield losses [64]. Due to the interactions between increasing CO2 concentration and
temperature on plant growth being complicated [65], the influences of these two variables
on crop yields or coastal plants should not be overlooked or unraveled individually when
studying climate change impacts.

5. Conclusions

Global climate changes exert a great impact on the distributions of coastal plants and
the wild relatives of crops, particularly in East Asian flora. In this study, the MaxEnt model
was used to predict the potentially suitable distribution areas of a typical coastal plant,
R. raphanistrum subsp. sativus, generally named wild radish in East Asia, under the LGM,
current, and future climatic conditions. Our results showed that the precipitation of the
driest month (bio14) and precipitation seasonality (bio15) were the two most dominant
environmental factors that affected the geographical distribution of wild radish in East
Asia. The predicted distribution area was found to be largest during the LGM period as a
result of the decreased sea level. Compared with the current distribution, the suitable range
for wild radish will be slightly reduced under the RCP 2.6 but will greatly increase under
the RCP 8.5 in the 2070s. In any of the future scenarios, the ecological niche of wild radish
is predicted to undergo a small expansion into high latitude areas. This research reveals
the spatiotemporal changes of coastal plants under global warming and simultaneously
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provides a vital scientific basis for the effective utilization and germplasm introduction for
radish cultivars to achieve sustainable agriculture development.

Supplementary Materials: The following supporting information may be downloaded at: https:
//www.mdpi.com/article/10.3390/plants12183187/s1, Figure S1: ROC curve and AUC value in
(a) the LGM period; (b) 2070 for SSP1-2.6; (c) 2070 for SSP5-8.5. Figure S2: The relative predic-
tive power of the total 19 environmental variable based on a jackknife test for tentative analysis.
Table S1: Estimates of the relative contributions and permutation importance of the predictor envi-
ronmental variables to the MaxEnt model are presented.
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