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Abstract: Several microbes that cause plant diseases drastically lower the production of agriculture
and jeopardize the safety of the world’s food supply. As a result, sustainable agriculture requires
disease management tactics based on modern, eco-friendly techniques as alternatives to various
agrochemicals. The current study aimed to assess the antifungal activity of ZnO-nanoparticles against
Fusarium solani in-vitro, and the ability of two antagonistic Trichoderma isolates, Trichoderma viride
and Trichoderma harzianum, to produce antifungal secondary metabolites and identify them using gas
chromatography–mass spectrometry, and to evaluate the combined effects of foliar spray of ZnO-
nanoparticles and bioprimed seeds of cherry tomato (Solanum lycopersicum L.) with two antagonistic
Trichoderma isolates against Fusarium wilt disease caused by Fusarium solani in greenhouse conditions.
The results revealed that, in-vitro, the highest concentration of ZnO nanoparticles (3000 ppm) resulted
in the greatest decrease in Fusarium solani mycelial growth (90.91% inhibition). The scanning electron
microscopy demonstrated the evident distortion in Fusarium solani growing mycelia treated with ZnO-
nanoparticles, which might be the source of growth suppression. Additionally, twenty-eight bioactive
chemical compounds were isolated and identified from Trichoderma spp. ethyl acetate crude extracts
using gas chromatography–mass spectrometry. In a greenhouse experiment, the combination of
bioprimed cherry tomato plants with Trichoderma harzianum and foliar spraying of ZnO-nanoparticles
at 3000 ppm was the most effective interaction treatment for reducing disease severity index (23.4%)
and improving the vegetative growth parameters, micronutrient contents (Mn, Zn, and Fe in leaves),
and chlorophyll content (SPAD unit), as well as stimulating phenylalanine ammonia-lyase activity
of cherry tomato leaves at 75 days after sowing. In conclusion, the antifungal potential of seed-
biopriming with antagonistic Trichoderma isolates and the foliar spraying of ZnO-nanoparticles can
boost cherry tomato growth and confer resistance to Fusarium wilt caused by Fusarium solani.

Keywords: Fusarium solani; plant immunity; plant nano-nutrition; seed-biopriming; sustainability;
volatilomics

1. Introduction

Plants are susceptible to a range of biotic stressors caused by many organisms, which
result in a variety of diseases, infections, and crop plant damage, eventually impacting
agricultural productivity [1]. Fusarium wilt, for example, is a devastating disease produced
by fungal soil-borne pathogens such as Fusarium oxysporum and Fusarium solani that causes
significant losses for many essential vegetable and agricultural plants, especially tomatoes,
in Egypt and throughout the world [2]. In several Egyptian governorates, F. solani isolates
were the most frequently found soil-borne pathogenic fungus in tomato plants, causing

Plants 2023, 12, 3117. https://doi.org/10.3390/plants12173117 https://www.mdpi.com/journal/plants

https://doi.org/10.3390/plants12173117
https://doi.org/10.3390/plants12173117
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/plants
https://www.mdpi.com
https://orcid.org/0000-0002-9355-3629
https://orcid.org/0000-0003-1693-4775
https://orcid.org/0000-0002-1540-6789
https://doi.org/10.3390/plants12173117
https://www.mdpi.com/journal/plants
https://www.mdpi.com/article/10.3390/plants12173117?type=check_update&version=2


Plants 2023, 12, 3117 2 of 21

damping-off and root rot illnesses [3]. Infected tomato plants first exhibit stunted seedlings
and yellowing of older leaves, followed by wilting that progresses up the stem until the
foliage falls off and brown vascular coloring in cross sections of stem tissue near the
soil line [2]. Because there is no spore development above ground in the field, Fusarium
wilt does not transfer from plant to plant during a season, but it can be disseminated
through contaminated, infected seeds [4,5]. Biological seed treatments with effective
fungal or bacterial biocontrol agents may provide an alternative to chemical control of
many soil- and seed-borne pathogens [6,7]. Biopriming is an innovative and sustainable
approach to seed treatment that combines biological (inoculation of the seed with beneficial
organisms to protect it) and physiological (seed hydration) aspects of disease prevention [8].
Consequently, biopriming improves nutrition and water intake, increases seedling vigor,
and establishes systemic resistance to biotic and abiotic stressors [9]. In recent years,
several Trichoderma spp., such as T. viride and T. harzianum, have been commonly utilized as
effective biocontrol agents, biofertilizers, and plant growth boosters in biotic and abiotic
stress conditions [6,10,11]. However, it is necessary to investigate their ability to reduce the
severity of Fusarium wilt disease if they are applied as a biopriming treatment. Additionally,
Trichoderma spp. have been shown to generate different arrays of soluble and volatile
organic compounds (VOCs) against rhizosphere pathogens, implying that they are an
important source of biologically active natural metabolites [6,9,12]. Therefore, mining for
the volatilomes of plant-associated microbiota for new biocontrol solutions is necessary [13].
The use of VOCs may possibly be an ecological and safe strategy for managing plant
diseases and accelerating the transition to a more sustainable food production system [13].

Complete and balanced plant nutrition has always been the first line of defense for
plants, because mineral elements are directly engaged in plant immunity and protection as
structural components and metabolic regulators [14–16]. As a result, the nutritional status
of plants can affect their vulnerability or resistance toward fungal pathogen-caused dis-
eases [15,16]. Zinc (Zn), for example, is a part of metalloenzymes that are involved in auxin
synthesis, infectivity, phytotoxin, and mycotoxin production in pathogenic microorgan-
isms [16]. The efficient use of zinc oxide nanoparticles (ZnO-NPs) as plant nano-nutrition
is rapidly increasing, which can help alleviate both biotic and abiotic stress, providing
novel solutions to plant and agricultural science challenges [14,17]. However, no research
has been conducted on the effect and mode of action of ZnO-NPs on the growth of the
soil-borne fungus F. solani. Also, the use of ZnO-NPs alone or in combination with antago-
nistic Trichoderma isolates against F. solani has not been studied. Therefore, the objectives
of the current research were: (1) to evaluate the antifungal activity of ZnO-NPs against
F. solani in-vitro; (2) to examine the ability of two antagonistic Trichoderma isolates, such
as T. viride (Tv) and T. harzianum (Th), to create antifungal secondary active metabolites
and identify them using gas chromatography–mass spectrometry (GC–MS) analysis; and
(3) to assess the combined effects of foliar spray of ZnO-NPs and bioprimed cherry tomato
seeds with two antagonistic Trichoderma isolates (Th and Tv) against Fusarium wilt disease
caused by F. solani in greenhouse conditions, as well as to assess their antifungal activity
efficacy in reducing the severity of Fusarium wilt disease and increasing vegetative growth
and development of cherry tomatoes.

2. Results
2.1. Evaluation of the Antifungal Activity of ZnO-NPs against F. solani In-Vitro
2.1.1. Culture Medium Amended with ZnO-NPs

The colony diameter of F. solani significantly (p ≤ 0.05) decreased with increasing
ZnO-NP concentrations, as shown in Figure 1 and Table 1. The use of a ZnO-NP suspension
efficiently inhibited the fungal growth of F. solani (Figure 1). After 12 days, the average
mycelial growth inhibition of F. solani has ranged from 17.05 ± 3 to 90.91 ± 2%, as ZnO-NP
concentration increased from 250 to 3000 mg L−1. These findings imply that ZnO-NPs
can disrupt and damage the fungal conidia. These results highlight ZnO-NPs’ significant
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potential as antifungal agents that can be used to control the spread of F. solani, as well as
their ability to reduce the environmental impact of synthetic fungicides.
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Figure 1. Antifungal activity of ZnO-NPs on F. solani incubated for 12 days at 25 ± 2 ◦C in-vitro test:
(a) 0 ppm, (b) 250 ppm, (c) 500 ppm, (d) 1000 ppm, (e) 1500 ppm, (f) 3000 ppm.

Table 1. Effect of ZnO-NPs on the colony diameter of F. solani incubated for 12 days at 25 ± 2 ◦C
in-vitro test.

ZnO-NPs
(ppm)

Colony Diameter (cm)

MeanTime (Day)

0 2 4 6 8 10 12

0 ¶0.5 ± 0.01 v 2.8 ± 0.10 mn 5.3 ± 0.17 hi 7.7 ± 0.20 c 8.1 ± 0.14 b 8.6 ± 0.20 a 8.8 ± 0.13 a 6.0 ± 3.08 a

250 0.5 ± 0.02 uv 1.4 ± 0.01 r 3.0 ± 0.05 lm 5.3 ± 0.05 h 6.0 ± 0.50 f 6.7 ± 0.50 e 7.3 ± 0.40 d 4.3 ± 2.56 b

500 0.5 ± 0.01 v 1.0 ± 0.02 s 2.4 ± 0.05 o 3.6 ± 0.20 k 4.4 ± 0.40 j 5.0 ± 0.40 i 5.7 ± 0.40 g 3.2 ± 1.91 c

1000 0.5 ± 0.02 uv 0.9 ± 0.01 st 2.1 ± 0.01 p 2.6 ± 0.01 no 3.1 ± 0.05 l 3.6 ± 0.10 k 4.2 ± 0.10 j 2.4 ± 1.29 d

1500 0.5 ± 0.01 v 0.8 ± 0.05 stuv 1.3 ± 0.01 r 1.4 ± 0.02 r 1.8 ± 0.01 q 2.1 ± 0.01 p 2.4 ± 0.10 o 1.4 ± 0.65 e

3000 0.5 ± 0.01 v 0.5 ± 0.02 uv 0.5 ± 0.01 v 0.6 ± 0.02 tuv 0.6 ± 0.03 uv 0.7 ± 0.03 tuv 0.8 ± 0.02 stu 0.6 ± 0.11 f

Mean 0.5 ± 0.01 g 1.2 ± 0.77 f 2.4 ± 1.55 e 3.5 ± 2.48 d 4.0 ± 2.60 c 4.4 ± 2.76 b 4.9 ± 2.84 a

L.S.D. 0.05 ZnO-NPs = 0.1126 Time = 0.1216 ZnO-NPs × Time = 0.2979

F-value ZnO-NPs = 2380.97 * Time = 1475.28 * ZnO-NPs × Time = 132.91 *

C.V. 5.01%

Means followed by the same alphabetical letter(s) are not significantly different at p ≤ 0.05 (*). ¶ Values are
expressed as mean ± SD (n = 3). C.V., coefficient of variation (%).

2.1.2. Scanning Electron Microscopy (SEM) Analysis

In order to evaluate the effects of ZnO-NPs on the F. solani pathogen, SEM analysis
was used to determine the structural alterations caused by nanoparticle treatment. Figure 2
compares images of mycelia obtained from the edge of F. solani cultures inoculated over
PDA containing 3000 mg L−1 ZnO-NPs to a control containing no ZnO-NPs during a 12-day
incubation period at 25 ± 2 ◦C. The control sample (ZnO-NP-free) included hypha with a
typical net structure and smooth surface before being treated with ZnO-NPs (Figure 2A).
After 3000 mg L−1 ZnO-NPs treatment, the surface of F. solani had a rough texture with the
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growth of mycelia clusters, the formation of protrusions, and the appearance of swollen and
coiled hyphae (Figure 2B–D). This suggested that F. solani growth inhibition mediated by
ZnO-NPs might be related to deformation and morphological aberrations in the structure
of the fungal hypha.
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Figure 2. SEM micrograph of growing F. solani (A) ZnO-NP-free (control), and (B–D) ZnO-NPs
(3000 ppm). F. solani cultures were incubated for 12 days at 25 ± 2 ◦C. White arrows point to the
structural alterations caused by nanoparticle treatment.

2.2. Identification of Secondary Metabolites of Trichoderma Isolates by Gas Chromatography–Mass
Spectrometry Analysis:

GC–MS analysis was used to identify the bioactive compounds in the crude extracts
of Trichoderma isolates, as shown in Figures 3 and 4. A total of twenty-eight bioactive
chemical compounds were extracted and identified from Trichoderma spp. ethyl acetate
crude extracts, all of which had substantial antimicrobial and growth-stimulating activities
against rhizosphere pathogens, according to several studies listed in Table 2. As a result,
they can protect cherry tomatoes from infections, confer resistance, and boost development
in cherry tomatoes.

The analyzed data revealed the presence of a high relative abundance of Tetradecane,
2,6,10-trimethyl- (21.70% Tv, and 22.88% Th); Heptadecane,2,6,10,15-tetramethyl- (14.11%
Tv, and 20.99% Th); 1,3,5-Triazine-2,4-diamine,6-chloro-N-ethyl- (16.02% Tv, and 18.87%
Th); Octadecane,1-chloro- (11.57% Tv, and 16.28% Th); Decane,2,3,5,8-tetramethyl- (9.48%
Tv, and 13.07% Th); Octadecane,3-ethyl-5-(2-ethylbutyl)- (5.91% Tv, and 8.02% Th); 2,4-Di-
tert-butylphenol (5.80% Tv, and 7.09% Th); 2,2,3,3,4,4 hexadeutero octadecanal (5.50% Tv,
and 7.03% Th); Phenol, 3,5-bis(1,1-dimethylethyl)- (4.73% Tv, and 5.85% Th); 1-Hexadecanol,
2-methyl- (4.26% Tv, and 5.18% Th), as shown in Table 2 and Figure 4.
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Table 2. Identification list of bioactive secondary metabolites of T. viride and T. harzianum detected by
GC–MS; a ≥ 65% match quality in the Wiley Registry® of Mass Spectral Data Library.

Compound Name
T. viride T. harzianum Molecular

Formula Cas # Biological Properties Literature(s)
RT (min) Area (%) RT (min) Area (%)

Strychane, 1-acetyl-20á-
hydroxy-16-methylene 4.63 1.26 ND C21H26N2O2 2111-98-0 Antimicrobial activities [18]

2-Aminoethanethiol hydrogen
sulfate (ESTER) 4.63 0.63 ND C2H7NO3S2 2937-53-3

Stimulatory/nutritive
effect; antioxidant;

antibacterial; antiviral
activities

[19,20]

2,4-Di-tert-butylphenol 8.19 5.80 8.18 7.09 C14H22O 96-76-4

Plant growth promoter;
antioxidant;

antibacterial; protective;
curative activities

[21–23]

Phenol,
3,5-bis(1,1-dimethylethyl)- 9.16 4.73 9.16 5.85 C14H22O 1138-52-9

Antioxidant;
anti-proliferative;

antimicrobial; cytotoxic
activities

[24,25]

1-Hexadecanol, 2-methyl- 11.12 4.26 11.11 5.18 C17H36O 2490-48-4

An elicitor for systemic
acquired resistance;

antimicrobial;
antioxidant

[26–29]

Nonadecane ND 11.95 2.18 C19H40 629-92-5 Antifungal activity [30,31]

Methoxyacetic acid,
2-tetradecyl ester 12.03 4.74 12.03 6.45 C17H34O3 N/A Cytotoxic; antimicrobial;

antifungal activities [32,33]

1,3,5-Triazine-2,4-diamine,
6-chloro-N-ethyl- 12.58 16.02 12.58 18.87 C5H8ClN5 1007-28-9

An elicitor for systemic
acquired resistance;
growth stimulator;
antifungal activity

[28,34,35]

tert-Hexadecanethiol 13.14 1.31 ND C16H34S 25360-09-2
Antibacterial;

antifungal; antibiotic
activities

[36,37]

Heptadecane,
2,6,10,15-tetramethyl- 13.47 14.11 13.47 20.99 C21H44 54833-48-6

Growth stimulator;
antioxidant;

antimicrobial
[38–40]

1,2-15,16-Diepoxyhexadecane ND 14.09 4.26 C16H30O2 N/A
Antioxidant;

antimicrobial;
antifungal actions

[41–43]

17-Octadecynoic acid ND 14.09 0.58 C18H32O2 34450-18-5
Antimicrobial;

antifungal; antibiotic
activities

[44,45]

Cholestan-3-ol, 2-methylene-,
(3á,5à)- ND 14.09 0.58 C28H48O 22599-96-8

Antibacterial;
antifungal; antiviral;

anti-oxidative activities
[46,47]

Z-10-Methyl-11-tetradecen-1-ol
propionate ND 14.85 3.58 C18H34O2 N/A Antioxidant; antiviral;

antimicrobial activities [48]

2,2,3,3,4,4 hexadeutero
octadecanal 15.25 5.50 15.24 7.03 C18H30D6O 56554-51-9

An elicitor for systemic
acquired resistance;

antimicrobial;
antioxidant; cytotoxic

activities

[28,49]

7-Methyl-Z-tetradecen-1- ol
acetate ND 15.57 3.51 C17H32O2 N/A Antimicrobial;

antifungal activity [29,50]

11,14-Eicosadienoic acid,
methyl ester ND 15.81 4.54 C21H38O2 2463-02-7 Antifungal; antioxidant

activities [51,52]

2,2-Dideutero Octadecanal ND 16.08 3.92 C18H34D2O 56555-07-8
Antioxidant;

antibacterial; cytotoxic
activities

[53,54]

Ethanol, 2-(Octadecyloxy) ND 16.47 2.65 C20H42O2 2136-72-3 Antifungal;
antimicrobial activities [42,55]

Tetradecane, 2,6,10-trimethyl- 16.61 21.70 16.61 22.88 C17H36 14905-56-7 Antioxidant;
antimicrobial activities [43,54]

Octadecane,
3-ethyl-5-(2-ethylbutyl)- 17.39 5.91 17.38 8.02 C26H54 55282-12-7

Nematicidal property;
antimicrobial; antiviral

activities
[56–58]
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Table 2. Cont.

Compound Name
T. viride T. harzianum Molecular

Formula Cas # Biological Properties Literature(s)
RT (min) Area (%) RT (min) Area (%)

Aspidospermidin-17-ol,
1-acetyl-19,21-epoxy-15,16-

dimethoxy-
ND 18.39 1.08 C23H30N2O5 2122-26-1

Antioxidant;
antibacterial;

anti-proliferative
activities

[59,60]

Octadecane, 1-chloro- 20.24 11.57 20.24 16.28 C18H37Cl 3386-33-2 Antimicrobial;
antibiotic activities [61]

Limonen-6-ol, pivalate 20.64 0.48 ND C15H24O2 N/A Antibacterial;
antimicrobial activities [62]

Decane, 2,3,5,8-tetramethyl- 23.53 9.48 23.53 13.07 C14H30 192823-15-7 Antimicrobial;
antibiotic activities [61]

2-(3,4-dimethoxyphenyl)-3,5-
dihydroxy-7-methoxy-4H-1-

Benzopyran-4-one
26.53 3.99 26.53 5.01 C18H16O7 6068-80-0 Antioxidant;

antimicrobial properties [63]

Hexadecanoic acid, ethyl ester ND 29.24 0.50 C18H36O2 N/A Antiviral; antimicrobial
activities [57]

9-Octadecenoic acid (Z)-,
methyl ester ND 31.77 0.53 C19H36O2 112-62-9

Antioxidant;
antibacterial;

anti-proliferative;
antimicrobial activity

[42,60]

RT: retention time; ND: not detected: N/A: not available; Cas: chemical abstracts service; Cas #: Cas
registry number.

2.3. Effect of Seed-Biopriming with Trichoderma and ZnO-NPs against Tomato Fusarium Wilt
Disease under Greenhouse Conditions
2.3.1. Disease Severity Index (%)

Cherry tomato plants infected with F. solani had the highest mean disease severity
index (92.6%), according to Table 3. As illustrated in Figure 5B, untreated, infected control
plants displayed stunted seedlings, yellowing of older leaves, wilting, root rot, and a shorter
main root as compared with absolute healthy control plants (Figure 5A). In comparison to
untreated, infected control plants, bioprimed cherry tomato plants with various Trichoderma
isolates combined with an exogenous foliar spray of ZnO-NPs (ppm) significantly (p ≤ 0.01)
reduced the Fusarium wilt disease severity index (%). Furthermore, our findings demon-
strated that the interaction between bioprimed cherry tomato plants with T. harzianum (Th)
and foliar sprays of ZnO-NPs at 3000 ppm was the most effective interaction treatment for
reducing cherry tomato disease severity index (23.4%). The suppressive effects of foliar
spraying of ZnO-NPs (3000 ppm) and seed-biopriming treatment with T. harzianum (Th)
against Fusarium wilt disease are shown in Figure 5D. In addition, these treated plants
looked healthy, with no symptoms of Fusarium wilt disease (Figure 5D). Figure 5C depicts
the effects of ZnO-NPs (3000 ppm) and bioprimed cherry tomato with T. viride treatments
on Fusarium wilt disease. However, the bioprimed cherry tomato with T. harzianum isolate
was more resistant to the F. solani pathogen than the bioprimed cherry tomatoes with
T. viride isolate when combined with a foliar spray of ZnO-NPs at 3000 ppm, as shown in
Table 3 and Figure 5. These findings suggest that using ZnO-NPs alone or in combination
with antagonistic Trichoderma isolates can give better protection against F. solani infection to
cherry tomato plants.

2.3.2. Vegetative Growth Parameters

On the studied vegetative growth parameters of cherry tomato plants, such as plant
length, plant height, and number of leaves per plant, Figure 6 depicts the effects of various
treatments involving seed-biopriming with Trichoderma isolates and foliar spray of ZnO-NPs
alone, as well as their interactions with and/or without F. solani-infested soil. The obtained
results revealed that vegetative growth parameters of bioprimed cherry tomatoes with
both Trichoderma species were significantly (p ≤ 0.05) increased alone and in combination
with increasing ZnO-NP levels with and/or without F. solani-infested soil. Also, after foliar
spraying with various ZnO-NP levels, bioprimed cherry tomato seeds cultivated in F. solani-
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infested soil were reported to elicit significant recovery from the reduction in vegetative
growth parameters induced by wilt disease. The interaction effect of foliar sprays of ZnO-
NPs (ppm) and seed-biopriming treatments on different vegetative growth parameters
was significantly greater than the control treatment with and/or without F. solani-infested
soil. In this regard, cherry tomato plants that were sprayed with ZnO-NPs (3000 ppm)
and bioprimed with T. harzianum (Th) resulted in the greatest values of plant length, plant
height, and number of leaves per plant at 75 DAS under greenhouse conditions.

Table 3. Effects of different treatments of foliar spray of ZnO-NPs and seed-biopriming with
Trichoderma isolates on the disease severity index (%) of infected cherry tomato plants grown for
75 DAS under greenhouse conditions.

ZnO-NPs (ppm)

Disease Severity Index (%)

MeanSeed-Biopriming with Trichoderma Isolates

T0 Tv Th

0 ¶92.6 ± 3.75 a 81.0 ± 0.71 b 75.4 ± 1.67 c 83.0 ± 7.75 a

250 80.2 ± 2.68 b 70.4 ± 1.67 d 60.0 ± 0.71 f 70.2 ± 8.71 b

1500 63.4 ± 2.88 e 55.0 ± 0.71 g 40.0 ± 0.71 i 52.8 ± 10.15 c

3000 45.2 ± 2.68 h 33.0 ± 0.71 j 23.4 ± 1.47 k 33.9 ± 9.38 d

Mean 70.4 ± 18.52 a 59.9 ± 18.54 b 49.7 ± 20.24 c

L.S.D. 0.01 ZnO-NPs = 1.9349 Seed-biopriming = 1.6757 ZnO-NPs × Seed-biopriming = 3.3514

F-value ZnO-NPs = 1765.37 ** Seed-biopriming = 550.43 ** ZnO-NPs × Seed-biopriming = 5.34 **

C.V. 3.28%

Means followed by the same alphabetical letter(s) in common are not significantly different at p ≤ 0.01 (**).
¶ Values are expressed as mean ± SD (n = 5). C.V., coefficient of variation (%).
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Figure 5. Infected cherry tomato at 75 DAS, as affected by different treatments of seed-biopriming
with Trichoderma isolates and foliar spray of ZnO-NPs. (A) Non-infected control, (B) infected control
“F. solani”, (C) infected cherry tomato with T. viride + (ZnO-NPs)3000 ppm, and (D) infected cherry
tomato with T. harzianum + (ZnO-NPs)3000 ppm.
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treatments of seed biopriming with Trichoderma isolates, and foliar spray of ZnO-NPs with and/or
without F. solani-infested soil. (a) plant length, (b) plant height, and (c) number of leaves per plant.
Error bars represent the mean ± standard deviation (±SD) of the data of 5 replications. Different
letter(s) above the error bars indicate statistically significant differences at (p ≤ 0.05).

2.3.3. Mineral Content in Cherry Tomato Leaves

The effects of different treatments of seed-biopriming with Trichoderma isolates and
foliar spray of ZnO-NPs with and/or without F. solani-infested soil was also investigated
on the leaf chemical composition (µg/g) of the D.W. of cherry tomato plants at 75 DAS
(Figure 7). Some micronutrient element contents of bioprimed cherry tomato leaves,
such as Mn, Zn, and Fe, were significantly (p ≤ 0.01) impacted in sprayed plants with
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different treatments of ZnO-NPs (ppm) with and/or without F. solani-infested soil than
the control treatment. In this regard, bioprimed cherry tomato plants sprayed with ZnO-
NPs (3000 ppm) with and/or without F. solani-infested soil exhibited higher Mn, Zn, and
Fe concentrations in their leaves than the control treatment after 75 DAS. Our results
show that foliar application of ZnO-NPs to bioprimed cherry tomato plants lowers disease
development and improves plant growth, probably through improved mineral nutrition
and host defense.
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Figure 7. Leaf chemical composition (µg/g) of D.W. in cherry tomato plants at 75 DAS, as affected
by different treatments of seed-biopriming with Trichoderma isolates, and foliar spray of ZnO-NPs
with and/or without F. solani-infested soil. (a) Mn, (b) Zn, and (c) Fe. Error bars represent the
mean ± standard deviation (±SD) of the data of 5 replications. Different letter(s) above the error bars
indicate statistically significant differences at (p ≤ 0.01).
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2.3.4. Leaf Chlorophyll Content (SPAD Value)

Figure 8a shows the chlorophyll content (SPAD unit) of cherry tomato plants grown
in greenhouse conditions as affected by different treatments of seed-biopriming with
Trichoderma isolates and foliar spraying of ZnO-NPs with and/or without F. solani-infested
soil. Different treatments significantly (p ≤ 0.01) enhanced chlorophyll content (SPAD unit)
compared to infected or non-infected controls, regardless of the presence or absence of
F. solani infection.
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2.3.5. Phenylalanine Ammonia-Lyase (PAL) Activity

The impact of various ZnO-NP (ppm) treatments and seed-biopriming with
Trichoderma isolates with and/or without F. solani-infested soil on PAL activity
(nmol. min−1·g−1 of fresh weight) of cherry tomato leaves at 75 DAS was also exam-
ined (Figure 8b). The results showed that different treatments can significantly (p ≤ 0.01)
increase plant defense enzyme activity (such as PAL activity) in cherry tomato leaves while
simultaneously enhancing cherry tomato plant growth. The combination of foliar spraying
of ZnO-NPs (3000 ppm) and a seed-biopriming treatment with T. harzianum (Th) was the
most effective treatment for stimulating PAL activity and, therefore, reducing the disease
severity index (%) of cherry tomato leaves at 75 DAS. Plant defense enzyme activity, such as
PAL activity, appears to improve plant resistance to rhizosphere pathogens, and may play
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a key role in cherry tomato defense mechanisms against Fusarium wilt disease caused by
the soil-borne fungus F. solani. Our findings indicated that foliar spraying of ZnO-NPs, in
combination with seed-biopriming of antagonistic Trichoderma isolates, might be employed
as an efficient resistance strategy in cherry tomatoes for control of Fusarium wilt disease
caused by the soil-borne fungus F. solani.

3. Discussion

Nanotechnology has the potential to significantly boost agricultural output and food
security by providing environmentally acceptable alternatives to traditional agrochemi-
cals [17]. The current study found that the in-vitro antifungal activity of ZnO-NPs can
disrupt and damage F. solani fungal conidia. As a result, fungal growth in-vitro was signifi-
cantly inhibited. The mode of action of the 3000 ppm ZnO-NP treatment was disclosed by
SEM investigation, which revealed that the surface of F. solani had a rough texture with the
growth of mycelia clusters, the generation of protrusions, and the emergence of inflated and
coiled hyphae. This indicated that F. solani growth inhibition caused by ZnO-NPs might
be linked to fungal hyphal deformation and morphological abnormalities. These findings
indicate that ZnO-NPs could be employed as fungicides in agricultural and food safety
applications. According to Sardella et al. [64], ZnO-NPs (size < 50 nm) have high antifungal
activity, making them a suitable option for usage as a routine antifungal compound for
fruit rotting prevention. Furthermore, SEM analysis demonstrated that ZnO-NPs cause
substantial physical damage and evident morphological abnormalities to fungal structures,
which are presumed to be permanent.

Seed-biopriming is a new productive technique for the judicious use of antagonistic
bioagents to increase crop productivity under stress conditions [9]. Biopriming promotes
the colonization, proliferation, and establishment of antagonistic bioagents on the seed
surface [65]. Consequently, it improves the first stage of plant growth by increasing seed
germination and providing protection prior to seedling emergence [8]. Therefore, it will
increase seedling vigor and produce systemic resistance to biotic and abiotic stressors [9].
Trichoderma spp. is a common biocontrol agent that promotes plant development while in-
hibiting phytopathogens [9]. According to Awad-Allah et al. [10], T. viride and T. harzianum
are antagonistic to the F. solani pathogen, which causes Fusarium wilt disease in cherry
tomatoes. Both Trichoderma isolates show in-vitro mycoparasitic activity against F. solani,
according to a dual culture test [10]. However, T. harzianum reduced the mycelial growth of
F. solani by 78.0%, whereas T. viride inhibited the growth by 61.2% at 10 days post-inoculation
through a dual culture assay [10]. Moreover, the T. harzianum isolate showed greater inhibi-
tion against the F. solani pathogen than the T. viride isolate through a dual culture assay [10].
According to our investigation, and the numerous research studies listed in Table 2, antago-
nistic Trichoderma isolates can produce a wide range of bioactive chemical compounds that
have antifungal and plant growth-promoting activities against Fusarium wilt, making them
a potentially suitable candidate for improving cherry tomato growth and production. The
most abundant bioactive chemical compounds detected by GC–MS analysis of Trichoderma
spp. ethyl acetate extracts were Tetradecane, 2,6,10-trimethyl-; 2,2,3,3,4,4 hexadeutero
octadecanal; Octadecane,1-chloro-; Heptadecane,2,6,10,15-tetramethyl-; Decane,2,3,5,8-
tetramethyl-; 2,4-Di-tert-butylphenol; Phenol, 3,5-bis(1,1-dimethylethyl)-; 1,3,5-Triazine-
2,4-diamine,6-chloro-N-ethyl-; Octadecane,3-ethyl-5-(2-ethylbutyl)-; and 1-Hexadecanol,
2-methyl-. Furthermore, the majority of these bioactive compounds exhibited growth-
stimulating, nutritive, and antioxidant activities, as well as acting as an elicitor for systemic
acquired resistance, indicating that they can confer resistance and promote growth in cherry
tomatoes, as shown by our recent study and the studies included in Table 2. Furthermore,
according to Zhang et al. [31], Trichoderma biofertilizer application increased soil antifungal
compounds that may suppress pathogenic fungus, thereby contributing to better grassland
biomass. Therefore, our recent study suggested that employing volatile compounds to
manage Fusarium wilt disease is a promising strategy, since it is a cost-effective, non-toxic,
and environmentally friendly method that produces excellent long-term crop yields.
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Plant nano-nutrition is a branch of plant nutrition that intends to employ nano-
nutrients to provide grown plants with essential nutrients for their growth and productivity
while minimizing negative environmental impacts [1,17]. The tiny size, larger surface area,
increased solubility, and surface reactivity of nanoparticles result in greater and easier
nutrient absorption by plants [17]. According to Ahmed et al. [66], foliar spraying of
ZnO-NPs had the most impactful outcomes in terms of optimal planting factors, such as
plant height, early flowering, fruit yields, and lycopene content. In the present study, it was
demonstrated that cherry tomato plants sprayed with ZnO-NPs (3000 ppm) and bioprimed
with T. harzianum (Th) had the greatest values of plant length, plant height, and number of
leaves per plant with and/or without F. solani-infested soil at 75 DAS under greenhouse
conditions. In addition, as compared to untreated, infected control plants, it was the most
effective interaction treatment for lowering the cherry tomato disease severity index (23.4%),
improving the chlorophyll content (SPAD unit) and micronutrient contents (Mn, Zn, and
Fe in leaves), and stimulating the phenylalanine ammonia-lyase (PAL) activity of cherry
tomato leaves at 75 DAS. The growth-promoting effects of zinc oxide as a nano-fertilizer
can be attributed to the activity of Zn, which is an essential micronutrient that is mandatory
for optimal plant growth, development, and the biosynthesis of tryptophan and auxins
that stimulate cell division, elongation, and the activation of antioxidant enzymes useful in
responses to pathogen attacks [15,16]. On the other hand, direct elemental defense by Zn
suggests that a high Zn content in plant tissues is more poisonous to the pest/pathogen
than to the plant [64,67]. Applications of nanotechnology are considered crucial, less risky,
and more useful than those of a variety of other technologies, including genetically engi-
neered technologies [17]. However, it is necessary to conduct a trustworthy risk–benefit
analysis and create trustworthy methodologies for assessing the effect of nanomaterials on
the environment and human health [17].

Plants respond to microbial pathogen attacks by triggering a variety of defense re-
sponses, which are linked to the buildup of defense-related enzymes and inhibitors that
aid in pathogen infection prevention [68,69]. PAL is the primary enzyme in the phenyl-
propanoid pathway, which converts l-phenylalanine to trans-cinnamic acid while eliminat-
ing ammonia [68,69]. PAL has been shown to be involved in the metabolic activities of many
higher plants, and is a crucial enzyme in the synthesis of various defense-related secondary
compounds such as phenols and lignins [68–70]. The presence of phenolic compounds
in plants, as well as their production in response to infection, is linked to disease resis-
tance [68–71]. According to Vanitha et al. [69], PAL is an inducible enzyme that responds to
both biotic and abiotic stresses. It is also regarded as a biochemical marker for plant stress
tolerance [69]. Finally, cherry tomato plants can acquire resistance to Fusarium wilt caused
by F. solani, while simultaneously stimulating cherry tomato growth and development in
the greenhouse, by biopriming cherry tomato seeds with antagonistic Trichoderma isolates
and employing foliar spraying of ZnO-NPs, in order to maintain adequate Zn levels in
cherry tomato tissues. However, further field studies are needed to investigate the potential
of these treatments for controlling Fusarium wilt disease caused by F. solani before they may
be utilized in practice.

4. Materials and Methods
4.1. Experiment Location and Fungal Strains of the Pathogen and Antagonists

The current research was conducted in-vitro and under greenhouse conditions (GPS:
Latitude 31.206134: Longitude 29.919707) located at the Plant Pathology Department,
Faculty of Agriculture, Alexandria University, Egypt.

We used three fungal species; one fungal pathogen was previously isolated from
naturally infected tomato plants, as shown in Figure 9, and identified as Fusarium solani
(GenBank accession no. OP106576), and two antagonistic Trichoderma isolates were pre-
viously isolated from soil rhizosphere samples and identified as Trichoderma harzianum
(Th) and Trichoderma viride (Tv) (GenBank accession numbers: OP106577 and OP106578,
respectively), according to Awad-Allah et al. [10].
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Figure 9. Natural Fusarium wilt disease infection of tomato plants in the field at a private farm in
Borg El-Arab, Alexandria governorate, Egypt.

4.2. Evaluation of the Antifungal Activity of ZnO-NPs against F. solani In-Vitro
4.2.1. Culture Medium Amended with ZnO-NPs

Zinc oxide nanoparticles (ZnO-NPs), (30 ± 5 nm particles size, spherical shape,
white/light yellow powder, purity 99.9%, formula weight 81.38 g/mol), were purchased
from Nano-Gate Company, Cairo, Egypt. In glass tubes, ZnO-NP suspensions were pre-
pared with 10 mL of sterile deionized water, and the corresponding concentrations of
nanoparticles were added. The nanoparticles’ suspensions were placed into an ultrasonic
liquid processor (BANDELIN electronic, Berlin, Germany, 20 kHz) for 30 min to disrupt
the aggregations of the nanoparticles. The culture medium potato-dextrose agar (PDA,
HiMedia, MH096-500 G, India) was prepared and used to create a series of media contain-
ing ZnO-NPs at concentrations of 0, 250, 500, 1000, 1500, and 3000 mg L−1. After that, the
autoclaved PDA media with ZnO-NPs at concentrations of 0, 250, 500, 1000, 1500, and
3000 mg L−1 were stirred for 15–20 min to achieve homogeneity before each treatment
was poured into Petri plates (9 cm in diameter). F. solani (Accession no. OP106576) had
previously been isolated and molecularly identified [10]. A 5 mm plug of F. solani was
taken from the edge of a 7-day-old plate, placed in the center of each Petri dish, and incu-
bated in a growth chamber for 12 days at 25 ± 2 ◦C, according to the modified method
described by Sardella et al. [64]. The antifungal activity of ZnO-NP treatments against
F. solani was evaluated at 2, 4, 6, 8, 10, and 12 days intervals by measuring the diameter
of fungal colonies. All experiments were carried out in triplicate, and the diameters were
measured in centimeters. The percentage of mycelial growth inhibition was calculated after
incubation for 12 days at 25 ± 2 ◦C using the formula described by Awad-Allah et al. [10].
The percent of inhibition of radial growth (PIRG) = (C − T)/C × 100, where C represents
the average value of the radius of the fungus growth (control), and T is the average value
of the radius of the inhibited colony (treatment).

Based on the results obtained from this experiment, four treatments (0, 250, 1500,
and 3000 ppm) of ZnO-NPs were chosen for evaluation in the greenhouse on cherry
tomato plants.

4.2.2. Scanning Electron Microscopy (SEM) Analysis

A scanning electron microscope (SEM) was used to examine the morphological
changes of F. solani hyphae before and after ZnO-NP treatments, according to the modified
method described by Sardella et al. [64]. Pieces of mycelial material were cut from 7-day-old
cultures and inoculated onto PDA containing 3000 mg L−1 ZnO-NPs in comparison with a
control containing no ZnO-NPs, followed by a 12-day incubation period at 25 ± 2 ◦C. After
that, pieces of mycelia were cut from the edge of the fungal cultures and directly analyzed
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at different magnifications using the JSM-IT200 SEM series (JEOL Ltd., Tokyo, Japan) at the
Electron Microscope Unit, Faculty of Science, Alexandria University, Alexandria, Egypt.

4.3. Identification of Secondary Metabolites of Trichoderma Isolates by Gas Chromatography–Mass
Spectrometry (GC–MS) Analysis:
4.3.1. Extraction of Bioactive Secondary Metabolites (SMs)

The abilities of two antagonistic Trichoderma isolates (Th and Tv) to produce antifungal
secondary active metabolites were tested and identified using GC–MS analysis. For the
extraction of secondary metabolites (SMs), two 7 mm diameter discs of each Trichoderma
isolate (Th and Tv) were taken from actively growing margins of PDA cultures and sepa-
rately inoculated into 2 L conical flasks containing 250 mL of pre-sterilized potato dextrose
broth (PDB, HiMedia, India). The suspension cultures were incubated for 10 days at 28 ◦C,
after which the fungal mycelium was filtered out of the broth according to the modified
method described by Vinale et al. [72]. The filtered cultures broth of Trichoderma isolates
were extracted twice with equal volumes of ethyl acetate (EtOAc). The ethyl acetate layer
containing SMs was separated, and the volatile compounds of secondary metabolites were
identified using a GC–MS technique.

4.3.2. GC–MS Analysis of Secondary Metabolites

The chemical compositions of the crude ethyl acetate extracts of Trichoderma isolates
were analyzed using a Trace GC-TSQ mass spectrometer (Thermo Scientific, Austin, TX,
USA) with a direct capillary column TG–5MS (30 m × 0.25 mm × 0.25 µm film thickness).
The column oven temperature was initially kept at 50 ◦C before increasing by 5 ◦C per
minute to 250 ◦C for 2 min. Then, the temperature was raised by 30 ◦C per minute
to the final temperature of 300 ◦C before being held for 2 min. Helium was used as a
carrier gas at a constant flow rate of 1 mL/min, with the injector and MS transfer line
maintained at constant temperatures of 270 and 260 ◦C, respectively. Using an Autosampler
AS1300 connected to a GC operating in split mode, diluted samples containing 1 µL were
automatically injected with a solvent delay of 3 min. EI mass spectra were collected at
70 eV ionization voltages over the range of m/z 50–650 in full scan mode. The temperature
of the ion source was set at 200 ◦C. The components were identified by comparing their
mass spectra with those of WILEY (Wiley Registry of Mass Spectral Data, 9th Edition
Version 1.02) and NIST 14 (NIST/EPA/NIH mass spectral library) mass spectral databases,
as described by Abd El-Kareem et al. [73].

4.4. Effects of Seed-Biopriming with Trichoderma and ZnO-NPs against Tomato Fusarium Wilt
Disease under Greenhouse Conditions
4.4.1. Fungal Inoculum Preparation of the Pathogen

The pathogenic cultures of F. solani were brought from the Department of Plant Pathol-
ogy, Faculty of Agriculture, Alexandria University. In brief, the fungal inoculum was
cultured onto PDA plates and incubated for 10 days at 25 ± 1 ◦C in 90 mm Petri plates. Ac-
cording to Awad-Allah et al. [10], after incubation, the plates were filled with sterile water
and the conidia were scraped using a sterile glass rod. After filtering the spore solutions to
eliminate fungal hyphae and conidial residue, the conidial suspension concentration was
adjusted to 1 × 107 conidia mL−1 using a hemocytometer. For the greenhouse experiment,
the inoculum concentration of F. solani was adjusted to 103 conidia g−1 soil.

4.4.2. Preparation of Trichoderma Spore Suspensions for Seed-Biopriming

The cultures of T. harzianum (Th) and T. viride (Tv) were individually grown onto
PDA plates and incubated for 10 days at 25 ± 1 ◦C. After incubation, the fungal spores
were harvested in sterile distilled water and filtered with sterile muslin cloth, according
to Awad-Allah et al. [10]. The spore concentration was adjusted to 1 × 107 conidia mL−1

using a hemocytometer, followed by centrifugation at 10,000 rpm for 10 min. The pellet
was re-suspended in the same volume of autoclaved 1.5% Carboxy methyl cellulose (CMC)
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solution, which acts as an adherent during priming according to the adapted method
described by Singh et al. [9].

For seed-biopriming with a spore suspension of T. viride (Tv) and T. harzianum (Th),
healthy seeds of cherry tomato (Solanum lycopersicum L.; Huang Sheng “Golden Cherry”
HYBRID F1, China) were surface sterilized with 1% sodium hypochlorite (NaOCl) for
1 min, rinsed three times for 5 min with autoclaved distilled water, and surface-dried under
laminar air flow for about 2 h, according to Jain et al. [74]. The surface-sterilized and
dried seeds were treated by soaking for 30 min in the aforementioned spore suspensions
of T. viride (Tv) and T. harzianum (Th), and the control seeds (T0) were treated with only
an autoclaved 1.5% CMC solution without spore suspension. After priming, the excess
suspension was drained out, and all treated seeds were put in an incubator at 28 ± 2 ◦C
with 98% relative humidity for 24 h before being surface-dried under sterile air in laminar
air flow for 2 h, according to Jensen et al. [75].

4.4.3. Pot Trials, Treatments, and Experimental Design

Pot trials were conducted in a controlled greenhouse at an average temperature of
25 ± 2 ◦C, a humidity of 77 ± 5%; and a photoperiod of 14/10 h of light/dark. Plastic pots
(20 cm inner diameter) were filled with a sterilized mixture (2:1 v/v) sandy loam–peat moss
(NORD AGRI SIA, Riga, Latvia). The soil was artificially infected with F. solani by adding
(103 conidia g−1 soil) conidial suspension and kept for 7 days with regular irrigation for
pathogen establishment.

The trial treatments were arranged using a Randomized Complete Block Design
(RCBD), with five replicates for each treatment. This study included twenty-four treatments,
including two pathogenic fungal treatments (with and/or without F. solani-infested soil)
and all combinations of three seed-priming treatments of antagonistic Trichoderma isolates
(T0, Tv, and Th) with four foliar spraying of ZnO-NP aqueous solutions (0, 250, 1500, and
3000 ppm).

In a controlled environment, bioprimed cherry tomato seeds with different Trichoderma
spore suspensions (T0, Tv, and Th) were sown into soil pots (i.e., either with and/or without
F. solani infested soil pots) on 15 September 2022. These seeds were watered daily with
autoclaved distilled water, and two weeks after sowing, the seedlings were thinned to three
plants per pot. The 15-day-old cherry tomato seedlings were irrigated with a half-strength,
Zn-free nutrient solution of Hoagland and Arnon as a base solution at a pH of 5.5–6.0,
according to Hewitt [76], using a surface drip irrigation system in the greenhouse. Foliar
treatments of ZnO-NPs (0, 250, 1500, and 3000 ppm) were applied to cherry tomato leaves
by spraying 200 mL per plant of each concentration using a hand-held sprayer bottle at 30,
45, and 60 days after sowing (DAS), whereas control plants were sprayed with autoclaved
distilled water. Five drops of 80% Tween® 20 were added to each prepared solution to
maximize dissemination on cherry tomato leaves. Cherry tomato plants per treatment were
grown, and the experiment was terminated at 75 DAS.

4.5. Measurements
4.5.1. Disease Severity Index (DSI)

The disease was assessed using the severity scale of 0 to 4 based on the presence or
absence of symptoms, with zero denoting no chlorosis or wilt symptoms for a healthy
plant, one denoting the first symptoms of chlorosis of the leaves, two denoting severe
chlorosis of the leaves and initial symptoms of wilting, three indicating serious symptoms
of wilting and chlorosis of the leaves, and four denoting a plant that is totally withered and
completely necrotic, according to Vega-Gutiérrez et al. [77]. The Disease Severity Index
(DSI) was calculated with the formula proposed by Vega-Gutiérrez et al. [77].

DSI(%) = ∑ [P × Q]/[M × N]× 100

where P is the severity point, Q is the number of plants infected with some scale, M is the
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total number of plants observed, and N is the maximum classification in the number of
the scale.

4.5.2. Vegetative Growth Parameters

Five cherry tomato plants were randomly selected from each treatment at 75 DAS to
assess vegetative growth parameters, i.e., plant length (cm), plant height (cm), and number
of leaves per plant.

4.5.3. Mineral Content in Cherry Tomato Leaves

The newest fully-expanded cherry tomato leaves were sampled and oven dried at
70 ◦C for 48 h, and the levels of three essential micronutrients such as manganese, zinc, and
iron contents were measured, according to Jones Jr. [78].

4.5.4. Leaf Chlorophyll Content (SPAD Value)

Total chlorophyll content was measured as a SPAD value, and the portable chlorophyll
meter SPAD-502 Plus (Konica-Minolta, Inc., Tokyo, Japan) was used.

4.5.5. Phenylalanine Ammonia-Lyase (PAL) Activity Measurements

PAL activity was determined at 30 ◦C by direct spectrophotometric measurement as
the rate of conversion of L-phenylalanine to trans-cinnamic acid at 290 nm, as reported by
Dickerson et al. [79]. One gram of fresh leaves was homogenized in 5 mL of 0.1 M sodium
borate buffer (pH 7.0) containing 0.1 g of insoluble polyvinylpyrrolidone (PVP). The extract
was filtered through cheesecloth, and the filtrate was centrifuged at 20,000 g for 35 min
at 4 ◦C. The supernatant was used as an enzyme source. Samples containing 0.4 mL of
enzyme extract were incubated with 0.5 mL of 0.1 M borate buffer, pH 8.8, and 0.5 mL of
12 mM L-phenylalanine in the same buffer for 30 min at 30 ◦C. In the reference cell,
0.4 mL of enzyme extract was taken along with 1.0 mL of borate buffer. The amount of
trans-cinnamic acid synthesized was calculated using its extinction coefficient of
9630 M−1 cm−1. Enzyme activity was expressed as the synthesis of trans-cinnamic acid
(nmol. min−1·g−1 of fresh weight).

4.6. Statistical Analysis

The in-vitro and greenhouse experimental studies were repeated twice, an analyzed
data of variance (ANOVA) was carried out for each experimental study separately, and
a combined analysis was conducted throughout each repeated experimental study due
to the homogeneity of the error variance. All statistical tests were performed using the
CoStat statistical analysis program [80] (CoHort Software version 6.303, Monterey, CA,
USA), the analyzed data of variance (ANOVA) according to Gomez and Gomez [81], and
least significant difference (LSD) at significance levels of (p ≤ 0.05) or (p ≤ 0.01) were
employed for comparison of means. The in-vitro investigation used three replications,
and two-way analyses of variance (ANOVA) were used to examine the effects of time and
culture medium amended with different concentrations of ZnO-NPs on F. solani colony
diameter (cm). Mycelial growth inhibition (%) was presented as mean± standard deviation
(mean± SD). In the greenhouse trials, five replications were used. Two-way ANOVA tests
were used on the data of disease severity index (%) of infected cherry tomato plants to
examine the individual and combined effects of seed-biopriming with Trichoderma isolates
and foliar spray of ZnO-NPs. The data on vegetative growth parameters, mineral content
in cherry tomato leaves, leaf chlorophyll content (SPAD value), and PAL activity were
subjected to three-way analyses of variance (ANOVA) to examine the effects of seed-
biopriming with Trichoderma isolates and foliar spray of ZnO-NPs with and/or without
F. solani-infested soil and their interactions on various variables.
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5. Conclusions

The in-vitro antifungal activity of ZnO-NPs was shown to be concentration-dependent.
As a result, the highest treatment (3000 ppm) of ZnO-NPs had the greatest reduction of
F. solani mycelial growth. SEM investigation revealed apparent deformation in mycelia
treated with ZnO-NPs, which might be the source of mycelial growth suppression. In
addition, we isolated and identified twenty-eight bioactive compounds from two Tricho-
derma spp. ethyl acetate crude extracts, all of which have strong antimicrobial and plant
growth-promoting activities. In a greenhouse, seed-biopriming with Trichoderma isolates
promotes their proliferation on the seed surface, which may help in the secretion of differ-
ent arrays of bioactive compounds surrounding seeds, and thus can protect seeds from
rhizosphere pathogens. Additionally, ZnO-NPs have shown increased antifungal efficacy
when combined with seed-biopriming treatments. Foliar application of ZnO-NPs reduced
the severity of Fusarium wilt, allowing the growth of bioprimed cherry tomatoes. Also,
ZnO-NPs have the ability to act as a biostimulant to improve vegetative growth parameters,
micronutrient levels (Mn, Zn, and Fe in leaves), chlorophyll content, and PAL activity in
bioprimed cherry tomato leaves.
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