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Abstract: MADS-box genes comprise a large family of transcription factors that play crucial roles in
all aspects of plant growth and development. However, no detailed information on the evolutionary
relationship and functional characterization of MADS-box genes is currently available for some
representative lineages, such as the Camellia plant. In this study, 136 MADS-box genes were detected
from a reference genome of the tea plant (Camellia sinensis) by employing a 569 bp HMM (Hidden
Markov Model) developed using nucleotide sequencing including 73 type I and 63 type II genes. An
additional twenty-seven genes were identified, with five MIKC-type genes. Truncated and/or inaccu-
rate gene models were manually verified and curated to improve their functional characterization.
Subsequently, phylogenetic relationships, chromosome locations, conserved motifs, gene structures,
and gene expression profiles were systematically investigated. Tea plant MIKC genes were divided
into all 14 major eudicot subfamilies, and no gene was found in Mβ. The expansion of MADS-box
genes in the tea plant was mainly contributed by WGD/fragment and tandem duplications. The
expression profiles of tea plant MADS-box genes in different tissues and seasons were analyzed,
revealing widespread evolutionary conservation and genetic redundancy. The expression profiles
linked to cold stress treatments suggested the wide involvement of MADS-box genes from the tea
plant in response to low temperatures. Moreover, a floral ‘ABCE’ model was proposed in the tea plant
and proved to be both conserved and ancient. Our analyses offer a detailed overview of MADS-box
genes in the tea plant, allowing us to hypothesize the potential functions of unknown genes and
providing a foundation for further functional characterizations.

Keywords: MADS-box; tea plant; cold stress; floral ABCE model; transcription factor

1. Introduction

The tea plant (Camellia sinensis (L.) O. Kuntze) belongs to the genus Camellia (Theaceae),
which comprises more than 250 species [1,2]. The tea plant is a commercially important crop
the leaves of which are used to produce tea for the world’s three most widely consumed
nonalcoholic beverages. Due to the highly repetitive, heterozygous, and relatively large (ap-
proximately 3G) genome of the tea plant, it is challenging to perform genome assembly on
this crop. In recent years, with the revolution of next-generation sequencing technology and
the efforts of researchers, the tea plant genome has developed from an initial draft genome
(contig level) to the current reference genome (chromosome level) [3–6]. The increasing
public availability of high-quality genome assembly and transcriptomes represent a great
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opportunity for elucidating the molecular basis underlying various biological processes
and further accelerating tea plant research and breeding.

MADS-box is one of the most important transcription factor families and is widely
distributed throughout plants. The initials of the four earliest discovered MADS-box genes
constitute the most characteristic domain (MADS-domain) of this gene family, including
MINICHROMOSOME MAINTENANCE1 from Saccharomyces cerevisiae [7], AGAMOUS from
Arabidopsis thaliana [8], DEFICIENS from Antirrhinum majus [9], and SERUM RESPONSE
FACTOR from Homo sapiens [10]. Prior to the divergence of the plant and animal kingdoms,
MADS-box genes were differentiated into two phylogenetic groups: type I (SRF-like or M-
type) and type II (called MEF2-like or MIKC-type) [11,12]. Plant-specific MIKC-type genes
encode a class of proteins comprising four characteristic domains (from N- to C-terminal):
the MADS (M) domain, the intervening (I) domain, the keratin-like (K) domain, and the
C-terminal (C) domain [13]. Type II MADS-box genes are long and contain five to eight
exons, while type I genes have a relatively simple structure with no K domain and usually
contain only one or two exons [14]. Type II genes are further divided into MIKCC-type
and MIKC*-type genes (also named Mδ in some studies) due to the variable intervening (I)
domain [15]. MIKCC proteins can be further subdivided into 14 distinct subfamilies based
on their phylogenetic relationships [16,17]. Type I genes can be further divided into three
subfamilies: Mα, Mβ, and Mγ [12,18].

MADS-box genes control all major aspects of life for land plants. The most famous
MADS-box genes include four different classes of floral homeotic genes (A, B, C, E), which
spell out the classic “ABCE” model of floral organ identity [19–21]. In Arabidopsis, Class A
genes (APETALA1 [AP1] and APETALA2 [AP2]) alone determine sepal identity in whorl
1 [22,23]. Class A genes overlap with Class B genes APETALA3 (AP3) and PISTILLATA
(PI) to control petal development in whorl 2 [24,25]. Class B and Class C AGAMOUS
(AG) genes together determine petals in whorl 3, and Class C genes alone specify carpel
identity in whorl 4 [26]. Class E genes (SEPALLATA1, 2, 3, 4 [SEP1/2/3/4; formerly
named AGL2/4/9/3]) are involved in the specification of all four whorls of floral organs by
redundantly interacting with genes of other classes to form heterotetramer protein com-
plexes [27,28]. Generally speaking, floral organs in each of the four whorls are determined
by combinations of MADS-box transcription factors with different homeotic functions,
such as A-, B-, C-, and E-functions, to form homodimers and heterodimers and tetramers.
With the exception of AP2, all ABCE homologous genes are MIKCC-type genes. The ABCE
model is very versatile for flowering plants; even the differentiated zygomorphic orchid
flower can be primarily explained using a modified ABCE model [29,30].

In Arabidopsis, MADS-box transcription factors are also involved in regulating leaf
morphogenesis; root, seed, and embryo development; and fruit ripening [31,32]. Sev-
eral MIKCC-type genes, such as SHORT VEGETATIVE PHASE (SVP)/AGAMOUS-like 24
(AGL24), SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) and FLOWERING
LOCUS C (FLC), are of great importance because they participate in flowering transition
and flowering time by integrating various environmental signals [33,34]. Moreover, many
studies on MADS-box genes of different subclades have revealed the functions of some
plants in abiotic stress tolerance in different developmental processes [35]. For example,
AP1, AP3, and AG homologs from tomatoes were shown to be induced by low tempera-
tures and associated with the formation of abnormal flowers [36]. The rice AGL12 ortholog,
OsMADS26, acts as a regulator of stress-related responses such as drought and pathogen
infections [37]. LsMADS55 (AP1-like) is responsible for heat-induced bolting and flowering
in lettuce [38]. Several other MADS-box genes are implicated in plastic developmental pro-
cesses (including vernalization, seed germination, seasonal growth cessation, and winter
dormancy process) in response to seasonal changes caused by environmental conditions.
For horticultural plants, these plant developmental processes and stress responses are
strongly related to agronomic traits.

The prevalence and functional diversity of members of the MADS-box family have
been comprehensively investigated in many angiosperms, including model plants Arabidop-
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sis, Oryza sativa, and Brachypodium disachyon, as well as some commercially important crops
(Vitis vinifera, Triticum aestivum, Musa acuminata, etc.) [39–41]. Although an overview of
MADS-box genes in tea plants is available [42], there remains a lack of in-depth genome-
wide identification and functional characterization for tea plant MADS-box genes in a well-
resolved genome. In the present study, we identified 136 MADS-box gene members from
the tea plant genome and transcriptome assembly by integrating several bioinformatics
methods. Phylogenetic analysis, gene structures, conserved motifs, chromosomal locations,
and syntenic relationships were also analyzed. Expression patterns of MADS-box genes
linked to cold stress in different tissues during different seasons were further surveyed. Our
results provide a detailed overview of the tea plant MADS-box gene family, which could
facilitate future functional analyses of CsMADS genes in different biological processes.

2. Results
2.1. Identification of the MADS-Box Gene Family Based on Tea-Specific Nucleic Acid HMM and
the Curation of Gene Models

A raw dataset of 132 non-redundant MADS-box genes was obtained through HMMER
search employing downloaded HMM profiles as a query to search proteins containing the
MADS-domain or K-box domain in the tea protein database (Table S1). In this dataset,
forty-four genes were encoded for both the MADS-domain and K-box domain, seventy-
nine genes for only the MADS-domain, and eight genes for only the K-box domain. In
order to identify all genes that were missed in published annotations and lost their MADS-
box domains or a large part of their sequences due to divergent evolution, a tea-specific
nucleic acid HMM with a length of 569 bp was constructed based on the predicted mRNA
nucleotide sequences of a well-aligned MADS-domain and K-box domain using hmmbuild
from the HMMER v3 suite (Figure S1). The resulting HMM was adopted to probe the tea
plant genome [3]. After removing sites with an e-value above 0.5, 169 genomic regions
with candidate MADS domains were retained for subsequent manual verification and
functional annotation. In total, 124 of 132 predicted proteins overlapped with candidate
genomic regions, and the rest were excluded from posterior analyses, as it was further
confirmed that only the k-box gene was preserved in these genes via screening extended
genomic regions (Tables S2 and S3). For each nucleotide domain without counterparts of
known genes, we performed repeated predictions with the Genewise software using genes
of closely related species (grape or kiwifruit) or assembled transcripts of tea-reproductive
organs. Of these, the proteins determined for twenty-seven genomic regions seemed to be
functional, including five type II genes (three AP1/FUL-like genes, one AGL15, and one FLC
gene) and twenty-two type I genes (Table S2).

In addition to mining novel gene loci, gene models of known genes were also evaluated
and manually curated. A total of twenty-four known genes were truncated, among which
sixteen genes only contained the MADS domain, and eight genes only contained the K-box
domain. In four cases (CSS0040885.1, CSS0001766.1, CSS0012111.1, and CSS0041561.1), gene
models were reconstructed based on transcriptome assembly. Four genes (CSS0013866.1,
CSS0009886.1, CSS0016920.1, and CSS0006612.1) with only partial sequences were merged
with nearby truncated genes (CSS0033417.1, CSS0000825.1, CSS0032023.1, and CSS0043640.1,
respectively) to form a complete gene. Gene models of the 12 truncated genes could not be
reconstructed, indicating that their functional MADS-box or K-box domains may have been
lost during evolution (Supplementary Table S3). In two cases, candidates CSS0032233.1 and
CSS0021126.1 allocated to non-chromosomal locations (Contig203 and Contig399) were dis-
carded because their sequences were identical to those of CSS0034367.1 and CSS0012962.1
(Chr7 and Chr2), respectively. Ultimately, 136 full-length genes with high-confidence
MADS domains were discovered in the tea plant genome, including 63 type II genes and
73 type I genes based on sequence similarity (Table S2).

2.2. Maximum Likelihood Phylogenetic Analysis of MADS-Box Genes

The maximum likelihood phylogeny of the type II MADS-box protein sequences of
tea plant, grape, and Arabidopsis showed that 63 genes from the tea plant could be assigned
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into 14 major MIKC-type gene clades, with the members numbers described in square
brackets: AGAMOUS-LIKE6 (AGL6) [1], SEPALLATA1 (SEP1) [3]/SEP3 [2], APETALA1
(AP1) [1]/FUL [6], SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) [8],
B-sister(BS) [1], APETALA3 (AP3) [1]/TOMATO MADS BOX GENE6(TM6) [2]/PISTILLATA
(PI) [2], TM8 [1], SHORT VEGETATIVE PHASE (SVP) [4], AGL12 [1], AGL15 [2], ANR1 [11],
AGAMOUS (AG) [3]/SEEDSTICK (AGL11) [1], FLOWERING LOCUS C (FLC) [3], and
MIKC*(Mδ) [10] (Figure 1). The ANR1, MIKC*, and SOC1 subfamilies had the largest
numbers of CsMADS genes, while AGL11, TM8, and AGL12 had the smallest number, with
only one copy each. Except for the TM8 and TM6 subclades known from other flowering
plants, all type II genes in the tea plant had orthologous genes from Arabidopsis. In addition,
the numbers of AP3/TM6/PI, AP1/FUL1, SOC1, ANR1, and MIKC* subfamilies in the
tea plant were much higher compared to their Arabidopsis and grape counterparts. Type I
genes in the tea plant could be divided into two subclasses: Mα (39) and Mγ (34). No gene
member was found in Mβ, which was similar to the results in grape and orchid [43,44].
Phylogenetic analysis of type I genes from grape, Arabidopsis, and the tea plant showed
that many genes appeared to be unique to the tea plant, suggesting these genes may have
undergone independent replication and evolution (Figure S2).
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presented in different colors. At, A. thaliana; Vvi, Vitis vinifera, Cs, C. sinensis.



Plants 2023, 12, 2929 5 of 21

2.3. Analysis of Genes Structure and Conserved Motifs

We analyzed the conserved motifs for all full-length MADS-box genes, as well as
their exon-intron composition (Figure 2). Overall, the composition of motifs in the same
subfamily was relatively conserved. Most of the MIKCC genes shared six motifs (motifs
8, 1, 4, 6, 2, and 5), among which motif 1 represents the MADS-box domain. However,
in one case of the AP3/TM6/PI subclade, TM6-like genes were characterized as having
only three motifs (motifs 1, 2, and 8), indicating that their protein structures diverged from
those of other B-class members during evolution. The distribution of specific conserved
motifs varied among the different subfamilies. For example, all three members of the
FLC subfamily contained no motif 6. Unlike MIKCC, MIKC*-type genes contained fewer
motifs (only three to four). Ten MIKC*-type genes with identifiable K domains could not be
detected in pfam or prosite. Motif 3 and motif 9 were exclusive to Mα and Mγ, respectively.
The structure of type II genes was longer and more complex than that of other genes due to
the presence of multiple exons, while type I genes had only one or two exons. In contrast to
the previous reports that nearly half of MIKCC genes lacked introns in rice, Arabidopsis, and
bamboo [45], homologs in the tea plant tended to retain more introns (about five to eight).
Exceptions to this rule included two newly identified genes (CsFUL1d and CsFUL1e) and a
known gene, CsFUL1c, whose intron numbers were extremely low, with only one intron
each. Notably, we observed that a few genes (e.g., CsFLC3, CsANR1a-1, and CsANR1a-2)
had extremely long introns (20 kb~60 kb). To date, such patterns have only been reported
in a few species, such as bamboo and wheat [46,47].
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Figure 2. Phylogenetic relationship, gene structure analysis, and motif compositions of MADS-box
genes in the tea plant. (A) A total of 136 full-length sequences of CsMADS protein were used to build
a neighbor-joining tree, with 1000 bootstrap replicates. (B) Conserved motif patterns were identified
in tea plant MADS-box proteins using the MEME webserver. Different motifs are represented by
different colors. (C) The exon–intron structures of CsMADS. Green blocks represent exons, and gray
lines indicate introns. The size scale is indicated at the bottom.
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2.4. Chromosomal Location and Gene Duplication Events of the MADS-Box Gene Family in
Tea Plant

To explore the genomic distribution of the MADS-box gene family, we visualized
the chromosomal positioning of the CsMADS genes according to genome annotation
information (Figure 3). Tea MADS-box genes were unevenly spread across all chromosomes.
Chr5 did not contain the MADS-box gene, while Chr2 and Chr11 contained the highest and
lowest numbers of the gene, with twenty-seven and one, respectively. Owing to established
gene nomenclature, type II genes from the same subfamily were clearly prone to duplicate
within different chromosomes to realize full functionality. However, type I genes were
often found to be evolutionarily closely related to each other, exhibiting a cluster in the
physical map. For example, fifteen Mγ subfamily members were adjacent to Chr2 and five
Mα members on Chr3. Moreover, eleven genes were still anchored to unattributed scaffold
fragments, and five newly identified MIKC-type genes were located on Chr15, Chr13, Chr7,
Chr3, and Chr10.
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Figure 3. Chromosomal locations for the tea plant MADS-box gene family. Genes were mapped
onto 14 chromosomes. The gene density of each chromosome was calculated with TBtools and is
visualized by gradient colors from blue (low level) to red (high level). Tandem duplicates are linked
with red curves.

To clarify the probable relationship between CsMADS genes and potential duplication
events within the genome, both the occurrence of tandem duplication and large-scale
segmental duplication during evolution were analyzed using a genome synteny analysis
(Figure 4 and Table S4). A total of ten pairs of paralogous genes emerged from tandem
duplications (TD), with nine of them from type I. Only one pair (CsANR1a-1 and CsANR1a-
2) was observed from type II, located within a 200 kb chromosomal region. Several ancient
tandem arrangements were seemingly retained in the tea plant, including CsSEP3b and
CsFLC1 on Chr 1; CsSEP3a, CsFLC3, and CsFUL1c on Chr 10; CsSEP1c and CsFUL2 on Chr
2; and CsAGL6 and CsSOC1a-3 on Chr 3. Such patterns have been previously reported
in grapes, potatoes, peaches, and other species [48–50]. The tea genome contained 18
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pairs with 34 CsMADS genes originating from WGD or segmental duplication. The largest
number of MADS-box genes with collinearity was found on Chr 2 with five, followed
by Chr 1 and Chr 9. Unlike tandem duplications, 88% (30/34) of segmental duplicated
genes belonged to type II, while only two collinear gene pairs were from type I, namely,
CsMADS1A3i/CsMADS1A3h and CsMADS1G1b-8/CsMADSG1b-9. Ultimately, segmental
duplication played an important role in the expansion of type II genes, whereas tandem
repeat duplication mainly contributed to type I gene expansion.
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To better understand the nature and extent of selection constraints acting on the tea
plant MADS-box gene family, the non-synonymous (Ka) and synonymous (Ks) divergence
values of 18 MADS-box gene pairs were calculated. For 12 segmental duplicated CsMADS
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gene pairs with valid Ks values, all Ka/Ks values of the corresponding MADS-box gene
pairs were less than 1 (Table S5), suggesting that the tea plant MADS-box gene family might
have experienced negative or purifying selective pressure during evolution [51,52]. This
result shows that five gene pairs diverged about 27–43 million years ago (MYA), and four
gene duplication events occurred around 100 MYA (Table S5).

2.5. MADS-Box Gene Expression Analysis among Different Tissues and Seasons

To explore the expression profiles of tea plant MADS-box genes, we analyzed the
RNA-seq data of 136 gene members in different tissues and seasons. Log2-transformed
expression values of type II and type I genes were visualized using a hierarchically clustered
heatmap, (Figure 5A,B, Table S6). According to expression similarities, sixty-three type II
genes were categorized into three major clusters (A-C) and eight expression modules (I-VIII)
(Figure 5A). Cluster A was further assigned to expression modules I and II. The genes in
this cluster showed flower-specific expression with the majority of putative floral homeotic
genes clustered together. Gene expressions in module I (CsAP1, CsAP3, and CsTM6a)
were also detected in vegetative tissues. All members from the SEP1/SEP3, PI, AGL11,
AG, BS, and AGL6 clades were clustered in module II and showed exclusive expression
in flowers. The overall expression levels of genes in cluster B were relatively low and
could be further divided into III, IV, and V expression modules. Among them, module III
comprised three ANR1-like (CsANR1a-1, CsANR1a-2, and CsANR1c) genes and one FUL-like
(CsFUL2) gene. These ANR1-like genes were specifically expressed in roots, while CsFUL2
was expressed during both root and flower development. In modules IV and V, most genes
were undetectable or expressed at very low levels, including most members of the ANR1
and MIKC* subfamilies. However, two MIKC* genes (CsMADSD1a and CsMADSD1b)
were specifically expressed in autumn flowers, and CsTM8 in module IV was specifically
expressed in the stems. Module VI included four genes from three subfamilies, CsFUL1a,
CsFLC2, CsFLC1, and CsSVP3a, which exhibited extensive expression patterns throughout
the annual cycle, with high transcript accumulation. Most of the SOC1-like genes were
assigned to module VII, and together with two SVP members (CsSVP2 and CsSVP3b), were
widely expressed in non-floral tissues. The VIII expression module could be detected in all
organs, but the overall expression level was low.

Generally, gene expression patterns from the same subfamily were relatively con-
served, although expression levels of specific family members could vary across tissues.
Notably, the expression patterns of five members of AP1/FUL-like genes (CsAP1, CsFUL1a,
CsFUL1b, CsFUL1c, and CsFUL2) were very diverse and present in four expression mod-
ules. Transcript level changes of some genes specific to seasons were also observed in
this study. For example, the expression of CsAGL6 reached the highest level in spring
flowers, followed by winter and autumn flowers. The same pattern was also detected in
CsAP1, CsFUL2, CsAGL11, CsBS, and CsSEP3a, while CsSEP1a-c and CsSEP3b presented an
opposite expression pattern. Notably, the transcript abundances of CsFUL1a and CsFLC2
were significantly more upregulated in winter than in other seasons. In addition, CsSVP3b
was preferentially expressed in the vegetative organs of autumn, while CsSVP3a tended
to be expressed in winter and spring samples. The expression preferences of members
from the same subfamily in different seasons and different tissues suggested expression
differentiation and functional divergence after gene duplication. Most type I genes had
very low or no detectable expression (Figure 5B). This result is consistent with previous
studies showing that type I gene expression is restricted to specific cells and tissues, such
as female gametophytes and developing seeds [53].
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Figure 5. Expression patterns of tea plant MADS-box genes in different tissues (root, stem, bud,
leaf, and flower) and seasons (spring, summer, autumn, and winter). (A) Clustering heatmap of
type II CsMADS expression profiles. The three major expression groups are marked as A, B, and
C, and roman numbers below/above the horizontal line represent further subdivided modules.
(B) Clustering heatmap of type I CsMADS expression profiles. Genes and tissues are listed in
supplementary Table S5. The TPM values were adopted for the relative gene expression levels and
were normalized by genes (log2TPM). The color scale bar is provided at the top-left corner.
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2.6. MADS-Box Gene Expression Analysis in Response to Cold Stress

To further study the role of MADS-box genes in response to cold stress, the expression
profiles of MADS-box genes were obtained in tea leaves using transcriptome assembly
(Tables S7 and S8). We assembled two datasets of low-temperature-related transcriptomes,
one for short-term cold stress (Figure 6A) and the other for long-term cold acclimation and
de-acclimation (Figure 6B). In the results, some MIKC-type genes showed cold-responsive
expression patterns. The expression of CsFUL1a in one bud and two leaves was significantly
up-regulated by low temperatures. Consistent with this result, CsFUL1a expression was
remarkably increased during the 7 d chilling acclimation stage (CA2_7d) and then inhibited
after recovering from cold acclimation. However, the expression trend of CsFUL1b was
diametrically opposite. CsTM6a did not exhibit differential expression under cold treatment,
but its expression level significantly increased after de-acclimation. CsSVP1, CsMADSD1f,
and four SOC1-like members (CsSOC1a-1, CsSOC1a-2, CsSOC1a-4, and CsSOC1a-5) were
also up-regulated during the de-acclimation stage. CsFLC1 was slowly downregulated
with continued cold acclimation, even after turning warm, while CsFLC2 was up-regulated
by cold stress. Except for the aforementioned genes that respond to low temperatures, the
remaining genes suffered from an expression that was either too low or not sufficiently
different from that of the control under cold stress.
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2.7. A Putative Floral ABCE Model for Tea Plant According to Expression Profiles

The expression patterns of twenty-one ABC(D)E model genes were detected in four
floral organs and three developmental stages of flower based on transcriptome data
(Figure 7A, Table S9). Among the five detected AP1/FUL-like gene members, only CsAP1
and CsFUL1b were involved in both sepal and petal specification, and CsFUL2 was ex-
pressed in sepals but at a low level. All five B-class genes (CsAP3, CsPI1, CsPI2, CsTM6a, and
CsTM6b) from the tea plant displayed broad expression patterns. In addition to the expected
second and third whorls, the expression domains of these B-class genes extended into the
first and fourth whorls. For C-class genes, the transcripts of CsAG2a and CsAG2b strongly
accumulated in pistils and stamens. Another AG-like gene, CsAG1, was preferentially
expressed in stamens, indicating the stamen identity of the C-function. The E-class genes
CsSEP3a, CsSEP3b, CsSEP1b, and CsSEP1c were expressed throughout four whorls and may
represent candidate E-function genes. CsSEP1a may instead exert a partial E-function since
it showed a relatively high expression in sepals but no expression in stamens. Notably,
CsAGL6 was mainly expressed in sepals and petals and may constitute the A-function
together with CsAP1 and CsFUL1b. A putative ABCE model was proposed according to the
expression profiles and deduced functions of A-, B-, C-, and E-class genes in four whorls
(Figure 7B). In total, 16 ABCE model-related genes were selected for RT-qPCR analysis to
validate the reliability of the RNA-seq results (Figure 8). The RT-qPCR results strongly
agreed with our RNA-seq results.
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Figure 7. Expression profiles of ABC(D)E genes in the four whorls of the flower and a proposed floral
ABCE model for the tea plant. (A) Heatmap of expression patterns of tea plant A-, B-, C-, D-, and
E-class genes in floral organs (sepals, petals, pistils, and stamens) of three developmental stages. “FS”
stands for flower stage, “se” for sepals, “pe” for petals, “pi” for pistils, and “st” for stamens (B) A
floral model for the tea plant built according to the expression patterns described in Figure 7A and
the expected functions of detected MADS-box genes. “*” represent that putative gene function was
different from expectation due to expression split.
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Figure 8. RT-qPCR verification of 16 ABCE model genes. The left y-axis represents the relative expres-
sion of the RT-qPCR results and the right y-axis stands for the FPKM value from the RNA-seq results.
The blue solid line represents the TPM value, and the orange dashed line is the relative expression.

3. Discussion

MADS-box genes comprise a large family of transcription factors that are widely
present in all flowering plants. Due to the availability of the recently published tea plant
genome sequence, CsMADS genes can now be systematically identified and analyzed [42].
In this study, we searched for MADS-box genes in the tea plant genome using a self-built
nucleic acid HMM, resulting in the identification of 136 family members. The total number
of identified MADS-box genes was approximately two times that of a previous study [42].
Highly contiguous genome sequencing of the tea plant using a practical and delicate
strategy led to a significant increase in gene numbers. A nucleic acid HMM search was
sufficient to detect all potential MADS domains in genomic regions, including 124 known
and 27 novel genes. Manual curation of the gene annotations greatly improved the accuracy
of the gene model set for MADS-box sequences using assembled transcriptome datasets
and homology predictions.

3.1. Evolution of the MADS-Box Family in Tea Plant

The tea plant presented a relatively high number of type II genes (63), with the number
in many flowering plants ranging from 40 to 70 [54]. According to the phylogenetic analysis,
tea plant type II MADS-box genes were distributed in all 14 major eudicot subfamilies,
which is consistent with the classification and results for Arabidopsis and grape [18,55]. The
presence of all relevant genes in these subfamilies reemphasized the completeness of our
identification results. Different retention histories for duplicates in the different clades
were observed in the tea plant, Arabidopsis, and grape (Figure 1). TM6-like and TM8-like
genes are not found in Arabidopsis, but are present in tea plants and grapes. Previous
findings indicated that independent gene loss occurred twice in the lineage leading to
Arabidopsis [17,56]. Moreover, members of the AP3/TM6/PI, AP1/FUL, SOC1, ANR1, and
MIKC* subfamilies were overrepresented in the tea plant, while Arabidopsis and grape
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contained more genes in the FLC and SVP clades. The presence of increased homologs from
these clades might help fulfill specific functions, such as flower organization, flowering
time, and root and gametophyte development.

Gene duplication events played a critical role in the expansion of the tea plant MADS-
box gene, as observed in other species belonging to different taxonomic groups [57]. Based
on genome synteny analysis, 30 paralogs composed of 53 genes were identified, of which
30 belonged to segmental duplications, and 23 were tandem duplication events. Our
results showed that the expansion of type II MADS-box genes in the tea plant might
have been primarily caused by WGD/segmental duplication, whereas type I genes were
mostly derived from tandem duplications in individual chromosomes. Indeed, it has
been suggested that several whole genome duplication events gave rise to most type II
MADS-box genes, while type I genes are generally associated with smaller-scale duplication
events [57]. The tea plant genome acquired an additional WGD after WGT-γ, which might
have been responsible for the increased number of type II genes.

3.2. Extensively Conserved Function of MADS-Box Genes in Tea Plant Development

The gene expression patterns of most MADS-box genes in the tea plant showed
extensive similarities with orthologous genes described in model plants such as Arabidopsis
and related grape species, indicating that the functions of MADS-box genes were widely
conserved among these species. For example, most tea plant MADS-box genes specifically
expressed in flowers (SEP1/SEP3-like, PI-like, AGL11-like, AG-like, BS-like, and AGL6-like
genes) were putative floral homeotic genes. Like their Arabidopsis and grape counterparts,
ANR1-like genes in the tea plant presented the highest expression in roots. CsAGL12 was
mainly expressed in roots and flowers, which is consistent with the roles of the AGL12
homologous gene (AtXAL1) in Arabidopsis in regulating root development and flowering
transitions [58]. Tea plant SOC1-like genes showed expression patterns only in vegetative
organs, which was consistent with the observations in Arabidopsis and grape, where the
major expression domains of SOC1-like genes are not the floral organs [59]. Some FLC-like
and SVP-like genes from the tea plant were ubiquitously expressed throughout the plant’s
life cycle in different tissues and might be involved in several developmental processes, as
observed in Arabidopsis. The gene expression patterns were generally conserved among
most subfamilies. However, diverse expression patterns of AP1/FUL-like genes were
observed in the tea plant, suggesting that these homologous genes might be differentiated
into multiple functions.

3.3. The Involvement of Tea Plant MADS-Box Genes in Cold Stress Responses

Previous research has indicated that some MADS-box genes play an important role
in cold stress [60–63]. In this study, one FUL1-like gene (CsFUL1a) was strongly induced
during the cold acclimation stage and showed significantly high expression in all winter
tissues, which might be involved in the adaptation of tea plants to the severity of winter and
flowering regulation. Apart from the FUL1-like gene (TM4), low temperatures can simulta-
neously increase the transcript levels of TM5 (SEP), TM6 (DEF), and TAG1 (AG) in tomatoes.
These genes may be involved in abnormal flower production at low temperatures [37,64,65].
The expression of these orthologs in tea plants exhibited no significant changes under cold
stress, and CsTM6a was up-regulated after de-acclimation, indicating differential stress
responses from tomatoes. Another gene strongly induced by cold acclimation was CsFLC2,
the highest expression of which was detected in winter bud. Coincidently, four SOC1-like
members (CsSOC1a-1, CsSOC1a-2, CsSOC1a-4, and CsSOC1a-5) preferentially expressed
in summer were repressed under cold stress but up-regulated during the de-acclimation
stage. The antagonistic expression patterns of FLC and SOC1 fit well with the fact that
FLC was a negative regulator of SOC1 during flowering transitions. SOC1 was involved in
cross talk between cold response signaling and flowering regulation by directly repress-
ing C-Repeat Binding Factor (CBF) genes, which could activate both Cold Regulated (COR)
genes and FLC expression [66,67]. Moreover, in kiwifruit, SVP homologs from the SVP2
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and SVP3 clades may act as suppressors during bud dormancy [68,69]. The expression of
dormancy-associated PpDAM5 and PpDAM6 in peaches (Prunus persica) from the SVP clade
was up-regulated in autumn and down-regulated by cold in winter [69,70]. Its ortholog,
CsSVP3b, exhibited the highest expression in all autumn samples, and CsSVP3a was re-
pressed by short-term cold stress, highlighting the potential involvement of these two genes
in bud dormancy. Taken together, both seasonal expression analysis and cold treatment
expression analysis suggested that these cold-responsive genes might play diverse roles in
seasonal low-temperature-dependent developmental processes.

3.4. A Conserved and Ancient Floral ‘ABCE’ Model in Tea Plant

Four whorls of organs (sepal, petal, stamen, and pistil) from three different flower
developmental stages were collected to investigate the regulatory relationships between
ABCE homologs and floral organ development using RNA-seq and qRT-PCR (Figure 8).
Our results demonstrate that the expression patterns of these genes largely agree with
those of the classical floral ‘ABCE’ model. Previous studies have shown that AGL6-like
genes formed a ‘superclade’ together with SEP1- and SQUA-like genes and shared similar
functions with genes from these two sister clades in specifying floral meristem and organ
identity [71]. In this study, a AGL6 homolog gene, CsAGL6, tended to act as an A-function
candidate gene because its expression pattern was similar to the patterns of A-lineage genes.
Five B-class genes were highly expressed in petals and stamens, indicating conserved
functions in controlling the development of stamens and petals. C-class genes (CsAG1,
CsAG2a, and CsAG2b) displayed high expression levels in the stamens and pistils, which
is in line with its expected functions in specifying both male and female reproductive
organs [20]. Five E-class genes fulfilled full or partial E-function activities that redundantly
determined floral organ identity. Moreover, compared with eudicot model systems, a
wider range of expression domains was observed in the tea plant. Notably, the expression
domains of five B-class genes were expanded into sepals and pistils. This phenomenon is
used to refer to the ancient ‘ABCE’ model mainly found in lineages that diverged early, such
as Aquilegia coerulea [72], waterlilies [73], and magnoliids [74]. Interestingly, an expanded
expression domain of B-function genes was also observed in other Camellia plants, Camellia
japonica and Camellia changii Ye, which was thought to be responsible for petaloid phenotype
and double flowers in these two species [75,76]. Thus, we speculate that this phenomenon
may have occurred as early as in the ancestor of Camellia plants.

4. Materials and Methods
4.1. Identification of MADS-Box Genes and Curation of a Gene Model

The tea plant genome was retrieved from the TPIA website (http://tpia.teaplant.
org/index.html) [77]. The Hidden Markov Model (HMM) of the SRF (MADS) family and
(K-box) (PF00931 and PF01489) were downloaded from the Pfam website (http://pfam.
sanger.ac.uk/ (accessed on 8 January 2021)) [78]. In addition, hmmsearch in the HMMER
v3 software [79] was used to scan the tea plant protein sets for genes containing these two
domains. A high-quality protein dataset was obtained through preliminary filtering based
on the e-value and length. MAFFT v7.215 [80] was used for multiple sequence alignment of
the conserved regions. The nucleic acid sequences corresponding to the aligned MADS-box
and K-box domains were extracted and converted into a tea-specific nucleic acid HMM
using the hmmbuild function of the HMMER software. This constructed HMM was used
to scan the tea plant genome sequence by executing the “nhmmer” command to obtain
sites containing this domain (Figure S1).

For the genome-wide candidate sites obtained in the last step, regions without cor-
responding mapped genes were considered potential new functional sites. Subsequently,
Genewise [81] was used to screen the genomic regions near the new sites by inputting
homologous genes from grape, kiwifruit, and other related species as a query. Gene sets of
the floral organ transcriptome assembled in our laboratory (unpublished) were especially
useful for the functional annotation of genes expressed in the flowers. The gene models of

http://tpia.teaplant.org/index.html
http://tpia.teaplant.org/index.html
http://pfam.sanger.ac.uk/
http://pfam.sanger.ac.uk/


Plants 2023, 12, 2929 15 of 21

known genes without the MADS-domain or K-box domain were manually corrected using
the same strategy. All full-length genes were retained for further analysis.

4.2. Sequence Alignment and Phylogenetic Analysis

To study the evolutionary relationships between the newly discovered MADS-domain
genes in the tea plant, multiple sequence alignments were performed based on well-
identified protein sequences of grape and Arabidopsis using MAFFT software [80] with
1000 bootstrap replicates. The MADS-box protein sequences in Arabidopsis and grape were
obtained from the Plant TFDB website (http://planttfdb.gao-lab.org/index.php (accessed
on 8 January 2020)) [82] and the research of Grimplet et al. [55], respectively. Maximum-
likelihood phylogenetic trees were constructed using the maximum likelihood approach in
FastTree v.2.1.10 software [83] with the GTR+CAT model. The phylogenetic tree was further
refined using Evolview online tools (https://www.evolgenius.info/evolview/) [40].

4.3. Gene Nomenclature of Tea Plant MADS-Box Genes

To provide insight into the potential functional roles of relevant genes and facilitate
future research, we renamed the MADS-box gene family members. For MIKCC genes, we
took the association and phylogenetic relationships of subfamilies into consideration and
also referred to the gene nomenclature of orthologs in Arabidopsis and grape. Each gene
begins with “Cs”, the abbreviation of the species name Camellia sinensis, followed by the
name of the most important Arabidopsis gene in this subfamily. In some clades where no
Arabidopsis orthologs exist, we took the nomenclature of the grape as a reference, such as
the TM8 clade, with the exception of TM6-like genes, which are only found in eudicots and
named after AP3-like genes in previous grape research. In cases where several subclades
appear in a given subfamily, and previous studies have failed to describe them, if the
subfamily name ends with a number, then we added lowercase letters (a, b, c, etc.) to
distinguish each subfamily. If the subfamily could be further divided, we added a dash (-)
and a number after the letter; if the subfamily name ends with a letter, we added a number
to distinguish. For genes assigned to MIKC* and type I groups, we named them after the
grape genes. The naming of Type I genes was largely performed the same as that of MIKC*
genes, except that the number “1” was added after “MADS”.

4.4. Characterization of the Gene Structure and Conserved Motifs of CsMADS

The available information for exons and introns was retrieved from the tea plant
genome annotation file and then visualized using TBtools [84] with the full-length coding
sequence (CDS) and genomic sequence. The online MEME suit software v 4.12.0 (http:
//meme-suite.org/tools/meme (accessed on 1 July 2015)) [85] was used to search conserved
motifs in each observed CsMADS protein with the parameters as follows: maximum
number of motifs, 10. The default values were employed for the other parameters. The
motifs of MADS-box genes were annotated using the SMART program (http://smart.embl-
heidelberg.de/ (accessed on 1 January 2009)).

4.5. Gene Mapping, Gene Duplication, Synteny, and Ka/Ks Substitutions of MADS-Box Genes in
Tea Plant

According to the annotation file (GFF3) for the tea plant genome downloaded from
the TPIA database (http://tpia.teaplant.org/index.html (accessed on 24 March 2020)),
the positions of tea plant MADS-box genes on the chromosomes were determined, and
Tbtools software [84] was used to map all MADS-box genes onto chromosomes. The
Multiple Collinearity Scan toolkit X (MCScanX) [59] was applied to identify segmental and
tandem duplications of CsMADS genes with default parameters, and the results of synteny
were visualized using Circos software [60]. Synonymous (Ks) and nonsynonymous (Ka)
substitution rates and their Ka/Ks ratios were estimated via the Simple Ka/Ks Calculator
module in TBtools [84]. The divergence time was calculated according to the formula
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T = Ks/2r, where λ refers to the clock-like rate (6.5 × 10−9 synonymous substitutions per
site per year) [86].

4.6. Gene Expression Analysis of Tea Plant MADS-Box Genes

To explore the expression patterns of tea plant MADS-box genes, raw RNA-seq datasets
were mined from the NCBI database under the projects PRJEB39502, PRJNA411886, and
PRJNA387105 (Table S10). The project PRJEB39502 comprised nineteen tissue samples,
including five tissues (root, stem, bud, leaf, and flower) in four seasons (flowers during
summer excluded). The project PRJNA411886 comprised six treatments: FL0 h (control, 0 h),
FL24 h (cold treatment, 24 h), and FL48h (cold treatment, 48 h) at the fish leaf phase; TAB0h
(control, 0 h), TAB24h (cold treatment, 24 h), and TAB48 h (cold treatment, 48 h) at the two
leaves and one bud phase. The temperature of the cold spell was set at 4 ◦C during the day
and 2 ◦C at night. The project PRJNA387105 consisted of five treatments: CK (25~20 ◦C,
control); CA1_6h (cold acclimated under 10 ◦C, 6 h); CA2_7d (cold acclimated under
10~4 ◦C, 7 days); CA2_7d (cold acclimated under 4~0 ◦C, 7 days); DA_7d (25~20 ◦C, 7 days).
Detailed descriptions of these transcriptome datasets were published by Wang et al. [6],
Hao et al. [87], and Li et al. [88], respectively. In addition, flower expression in the four
whorls of the three developmental stages (the green bud stage, deglazing stage, and heyday
stage) was based on unpublished transcriptome data from our laboratory (Table S10). The
transcripts per million (TPM) values of tea plant MADS-box genes were calculated using a
self-built script according to the HISAT2 and Stringtie pipeline [89]. The heatmaps were
visualized via Morpheus (https://software.broadinstitute.org/morpheus) based on the
transformed data of the log2 (TPM+1) values.

4.7. Plant Materials and Quantitative PCR Analysis

Tea flowers at the white bud stage were collected from tea bushes (Camellia sinensis
var. Rougui) cultivated at the tea garden of Fujian Agriculture and Forestry University in
the Fujian Province of China (26◦04′ N, 119◦14′ E) under natural conditions. Floral organs
(sepals, petals, stamens, and pistils) were separated by hand and immediately inserted into
liquid nitrogen for freezing and preservation. Floral organs from at least five randomly
selected individuals were harvested as one replicate, and three biological replicates were
used for each sample.

In this study, a polysaccharide and polyphenol kit (Tiangen Biotech, Beijing, China)
was used to extract the total RNA of floral organs, according to the manufacturer’s instruc-
tions. Total RNA was reverse-transcribed using EasyScript one-step gDNA Removal and
cDNA Synthesis SuperMix (Transgen Biotech, Beijing, China). Genomic DNA was digested
by DNase prior to reverse transcription, and the obtained cDNA template was diluted to a
uniform concentration of about 100 ng/µL. Real-time PCR amplification was performed
on a CFX96 Touch Deep Well system (Bio-rad, Hercules, CA, USA) using TransStart Top
Green SuperMix (Tiangen Biotech, Beijing, China) with SBYR green fluorescent dye. The
PCR mixture in a 20 µL volume contained 10 µL SuperMix, 0.4 µL forward primers, 0.4 µL
reverse primers, 1 µL cDNA, and 8.2 µL ddH2O. The thermal cycling conditions were
set as follows: 95 ◦C for 30 s; 40 cycles at 95 ◦C for 5 s and 60 ◦C for 34 s; and 95 ◦C for
15 s, 60 ◦C for 1 min, and 95 ◦C for 15 s. A housekeeping gene, GADPH, was used as an
internal control for data normalization. All reactions were run in technical triplicate and
biological triplicate. The 2−∆∆CT method (also called the comparative CT method) was
used to calculate the relative gene expression levels. Details for the primers are provided in
Table S11.

5. Conclusions

In this study, a tea-specific nucleotide acid HMM was developed to identify 136 MADS-
box genes in the tea plant genome, including 63 genes of type II and 73 of type I. In total,
27 novel genes were identified in this study for the first time. In-depth artificial curation
largely improved the accuracy of gene models based on assembled transcriptome datasets

https://software.broadinstitute.org/morpheus
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and homology predictions. Seasonal expression analysis and cold treatment expression
analysis suggested these cold-responsive genes might play diverse roles in seasonal low-
temperature-dependent developmental processes. Moreover, the expanded expression
domain of ‘ABCE’ model genes indicated that the tea plant has a conserved and ancient
ABCE floral model. Overall, this work contributes to our understanding of the evolutionary
history of the MADS-box gene in the tea plant and provides perspectives on corresponding
functional analyses.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants12162929/s1. Table S1: A preliminary protein set of tea
plant MADS-box genes; Table S2: Known and novel MADS-box gene loci predicted using a nucleotide-
based HMM; Table S3: The known genes from the preliminary MADS-box protein set deleted due
to incomplete sequence data or assembly errors; Table S4: Duplication patterns of CsMADS genes
identified in C. sinensis; Table S5: The Ka/Ks ratios and divergence time of the CsMADS gene pairs.
Table S6: The TPM values of CsMADS genes expressed in different tissues and seasons; Table S7:
The TPM values of CsMADS genes in response to cold stress in the fish leaf (FL) and the two-leaf-
and-one-bud (TAB) tissues; Table S8: The TPM values of CsMADS genes during cold acclimation;
Table S9: The TPM values of ABC(D)E-class MADS-box genes expressed in four whorls of tea plant;
Table S10: Transcriptome datasets used in this study. Table S11: Primers used in this study for
qRT-PCR purposes; Figure S1: Identification pipeline of the MADS-box gene family; Figure S2: A
maximum likelihood (ML) phylogenetic tree of Type I MADS-box proteins from tea plant, Arabidopsis,
and grape.
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