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Abstract: Rice (Oryza sativa L.) is a very important cereal worldwide, since it is the staple food for more
than half of the world’s population. Iron (Fe) deficiency is among the most important agronomical
concerns in calcareous soils where rice plants may suffer from this deficiency. Current production
systems are based on the use of high-yielding varieties and the application of large quantities of
agrochemicals, which can cause major environmental problems. The use of beneficial rhizosphere
microorganisms is considered a relevant sustainable alternative to synthetic fertilizers. The main
goal of this study was to determine the ability of the nonpathogenic strain Fusarium oxysporum FO12
to induce Fe-deficiency responses in rice plants and its effects on plant growth and Fe chlorosis.
Experiments were carried out under hydroponic system conditions. Our results show that the
root inoculation of rice plants with FO12 promotes the production of phytosiderophores and plant
growth while reducing Fe chlorosis symptoms after several days of cultivation. Moreover, Fe-related
genes are upregulated by FO12 at certain times in inoculated plants regardless of Fe conditions.
This microorganism also colonizes root cortical tissues. In conclusion, FO12 enhances Fe-deficiency
responses in rice plants, achieves growth promotion, and reduces Fe chlorosis symptoms.

Keywords: biostimulant; Fe deficiency; phytosiderophores; rhizosphere microorganisms;
graminaceous plants

1. Introduction

It is estimated that the world population will reach approximately 9 billion inhabitants
by the year 2050, with an increase in food demand of 70% [1]. Rice cultivation is a very
important cereal throughout the world, since it is the staple food for more than half of
the world’s population. It is cultivated in more than 100 countries and provides more
than 20% of the calories consumed worldwide [2]. Currently, production systems are
mainly based on the use of high-yield varieties and the application of large amounts of
agrochemicals, which leads to unsustainable agriculture [3]. Among the problems caused
by these production systems, there is soil and groundwater contamination, imbalance of
soil nutrients and reduction of soil biodiversity [4,5]. Given this situation, it is necessary to
change to a sustainable production system which is more environmentally friendly and
has less dependence on chemical fertilizers [6,7]. For this reason, the development of crop
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varieties more efficient in nutrient acquisition and a better management of the rhizosphere
are necessary [8]. The rhizosphere is the fraction of the soil close to the roots, rich in energy
and in which a large number of microbes, like rhizobacteria and fungi, live [9]. Some of
these microbes associated with plants could be exploited to achieve promotion of growth
and greater plant productivity [10]. Many of these mutualistic microbes release nutrient
solubilizing compounds or modify the physiology and architecture of the roots in order to
help plants to obtain nutrients like iron (Fe) and others [11–15].

Iron (Fe) is one of the most abundant elements in the earth’s lithosphere, but its solubility
and availability for plants is low in calcareous soils with pH ranging from 7.4 to 8.5 [16,17].
In this case, plants may suffer from Fe deficiency, showing chlorosis in the youngest
leaves [18–20]. Fe is a redox-active metal that is involved in hemoproteins related to electron
transfer in photosynthesis and mitochondrial respiration, as well as protection against
reactive oxygen species [21]. This nutrient is also involved in other key processes in plant
physiology, such as chlorophyll biosynthesis, nitrogen assimilation and the biosynthesis of
hormones like gibberellic acid, ethylene and jasmonic acid [21–23].

Plants have evolved two distinct strategies, namely Strategy I and Strategy II, to facilitate
the uptake of Fe from the soil. Strategy I is employed by non-graminaceous plants, such as
dicots, and involves the reduction of Fe3+ to Fe2+ before absorption [24,25]. This reduction
process is facilitated by a ferric reductase located at the root surface, which is encoded by
the AtFRO2 gene in Arabidopsis thaliana. Subsequently, Fe2+ is taken up through an Fe2+

transporter, which is encoded by the AtIRT1 gene in Arabidopsis thaliana [24,25]. When facing
Fe deficiency, these Strategy I plants activate several physiological and morphological
responses in their roots. These responses include an increased ferric reductase activity,
enhanced capacity for Fe2+ uptake, acidification of the rhizosphere (due to H+-ATPases
encoded by AtAHA genes in Arabidopsis), as well as escalated synthesis and release of
organic acids (e.g., malate and citrate) and phenolic compounds (such as coumarins and
others) [17,19]. Morphologically, noteworthy adaptations include the formation of subapical
root hairs, cluster roots, and transfer cells, all aimed at increasing the root’s contact surface
with the soil. The enhancement of both morphological and physiological responses is
particularly significant in the subapical region of the roots [19,26].

To obtain Fe from the soil, Strategy II plant species release PhytoSiderophores (PS)
from their roots, through transporters like the one encoded by the TOM1 gene in rice,
which form stable Fe3+ chelates with Fe3+ ions in the soil [27]. These Fe3+ chelates (Fe3+-PS)
are then taken up by specific epidermal root cell plasma membrane transporters, like the
one encoded by the YSL15 gene in rice [25,28,29]. Under Fe-deficient conditions, Strategy
II species greatly increase the production and release of PSand the number of Fe3+-PS
transporters, and develop other physiological responses [29]. The increased production of
PS is related to a higher expression of genes encoding transcription factors, like IRO2, which
upregulate the expression of genes implicated in PS synthesis, like the NAAT gene, encoding
the enzyme nicotianamine aminotransferase [30]. Rice, traditionally considered a Strategy
II species [29], also presents some characteristics of Strategy I species, such as an enhanced
Fe2+ uptake through a Fe2+ transporter, encoded by the OsIRT1 gene [27,31,32]. For this
reason, some authors consider it a plant species that uses a combined strategy [33–35].

Our group has demonstrated a role for ethylene, whose production increases in Fe-
deficient roots, in the regulation of Fe-deficiency responses by Strategy I plant species [25,36].
However, there are few publications relating ethylene to Fe deficiency responses in Strategy
II plant species [19,25]. In fact, Romera et al. [37] found that there were no differences
in ethylene production between Fe-sufficient and Fe-deficient roots of several Strategy II
plant species, like maize, wheat and barley. However, in the roots of rice plants that
possesses a combined strategy, ethylene production is also higher under Fe-deficient
conditions [38]. These results are reinforced by the discovery that, under Fe deficiency,
ethylene synthesis genes, such as OsACS, OsACO, OsSAMS and OsMTK, are upregulated
in rice roots [29,38,39]. SAMS and MTK genes are also involved in nicotianamine (NA) and
PS synthesis [40,41].
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It has been well demonstrated that some beneficial rhizosphere microorganisms, i.e.,
bacteria and fungi, are able to enhance plant nutrition and growth. These kinds of beneficial
microorganisms are called Plant-Growth-Promoting Bacteria or Plant-Growth-Promoting
Rhizobacteria (PGPB or PGPR, respectively) and Plant-Growth-Promoting Fungi (PGPF) [9].
Some of them can also boost plant defenses, rendering the entire plant more resistant to
pathogens and pests, through a phenomenon called Induced Systemic Resistance (ISR) [9].
Some of the ISR-eliciting microorganisms are also able to enhance plant Fe nutrition by
inducing Fe-deficiency responses because both processes (ISR and the responses) are
modulated by similar hormones and signaling molecules, like ethylene and NO [19]. In
Strategy I plants, the effects of these microorganisms on Fe nutrition are associated with
their capacity to upregulate many key Fe-related genes, like FIT, MYB72, IRT1, FRO2, and
others [9,19]. Nonetheless, their effects on Strategy II plants have been less studied [19].

In some cases, nonpathogenic strains of Fusarium oxysporum have been found to
trigger Induced Systemic Resistance (ISR) [42,43], providing protection against soilborne
pathogens like Fusarium spp. wilt and Verticillium dahliae-induced wilt, effectively reducing
disease symptoms [42–44]. However, it has been proposed that these nonpathogenic strains
might also induce a different type of resistance known as Endophytic Mediated Resistance
(EMR). EMR occurs when a plant gains resistance against pathogens after being colonized
by an endophytic microorganism, such as Fusarium spp. [45].

This form of resistance (EMR), unlike ISR, is characterized by endophytic microor-
ganisms that typically do not provide protection against pathogens in the above-ground
tissues [46]. Moreover, some studies suggest that ethylene does not play a role in this type
of resistance [47]. However, the claim that nonpathogenic strains of Fusarium oxysporum
induce this resistance (EMR) is a subject of debate due to conflicting evidence. For in-
stance, research has shown that when Capsicum annuum plants are inoculated with the
nonpathogenic strain of F. oxysporum FO47, they gain resistance against Verticillium dahliae
and experience reduced foliar damage [48]. Constantin et al. [47] have proposed that endo-
phytic microorganisms can induce EMR, a resistance mechanism distinct from ISR, with the
intriguing feature of ethylene independence. This assertion implies that the introduction of
nonpathogenic strains of F. oxysporum to plant hosts would activate resistance pathways
not reliant on ethylene signaling. However, our own research, documented and published
by our group, has revealed a contrary finding. Specifically, the inoculation of plants with
the FO12 strain resulted in a noticeable augmentation of ethylene-related gene expression
at specific intervals [49].

Within this framework, most recently, the nonpathogenic strain F. oxysporum FO12 has
been characterized not only as a potential biological control agent of Verticillium wilt of
olive, a disease caused by the soilborne pathogen Verticllium dahliae [44,50–53], but also
as a resistance host inducer modulating in parallel the Fe acquisition in Arabidopsis and
cucumber plant models [49]. In order to go ahead in generating knowledge on this last
evidence, in this study, we have conducted experiments with rice plants (Oryza sativa L.
cv. Puntal) using the nonpathogenic strain FO12 of F. oxysporum to demonstrate whether
FO12 could induce Fe-deficiency responses in rice, as other ISR-eliciting fungi do in dicot
plants [19].

2. Results
2.1. Effect of the Inoculation with FO12 on Fe Chlorosis

The main symptom of Fe deficiency in plants is an interveinal yellowing of the
youngest leaves, known as Fe chlorosis. It is produced because Fe plays an important role
in the functioning of some enzymes involved in the synthesis of chlorophyll [23,54]. Rice
plants cultivated with Fe presented higher SPAD values than those without Fe (Figure 1).
The inoculation caused a clear promotive effect on the SPAD index of plants grown under
Fe deficiency but had almost no effect in those grown under Fe sufficiency (Figure 1).
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SPAD index of rice plants grown under Fe sufficiency or Fe deficiency. SPAD index determinations 
were carried out at 3, 6, 9 and 12 d after treatments. Treatments: –Fe, –Fe+FO12, +Fe and +Fe+FO12. 
The values represented are mean ± ES (n = 8). Within each time, ** p < 0.01 or *** p < 0.001 indicate 
significant differences between treatments. For each evaluation moment, different lowercase or cap-
ital le ers indicate significant differences between non-inoculated or inoculated plants with FO12 
for +Fe or –Fe treatments, respectively. 

2.2. Effect of the Inoculation with FO12 on Growth Promotion 
To determine growth promotion, half of the 22 d old rice plants were inoculated with 

the FO12 strain, and then both inoculated and control plants were cultivated for 12 addi-
tional days, either under Fe deficiency (–Fe) or Fe 70 µM (+Fe). After 6 d of the inoculation 
with FO12, there was a significant growth-promoting effect both in shoots and roots just 
under Fe sufficiency (Figure 2a,b). However, no changes were observed both in shoots and 
roots relative to inoculation in Fe-deficient plants (Figure 2a,b). 
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Figure 1. Effect of the inoculation with the nonpathogenic strain Fusarium oxysporum FO12 on the
SPAD index of rice plants grown under Fe sufficiency or Fe deficiency. SPAD index determinations
were carried out at 3, 6, 9 and 12 d after treatments. Treatments: –Fe, –Fe+FO12, +Fe and +Fe+FO12.
The values represented are mean ± ES (n = 8). Within each time, ** p < 0.01 or *** p < 0.001 indicate
significant differences between treatments. For each evaluation moment, different lowercase or
capital letters indicate significant differences between non-inoculated or inoculated plants with FO12
for +Fe or –Fe treatments, respectively.

2.2. Effect of the Inoculation with FO12 on Growth Promotion

To determine growth promotion, half of the 22 d old rice plants were inoculated
with the FO12 strain, and then both inoculated and control plants were cultivated for
12 additional days, either under Fe deficiency (–Fe) or Fe 70 µM (+Fe). After 6 d of the
inoculation with FO12, there was a significant growth-promoting effect both in shoots and
roots just under Fe sufficiency (Figure 2a,b). However, no changes were observed both in
shoots and roots relative to inoculation in Fe-deficient plants (Figure 2a,b).
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Figure 2. Effect of Fe deficiency and inoculation with FO12 in the growth of rice plants. (a) Shoot fresh
weight. (b) Root fresh weight. To determine this effect, half of the 22 d old plants were inoculated.
Then, both inoculated and control plants were cultivated for 12 additional days, either under Fe
sufficiency (+Fe) or Fe deficiency (–Fe). After that time, roots and shoots were excised and weighed
separately. The values represented are mean ± ES (n = 8). Different letters indicate significant
differences according to Duncan’s multiple range test (p < 0.05). Similarly, *** p < 0.001 indicate
significant differences between treatments.
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2.3. Effect of the Inoculation with FO12 on Phytosiderophores Production

Regarding PS production, an increasing trend is observed up to 24 h, then it decreases
substantially (Figure 3). In the first sampling carried out at 6 h, there are statistical differ-
ences between the treatments without Fe. The highest average value is observed in the
treatment that was inoculated with FO12. In the case of treatments with Fe, differences
between treatments are also observed. However, the plants that were inoculated with FO12
showed a lower average than those that were not inoculated. At 12 h, the plants of the
treatments without Fe and inoculated with FO12 presented the highest mean PS production
among all the treatments. Likewise, it was the only treatment where statistical differences
were observed. The sampling carried out at 24 h was the one where the highest values were
obtained in terms of PS production. The plants of the treatments without Fe plus FO12 had
the highest means of this sampling. In the same way, statistical differences were observed
both in the treatments with and without Fe, the plants of the treatments inoculated with
FO12 being the ones that presented the highest values. At 48 h, PS production by the plants
declined in all treatments (Figure 3).
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Figure 3. Evolution of phytosiderophore production in rice plants during 48 h of treatments.
Four treatments were carried out: plants with Fe (+Fe), plants with Fe and inoculated with FO12
(+Fe+FO12), plants without Fe (–Fe), plants without Fe and inoculated with FO12 (–Fe+FO12). The
inoculation was carried out the same day the Fe-deficiency treatment was applied. Within each
sampling time, * or ** indicate significant differences (p < 0.05 or p < 0.01) relative to their respective
non-inoculated control plants.

2.4. Effect of the Inoculation with FO12 on Expression of Fe-Related Genes

The relative expressions of PS-related genes (TOM1, IRO2, NAAT and YSL15) by the
roots of the rice plants, as well as that of the IRT1 gene, were also analysed (Figure 4).
Inoculation with FO12 strain had a clear inductor effect over the expression of all genes
analysed in rice plants grown under Fe-deficient conditions. Similarly, most of the genes,
except NAAT and IRT1, presented higher expression in the +Fe+FO12 treatment in relation
to the +Fe treatment (control plants) (Figure 4).
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Figure 4. Effect of FO12 on the relative expression of PS-related genes (TOM1, IRO2, IRT1, NAAT and
YSL15) in roots of rice plants. Four treatments were carried out: plants with Fe (+Fe), plants with Fe
and inoculated with FO12 (–Fe+FO12), plants without Fe (–Fe), and plants without Fe and inoculated
with FO12 (+Fe+FO12). The data represent the mean ± SE of three independent biological replicates
and two technical replicates 2 d after treatments. Within each time, * p < 0.05 or *** p < 0.001 indicate
significant differences in relation to the control treatment.

2.5. Iron Concentration in the Plant Substrate Affects FO12 Colonization in Rice Root Tissues

With the aim of assessing the effect of Fe on the colonization process of rice root
tissues by FO12, the GFP-tagged F. oxysporum was visualized using CLSM in the absence of
Fe and compared with the colonization process observed in the presence of Fe at 70 µM
concentration. Using the GFP-FO12 in CLSM experiments allowed the in situ visualization
of the fungus on/in rice roots without any tissue manipulation. Rice roots were already
colonized by conidia of F. oxysporum 1 dai (days after inoculation) in both treatments.
Conidia were observed already germinating at this time point and did germinate similarly
over rice roots in both treatments (–Fe and +Fe). After 4 dai, differences were already
observed in GFP-FO12 colonization progress on rice roots, with the colonization of the rice
root surface being more profuse in the absence of Fe than in the presence of Fe (Figure 5a,b).
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Figure 5. CLSM images of the time-course colonization processes of rice roots by the GFP-FO12 (in
green). Confocal analysis was carried out on 4–5 cm long roots to show surface GFP-FO12 colonization.
Images are projections of 20 adjacent confocal optical sections. The focal step between confocal optical
sections was 0.5 µm. (a,b) Surface colonization at 4 dai by GFP-FO12 on rice roots of plants (a) without
Fe, and with a supplement of (b) 70 µM Fe. (c,d) Surface colonization at 10 dai by GFP-FO12 on rice roots
of plants growing (c) without Fe and (d) with an addition of 70 µM Fe. (e,f) Surface and internal (inset)
colonization at 15 dai by GFP-FO12 on rice roots of plants (e) without Fe and (f) with a supplement of
70 µM Fe. (g,h) Surface colonization at 18 dai by GFP-FO12 on rice roots of plants (g) without Fe and (h)
with a supplement of 70 µM Fe. (i,j) Surface colonization at 21 dai by GFP-FO12 on rice roots of plants
(i) without Fe and (j) with a supplement of 70 µM Fe. Rice roots were colonized by GFP-FO12 hyphae in
plants growing both in the presence and in the absence of Fe during the whole bioassay.
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During the progression of the experiment, GFP-FO12 developed on the root surface at
a later stage (10 dai) both in the presence and in the absence of Fe (Figure 5c,d). Fungus
conidia showed a slight reduction in the development of hyphae on the root surface of
plants growing in the presence of Fe at 15 dai (Figure 5e,f). From this time point, we kept
analysing plants by CLSM until 21 dai, although no substantial variations in plants were
detected from 10 dai until the end of the experiment. Thus, GFP-FO12 reached a similar
degree of hyphae development on the root surface of rice plants from 10 dai until the end
of the bioassay. In fact, the visualization of the fungus at 18 dai (Figure 5g,h) showed
an equivalent colonization degree to those of the preceding and following days until the
end of the experiment (21 dai, Figure 5i,j). As with the observations taken previously, the
proportion of hyphae were slightly lower in the root surface of plants growing with Fe at
the end of the experiment (Figure 5i,j).

The colonization progress of GFP-FO12 on the rice root surface displayed non-uniformity,
both in the presence and absence of Fe. Some regions of the roots exhibited a significant
abundance of hyphal colonization, while other areas remained entirely devoid of the fungus.
Utilizing Confocal Laser Scanning Microscopy (CLSM), we were able to identify internal
colonization of rice roots by GFP-FO12. This internal colonization by GFP-FO12 was evident
in the cortical tissue of rice roots starting from the early days of the bioassay and continued
until the end, particularly in plants growing without Fe (Figure 5e and inset).

It did not detect GFP-FO12 hyphae proliferating in the vascular tissue at any time.
In contrast, GFP-FO12 was only detected on the rice root surface up to the end of the
experiment in the roots of rice plants growing with Fe, although we cannot rule out that
internal colonization can also occur in plants in the presence of Fe.

Most of the conidia germinated and the proliferation of hyphae could be observed on
the root surface in plants growing both in the presence and in the absence of Fe. A slightly
higher proliferation of hyphae could be observed on the root surface in plants growing
with no concentration of Fe, in the absence of iron from the beginning of the bioassay.

3. Discussion

To obtain Fe from the soil, Strategy II plant species release PhytoSiderophores (PS)
from their roots, which form stable Fe3+ chelates (Fe3+-PS). PS are released through trans-
porters, like the one encoded by the TOM1 gene in rice, while the Fe3+-PS are taken up
by transporters, like the one encoded by the YSL15 gene in rice [25,27–29]. Under Fe-
deficient conditions, Strategy II species greatly increase the production and release of PS
and the number of Fe3+-PS transporters, and develop other physiological and regulatory
responses [29]. Rice, traditionally considered a Strategy II species [29], also presents some
characteristics of Strategy I species, such as an enhanced Fe2+ uptake through a Fe2+ trans-
porter, encoded by the OsIRT1 gene [27,31,32]. For this reason, some authors consider
it a plant species that uses a combined strategy [33–35]. Despite the activation of these
Fe-deficiency responses, crops can need an added contribution of fertilizers to withstand
the enormous pressure that current agriculture exerts on crop production.

Searching for production strategies focused on gradually reducing the dependence
on the application of large amounts of chemical products is one of the main challenges of
current agriculture. The use of beneficial microorganisms is one of the strategies that is
becoming more and more established every day. Microorganisms contribute to enhancing
the tolerance of plants to abiotic stresses and to increasing their resistance to pathogens.
In the same way, they can promote plant growth and increase the acquisition of nutrients
through different mechanisms, such as changes in the soil structure and nutrient solubility,
and changes in root morphology and physiology [55–58].

The results of this study show some positive effect of FO12 on plant growth and
Fe acquisition by rice plants. The primary indication of Fe deficiency in plants man-
ifests as interveinal yellowing in the most juvenile leaves, a condition referred to as
Fe chlorosis. This discoloration arises due to iron’s pivotal function within several en-
zymes engaged in chlorophyll synthesis [23,54]. FO12 can affect the photosynthetic activ-
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ity of the plants since those growing without Fe that were inoculated presented higher
SPAD values (Figure 1). These results are similar to those obtained with inoculation with
the fungus Trichoderma asperellum SL2 in rice [59]. However, the SPAD values did not show
significant differences between control and FO12 inoculated treatments in cucumber plants
cultured in a calcareous soil [49].

The effect on the development of the plants was reflected in a greater weight of both
the aerial part and the roots (Figure 2). These positive effects have also been identified
in various studies with the use of endophytic microbes [60–62]. FO12, in addition to in-
ducing Fe-deficiency responses, exhibits growth-promoting properties, much like other
Plant-Growth-Promoting Fungi (PGPF) and Plant-Growth-Promoting Bacteria (PGPB) [9].
Numerous studies have reported similar findings with other beneficial rhizosphere mi-
croorganisms. For instance, [63] utilized a combination of four microorganisms to inoculate
soybean seeds, resulting in a noticeable growth-promoting effect on the plants. Similarly,
Fontenelle et al. [64] observed a highly significant growth promotion when various isolates
of Trichoderma spp. were applied to tomato plants under greenhouse conditions.

The application of PGPR or PGPF has proven to be an effective method in improving
Fe chlorosis in calcareous soils [65–67]. Liu et al. [66] demonstrated the promotion of
growth and enhanced mineral uptake in strawberry plants by inoculating them with
isolates like Agrobacterium, Bacillus and Alcaligenes. Likewise, Liu et al. [66] achieved
growth promotion in alfalfa plants by inoculating them with Pseudomonas aeruginosa and
Enterobacter aerogenes cultured under saline–alkali conditions in a greenhouse. Moreover,
El_Komy et al. [67] ameliorated the symptoms caused by Fusarium solani, Macrophomina
phaseolina and Rhizoctonia solani in sunflower plants cultivated in a calcareous soil under
field conditions, showing a clear growth-promoting effect with the inoculation of a mixture
of rhizobacteria.

Many microbes produce signals that induce in the plant PS production and hormones
that favor Fe acquisition [68]. In this study, the results obtained show that FO12 can induce
a greater PS production by rice plants (Figure 3). This positive effect was higher when
plants were growing without Fe (Figure 3). In order to summarize our results and the
results of other authors [19,49] it seems that FO12 induces Fe-deficiency responses like
other ISR-eliciting microorganisms.

According to Constantin et al. [47], endophytic micro-organisms induce EMR. These
authors suggested that this type of resistance is independent of ethylene, in contrast to
ISR. This statement means that the colonization of the plant by nonpathogenic strains
of F. oxysporum would induce resistance in an ethylene-independent manner. However,
Aparicio et al. [49] showed that the expression of ethylene-related genes was evidently
enhanced at certain times under inoculation with FO12 in cucumber plants. Additionally,
NO levels were also increased with the inoculation in the subapical region of the roots.
Kavroulakis et al. [69] demonstrated that ethylene-deficient mutants of tomato inoculated
with F. solani were more susceptible to pathogen attack, supporting a role for ethylene in
the acquisition of resistance against Fusarium. Furthermore, NO and ethylene enhance the
expression of several Fe acquisition genes in Arabidopsis thaliana [70,71]. Given that FO12
has been shown to upregulate ethylene-related genes and enhance NO production [49], it is
plausible to consider that FO12 might induce iron deficiency responses in an ethylene/NO-
dependent manner. Consequently, this implies that the FO12 strain could trigger Induced
Systemic Resistance (ISR) rather than Endophytic-Mediated Resistance (EMR). Something
similar could happen with rice plants, traditionally considered a Strategy II species but
that possesses some characteristics of Strategy I species, in which several authors have
shown that ethylene can also play a role in the regulation of some of its Fe-deficiency
responses [25].

The expression of Fe-related genes in rice plants was evaluated (Figure 4). Results
indicated a more enhanced expression in the presence of FO12. In cucumber plants, the
FO12 strain induces the upregulation of Fe-related genes, including CsFRO1, CsIRT1, and
CsHA1 [49]. Similar effects have been observed in Arabidopsis thaliana when root-inoculated
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with the WCS417 strain of Pseudomonas simiae, leading to the increased expression of MYB72,
FRO2 and IRT1 [11,72]. Moreover, the Paenibacillus polymyxa BFKC01 strain was found
to promote growth and enhance the expression of FRO2, FIT and IRT1 in A. thaliana [73].
Additionally, exposure of tomato plants to Trichoderma volatiles induced the expression of
Fe-deficiency genes, such as LeFRO, LeIRT, and LeFER [74].

Fusarium oxysporum, being an endophytic microorganism, can grow inside the plant
but typically does not colonize the vascular system. Instead, it forms fungal hyphae along
the root cortex and endodermis [45]. Our findings align with this understanding, as the
FO12 strain was observed to colonize the intercellular spaces of the cortical cells (Figure 5),
supporting its endophytic nature. Notably, the inoculation of rice plants with the FO12
strain is facilitated by depleting Fe from the nutrient solution. On the other hand, the
cortical tissue of rice roots was internally colonized by GFP-FO12 from early days until the
end of the bioassay when plants were growing without Fe (Figure 5e, inset). These results
agree with those obtained by Guerra & Anderson [75], showing that Phaseolus vulgaris
plants growing in a hydroponic system with restricted Fe and B were more susceptible
against Fusarium wilt. Similar results were obtained recently by Aparicio et al. [49], ana-
lyzing the time-course colonization processes of cucumber roots by the FO12-GFP-tagged
strain. Collectively, these findings suggest that the depletion of Fe in the plant promotes
endophytic colonization by non-pathogenic strains, such as FO12.

4. Materials and Methods
4.1. Seed Germination and Plant Cultivation

Experiments were carried out with rice (Oriza sativa L. var. ‘Puntal’) plants. Seeds
were surface sterilized as described by Aparicio et al. [49]. Then, seedlings were transferred
to a hydroponic system. Each of eight seedling groups were inserted in plastic lids and
held in the holes of a thin polyurethane raft floating on an aerated nutrient solution
containing 2 mM Ca(NO3)2, 0.75 mM K2SO4, 0.65 mM MgSO4, 0.5 mM KH2PO4, 50 µM KCl,
10 µM H3BO3, 1 µM MnSO4, 0.5 µM CuSO4, 0.5 µM ZnSO4, 0.05 µM (NH4)6Mo7O24 and
45 µM Fe-EDTA. When the plants were 22 d old, different treatments were applied: (1) +Fe
(complete nutrient solution with 70 µM Fe-EDTA); (2) +Fe +FO12 (+Fe treatment + FO12
inoculum); (3) –Fe (nutrient solution without Fe-EDTA); and (4) –Fe +FO12 (–Fe treatment
+ FO12 inoculum). Plants were maintained in the treatments from 4 to 21 d, depending on
the experiments.

4.2. Cultivation of Fungus and Inoculum Preparation

The FO12 strain and GFP-FO12, which was transformed with GFP (Green Fluorescent
Protein) [76], were generously provided by the ‘Patología Agroforestal’ group from the
‘Universidad de Córdoba’. The FO12 strain was cultured in 250 mL of Potato Dextrose Broth
(PDB, Scharlau) in 1-L flasks. Following a 4-day incubation period at 28 ◦C with continuous
shaking at 110 rpm, the culture was filtered using a sterile nylon filter with a pore size of
10 µM (NY-LON_10, Filtra Vibración) to separate the spores from the mycelia. The spores
were then centrifuged at 10,000 rpm for 10 min and subsequently resuspended in 4 mL
of sterile distilled water. Prior to inoculation, the spore concentration was determined by
counting them in a Neubauer chamber. As for GFP-FO12, the same culture method was
employed, with the addition of 25 ppm of Hygromycin to maintain selective pressure.

4.3. Plant Inoculation

Following the method by Navarro-Velasco et al. [77], 22-day-old rice plants underwent
root immersion for inoculation. Initially, a solution containing 107 spores/mL was prepared
using distilled water and poured into a 1.5 L capacity tray. To prevent contact between the
solution and shoots, certain lanes were covered with insulating tape. The roots of the plants
were then submerged in the solution for a duration of 30 min. Throughout the process,
constant gentle shaking of the system was maintained to prevent spore precipitation. After
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inoculation, the plants were subsequently subjected to the mentioned treatments: +Fe or
–Fe. For each treatment, there was a corresponding control group that was not inoculated.

4.4. Physiological and Morphological Assessments

Plants were periodically harvested (at 4, 8, 12 and 16 d after treatments) to observe
growth promotion, by determining shoot height and both shoot and root fresh weights.
Furthermore, in this study, Fe chlorosis was evaluated in the rice plants at 3, 6, 9 and 12 d
after treatments by determining the chlorophyll level of the rice plants by the SPAD index
using a portable chlorophyll meter, Minolta SPAD-502. Four readings were made per plant,
taken over the center area of fully developed apical leaves, assigning the average value to
each plant.

Phytosiderophore (PS) assessments were carried out at 6, 12, 24, 48 and 72 h af-
ter the treatment´s application, using the methodology described by Inal et al. [78] and
Reichman et al. [79]. Rice plants were removed from the treatment and washed three times
with deionized water. They were then placed in containers with 70 mL of deionized water
for 3 h with constant aeration. From the root exudates produced in these 3 h, 9 mL aliquots
were taken in vials, where 0.5 mL of 0.6 µM FeCl3 was added. They were stirred for
1 h to form the Fe (III)-PS compounds. Immediately afterwards, 1 mL of 1.0 M sodium
acetate buffer (pH 7.0) was added to the solutions, and the mixture was stirred for 15 min
to precipitate the remaining Fe (III). Next, the solutions were filtered through a 0.2 µm
filter to remove any solid particles, and then 0.25 mL of 6 M HCL and 0.5 mL of 80 g L−1

hydroxylamine hydrochloride were added to reduce Fe (III) to Fe (II). The solutions were
then placed in an oven and maintained at a temperature between 50–60 ◦C for 30 min.
After the incubation, 0.25 mL of 2.5 g L−1 and 1 mL of 2.0 M sodium acetate buffer (pH 4.7)
were introduced to the mixture. Finally, the contents of the tubes were mixed by shaking
them briefly for 5 min.

The absorbance was determined at 562 nm. PS release rates were calculated as Fe
equivalents.

After PS determination, roots were collected and kept at −80 ◦C for gene expression
determination using primer pairs shown on Table 1.

Table 1. Primer pairs used for rice gene expression analysis.

Gene Sequence 5-3

OsNAAT1
Forward: TAAGAG GATAATTGATTTGCTTAC

Reverse: CTG ATCATTCCAATCCTAGTACAAT

OsYSL15
Forward: AACATAAGGGGGACTG GTAC

Reverse: TGATTACCGCAATGATGCTTAG

OsIRO2
Forward: CTCCCATCGTTTCGGCTACCT

Reverse: GCTGGGCACTCCTCGTTGATC

OsTOM1
Forward: GCCCAAGAACGCCAAAATGA

Reverse: GGCTTGAAGGTCAACGCAAG

OsIRT1
Forward: CGTC TTCTTCTTCTCCACCACGAC

Reverse: GCAGCTGATGATCGAGTCTG ACC

OsActin
Forward: TGCTATGTACGTCGC CATCCAG

Reverse: AATGAGTAACCACGCTCCGTCA

4.5. Fusarium oxysporum Colonization Studies in Rice Roots

The GFP-tagged F. oxysporum FO12 transformant (GFP-FO12) was used to monitor the
infection and colonization process of an entire rice plant growing in hydroponic system. Fifty
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plants were inoculated with the GFP-FO12, and the colonization of root tissue samples was
visualized by CLSM (confocal laser scanner microscopy) over the 21 d post-inoculation period.

Two different treatments were set up in the presence of the GFP-FO12 to assess the
effect of the concentration of Fe in the GFP-FO12 colonization process of root tissues. Thus,
25 inoculated plants were growth in the absence of Fe and 25 inoculated plants were grown
with 70 µM Fe concentration. Two plants per treatment were analysed per day until 7 d
after inoculation (7 dai). From this time point, two plants per treatment were analysed
every 2 days until the end of the bioassay (21 dai). All the inoculated plants were examined
by CLSM.

Rice tissue samples for microscopic studies were prepared according to the protocol
previously described by Prieto et al. [79]. Rice roots were thin enough to perform CLSM
analysis without vibratome sectioning. Therefore, whole roots were used to visualize the
F. oxysporum colonization process. At least ten different roots per plant were mounted in a
slice with distilled water to perform CLSM analysis.

Whole root tissues from the different treatments were used to collect single confocal
optical sections using an Axioskop 2 MOT microscope (Carl Zeiss, Jena, Germany) equipped
with a krypton and an argon laser, controlled by Carl Zeiss Laser Scanning System LSM5
PASCAL software (Carl Zeiss). GFP-FO12 was visualized using a 488 nm argon laser light
(detection at 500–520 nm). Finally, data were recorded and the images relocated for analysis
to Zeiss LSM Image Browser version 4.0 (Carl Zeiss). Confocal stacks were mounted and
analysed to assess colonization of GFP-FO12. Images included in Figure 5 were obtained
from projections of adjacent confocal optical sections. Final figures were handled with
PhotoShop 10.0 software (Adobe Systems, San Jose, CA, USA).

4.6. qRT-PCR Analysis

Genes related to PS production by root cells of Fe-deficient rice plants were anal-
ysed. The following genes were analysed: OsTOM1, a deoxymugineic acid (DMA) efflux
transporter; OsNAAT, which participates in DMA biosynthesis for Fe (III)-DMA uptake
and translocation; OsYSL15, a Fe (III)-DMA transporter; OsIRT1, a Fe2+ transporter; and
OsIRO2, which is an essential regulator involved in mediation of Fe uptake.

Roots were first ground into a fine powder using a mortar and pestle in liquid nitro-
gen. Total RNA was then extracted from the powdered roots using Tri Reagent solution
(Molecular Research Center, Inc., Cincinnati, OH, USA), following the manufacturer’s
instructions. To generate cDNA, 3 µg of DNase-treated root RNA was reverse transcribed
using M-MLV reverse transcriptase (Promega, Madison, WI, USA) and random hexamers
for amplification. For the study of gene expression, quantitative real-time polymerase chain
reaction (qRT-PCR) was performed on a qRT-PCR Bio-Rad CFX connect thermal cycler. The
amplification profile involved cycles with the following conditions: initial denaturation and
polymerase activation at 95 ◦C for 3 min, followed by amplification and quantification at
90 ◦C for 10 s, 57 ◦C for 15 s, and 72 ◦C for 30 s. A final melting curve stage was performed
from 65 to 95 ◦C with an increment of 0.5 ◦C for 5 s to ensure the absence of primer dimer
or nonspecific amplification products. The PCR reactions were set up in 20 µL of SYBR
Green Bio-RAD PCR Master Mix, following the manufacturer’s instructions. To detect
any contamination in the reaction components, controls containing water instead of cDNA
were included. For normalization of gene expression, a reference gene (OsActin) was used.
The specific primers utilized in the qRT-PCR analysis are listed in Table 1.

4.7. Statistical Analysis

The statistical analyses were carried out using IBM SPSS Statistics 25. To assess the
normal distribution of the variables studied, the Shapiro–Wilk normality test was applied.
If the significance value was greater than 0.05, the data were considered to follow a normal
distribution (parametric). Conversely, if the significance value was below 0.05, the data
were considered non-parametric. For comparisons between the inoculated and control
treatments, either Student’s t-test (parametric) or the Mann–Whitney test (non-parametric)
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was used to determine significant differences (p < 0.05). To compare gene expression
between control and inoculated treatments at different times, analysis of variance (One-way
ANOVA) and Dunnett’s test were utilized, setting the threshold for statistical significance
at p < 0.05.

5. Conclusions

In conclusion, the results of this study demonstrate that the FO12 strain exhibits
promising characteristics as a biofertilizer for rice plants. Its ability to colonize rice roots
under Fe-deficient conditions, induce the expression of Fe-relative genes, increase phy-
tosiderophore production and promote plant growth and development highlights its
potential as an effective Fe biofertilizer. However, further research is necessary to fully un-
derstand its mechanisms of action and to optimize its application for agricultural purposes.
Continued investigation and experimentation will be crucial in harnessing the full potential
of the FO12 strain as a biofertilizer to enhance Fe uptake and improve crop productivity in
rice and potentially other agricultural systems. Our results also indicate that the FO12 strain
can indeed induce Fe-deficiency responses in rice plants, similarly to other ISR-eliciting
microbes.
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