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Abstract: The plum is a kind of delicious and common fruit with high edible value and nutritional
value. The accurate and effective detection of plum fruit is the key to fruit number counting and
pest and disease early warning. However, the actual plum orchard environment is complex, and
the detection of plum fruits has many problems, such as leaf shading and fruit overlapping. The
traditional method of manually estimating the number of fruits and the presence of pests and
diseases used in the plum growing industry has disadvantages, such as low efficiency, a high cost,
and low accuracy. To detect plum fruits quickly and accurately in a complex orchard environment,
this paper proposes an efficient plum fruit detection model based on an improved You Only Look
Once version 7(YOLOv7). First, different devices were used to capture high-resolution images of
plum fruits growing under natural conditions in a plum orchard in Gulin County, Sichuan Province,
and a dataset for plum fruit detection was formed after the manual screening, data enhancement,
and annotation. Based on the dataset, this paper chose YOLOv7 as the base model, introduced
the Convolutional Block Attention Module (CBAM) attention mechanism in YOLOv7, used Cross
Stage Partial Spatial Pyramid Pooling–Fast (CSPSPPF) instead of Cross Stage Partial Spatial Pyramid
Pooling(CSPSPP) in the network, and used bilinear interpolation to replace the nearest neighbor
interpolation in the original network upsampling module to form the improved target detection
algorithm YOLOv7-plum. The tested YOLOv7-plum model achieved an average precision (AP) value
of 94.91%, which was a 2.03% improvement compared to the YOLOv7 model. In order to verify the
effectiveness of the YOLOv7-plum algorithm, this paper evaluated the performance of the algorithm
through ablation experiments, statistical analysis, etc. The experimental results showed that the
method proposed in this study could better achieve plum fruit detection in complex backgrounds,
which helped to promote the development of intelligent cultivation in the plum industry.

Keywords: plum; deep learning; computer vision; smart agriculture; object detection

1. Introduction

The plum, a woody plant of the genus Plum in the family Rosaceae, is native to
southeastern China and is one of the oldest cultivated fruits in the world, and it is now
cultivated in most areas around and south of the Qinling Mountains in China. China is the
largest grower and producer of plums, and its plum industry has an important position
in both domestic and international economic markets [1]. From 2010–2022, China’s plum
production increased from 5,521,700 tons to 6,626,300 tons, accounting for 51.6% to 55.2%
of global plum production, and the harvested area increased from 1665.2 thousand hectares
to 1946.5 thousand hectares; the share of the global plum harvested area increased from
69.1% to 74.8% (Food and Agriculture Organization of the United Nations, 2022). The
domestic plum supply is abundant, but the overall import volume is still greater than
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the export volume due to the huge consumer market [2]. Plum fruits are about 4 cm in
diameter, with a single fruit weight of about 50 g to 210 g. The fruit is full, delicious, and
juicy, and the flesh contains basic components, such as protein, carbohydrates, and fat, as
well as antioxidant-active substances, such as flavonoids, carotenoids, and anthocyanins,
which are rich in nutritional value, and the plum is one of the main excellent fresh fruits
in summer [3,4]. In addition, the fruit is resistant to storage and transportation, which is
favored by many operators and consumers [5].

During the growth of plum trees, too much fruit at the same time will consume a lot
of nutrients, weaken the tree’s vigor, and affect the quality and size of the fruit, so it is nec-
essary to artificially reduce the number of fruits. However, if plum trees produce less fruit,
it will affect economic performance and require consideration of changing varieties [6,7].
At the same time, changes in climate, soil, and the surrounding environment affect the
growth and development of fruit trees, with pests and diseases causing greater economic
losses [8]. Therefore, continuous testing and analysis are needed during the growth of
plums, thus avoiding problems such as yield reduction due to fruit yield and pests and
diseases. However, the small size of plum fruits and the complexity of the actual plum
orchard environment make the detection of plum fruits difficult due to leaf shielding and
fruit overlap. Most of the traditional plum farming industry uses manual visual estimation
to determine the number of fruits and the problems of pests and diseases [9]. In recent
years, there has been an unprecedented increase in labor costs due to the continuous loss
of agricultural labor, and this problem has become more prominent after the COVID-19
pandemic [10]. In summary, the design of an efficient and accurate method for plum fruit
detection is necessary to estimate the number of fruiting plum trees and to facilitate research
on pest and disease identification.

With the continuous development of computer science and technology, computer
vision technology in deep learning has penetrated people’s production life, and its im-
portance is becoming more and more prominent [11]. More and more researchers had
put computer vision technology into agricultural production and have a wide range of
practical applications [12,13], such as intelligent greenhouses [14], agricultural robots [15],
etc. Target detection is an important task in the field of computer vision, and its main job is
to identify and localize the target of interest in the input image, which solves the problem of
where and what the object is in the image [16]. Target detection techniques have achieved
good results in agricultural production areas, such as pest and disease monitoring [17,18],
crop yield prediction [19], and crop growth monitoring [20]. The applications of target
detection models for crop fruit detection [21] can be divided into two categories: detection
using one-stage models and detection using two-stage models [22]. In the detection process,
two-stage models separate the proposed region from the background and then classify
and localize the target [23], among which the representative one uses the region-CNN
(RCNN) series for detection. Sa et al. [24] used the improved Faster-RCNN [25] based
on multi-modal (RGB and NIR) information fusion to detect a variety of fruits, including
apples, bell pepper, and melon, with an average detection accuracy of 0.838. Yu et al. [26]
detected strawberry fruits based on Mask-RCNN with a detection accuracy of 0.898. Fu
et al. [27] built an algorithm consisting of ZFNet and Faster R-CNN architecture of VGG16
to detect apples in vertical fruit wall trees, and the fruit detection accuracy was improved
by 2.5% after removing the background tree with a depth filter. RCNN series have a high
detection accuracy for crop fruit detection, but the detection speed is relatively slow due
to the large number of calculation parameters and complex models, which posed certain
challenges for computing hardware in practical applications. The one-stage model uses an
initial anchor frame to locate the target region and directly predict the target class [28]. The
representative of one-stage models is the You Only Look Once (YOLO) series, and deep
learning models based on YOLO are widely used for fruit detection and recognition [29].
Fu et al. [30] cut the less important network layer by analyzing the characteristics and
network structure of bananas. As a result, the YOLOv4 model was improved to form
the YOLO-Banana model, and the average accuracy (AP) of banana string and banana
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stem was 98.4% and 85.98%, respectively. Li et al. [31] improved the YOLOX model by
modifying the loss function and adding attention to detect sweet cherries and achieved a
detection accuracy of 84.96%, an improvement of 2.34% relative to the initial YOLOX model.
Wang and He [32] detected young apple fruits based on the YOLOv5 model with channel
pruning, and the detection accuracy reached 95.80% with an average detection time of
8 milliseconds per image. Compared with the RCNN series, the YOLO series achieved
similar performance and higher computational efficiency.

Based on the above studies, the YOLO model has great potential for fruit detection
under natural conditions. The YOLOv7 model additionally employs efficient aggregation
networks, reparameterized convolution, positive and negative sample matching strategies,
auxiliary head training, and model scaling [33,34], which enables the model to significantly
improve the feature extraction capability of the target. In the range of 5 FPS to 160 FPS, the
YOLOv7 model is faster and more accurate than any known target detector [35]. This paper
selected the YOLOv7 network as the initial detection model after taking into account the
object to be detected, the detection accuracy of the network, and the need for lightweighting.

The spatial Pyramid Pooling (SPP) module [36] was proposed by Kai-Ming He in 2015;
its main role is to solve the problem of uneven input image size. The SPP structure used
in YOLOv7 is Cross Stage Partial Spatial Pyramid Pooling (CSPSPP), although its effect
is better than SPP and Spatial Pyramid Pooling-Fast (SPPF) used in YOLOv5, the feature
extraction speed of CSPSPP is slowed down due to the increasing number of parameters
and calculation amount. Upsampling refers to inserting new elements between pixel
points based on the original image pixels by using a suitable interpolation algorithm, i.e.,
enlarging the original image to make it higher resolution [37]. The interpolation algorithm
used in YOLOv7 for upsampling is nearest interpolation, which inserts the pixel values
as its own by finding the pixel points closest to the location of the inserted pixel points,
which is less computationally intensive and simpler [38]. However, it only uses the gray
value of the pixel closest to the sampling point to be measured as the gray value of that
sampling point without considering the influence of other neighboring pixel points; thus,
the gray value has obvious discontinuity after resampling, and the image quality loss is
large, which will produce obvious mosaic and jagged phenomenon, so determining how
to choose a more suitable interpolation algorithm in the upsampling process is worth
studying. In computer vision, the method of focusing attention on important regions of
an image and discarding irrelevant ones is called the attention mechanism [39]. Attention
mechanisms are a common data processing method that applies the human perception
style and the behavior of attention to the machine so that the machine learns to perceive
the important and unimportant parts of the data [40]. The introduction of an attention
mechanism can make the network focus on the target area, enhance the effective feature
extraction ability of the network, reduce the interference of invalid targets, and obtain
more detailed information [41,42]. The Convolutional Block Attention Module (CBAM) is a
simple and effective precursor convolutional attention module proposed by Woo et al. [43].
It focuses on both spatial focus and channel focus and can be applied in YOLOv7 networks
to improve the feature perception of the network for targets in images [44–46].

In view of the above limitations, the aim of this study is to achieve the fast and accurate
detection of plum fruits in natural environments, so this paper proposed a YOLOv7-based
target detection algorithm, YOLOv7-plum. By modifying the structure of the convolutional
layer, reducing the number of parameters in the process of feature extraction, and chang-
ing the parallel structure to a more lightweight series structure, this paper improved the
CSPSPP structure used in YOLOv7 to Cross Stage Partial Spatial Pyramid Pooling–Fast
(CSPSPPF) structure. To further improve the upsampling operation in YOLOv7, the nearest
interpolation in the original model was replaced with bilinear interpolation [47]. In ad-
dition, two CBAMs were embedded in the network structure of YOLOv7 to improve the
perception of the model for different spaces and different channels so that the model could
focus more on the key information in the image. Finally, the feasibility and reliability of
the method were verified in this paper with ablation experiments and a statistical analysis.
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The experimental results showed that our proposed YOLOv7-plum algorithm could better
achieve plum fruit detection in complex backgrounds, which helped to promote the estima-
tion of fruit number of plum trees and yield prediction of plum and laid the foundation for
the research of a plum pest detection model.

The remainder of this paper is organized as follows. Section 2 introduces the details
of the dataset used in this study and the plum detection algorithm model YOLOv7-plum.
Section 3 evaluates the performance of the YOLOv7-plum algorithm through experiments.
Section 4 shows the discussion results. Finally, Section 5 summarizes the work of this study.

2. Result
2.1. Impact of Data Enhancement

In order to investigate the effect of data enhancement on the experimental results,
this paper used the unenhanced dataset (Name dataset1) and the enhanced dataset (Name
dataset2) to conduct experiments on YOLOv7 and YOLOv7-plum, respectively, with the
datasets divided in the ratio of 8:1:1 and the epoch set to 100. The experimental results are
shown in Figure 1 and Table 1.
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Figure 1. Four model indicator charts. (a) AP; (b) Precision; (c) Recall.

Table 1. Experimental results of YOLOv7 and YOLOv7-plum on different datasets.

Category Dataset Precision Recall AP Model Size

YOLOv7 dataset1 0.9041 0.9079 0.9115 71.3 MB
YOLOv7-plum dataset1 0.9018 0.8989 0.9233 71.4 MB

YOLOv7 Dataset2 0.9397 0.9239 0.9288 71.3 MB
YOLOv7-plum Dataset2 0.9342 0.9326 0.9491 71.4 MB

It can be seen that compared with the experimental results on dataset 1, the relevant
indexes of both YOLOv7 and YOLOv7-plum in dataset 2 improved by 2% to 4%. The
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experimental results demonstrated that the data enhancement method used in this paper
effectively improved the model detection accuracy.

2.2. Comparison with YOLOv7

According to Table 1, the AP of YOLOv7-plum is better than YOLOv7 under both
datasets; the AP of YOLOv7-plum is 94.91%, and recall is 93.26% on dataset 2, which
is 2.03% and 0.87% higher than YOLOv7, respectively. The model size is only 0.1 MB
larger. This paper randomly selected images that were not used in model training and used
YOLOv7-plum and YOLOv7, respectively, for prediction. Their pairs are shown in Figure 2.
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Figure 2. Comparison of detection of YOLOv7-plum and YOLOv7. (a) The detection results of
YOLOv7; (b) The detection results of YOLOv7-plum.

According to Figure 2, the plum fruits at the red box position in Figure 2a are not
detected by YOLOv7, and in Figure 2b, YOLOv7-plum detects the fruits at these two
positions. This indicates that YOLOv7 is prone to miss detection in the face of occlusion, and
YOLOv7-plum alleviates the missed detection to a certain extent. In contrast, plums in the
natural environment cannot avoid the shielded situation, so YOLOv7-plum is considered
to be more suitable for plum detection in the natural environment.

In summary, from the comprehensive performance of the model, the YOLOv7-plum
model had higher detection accuracy and the size of the model had not increased signifi-
cantly, and it could perform the plum fruit detection task efficiently and accurately and can
be run on lightweight devices.
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2.3. Ablation Experiments

In order to verify the effectiveness of the modules added in this paper, ablation experi-
ments were designed based on the data set constructed in this paper, with S representing the
CSPSPPF module, C representing the CBAM, and B representing the bilinear interpolation
module. The results of the ablation experiments are shown in Table 2. In Table 2, “

√
”

indicates that the improved method of the column is used, and “×” indicates that this
improvement method is not used.

Table 2. Ablation experiment result.

Model CSPSPPF CBAM Bilinear Precision Recall AP

YOLOv7 × × × 0.9397 0.9239 0.9288
YOLOv7-S

√
× × 0.9389 0.9176 0.9313

YOLOv7-C ×
√

× 0.9264 0.9283 0.9396
YOLOv7-B × ×

√
0.9342 0.9112 0.9345

YOLOv7-SC
√ √

× 0.9116 0.9373 0.9376
YOLOv7-SB

√
×

√
0.9412 0.9087 0.9394

YOLOv7-CB ×
√ √

0.9236 0.9294 0.9413
YOLOv7-SCB

√ √ √
0.9342 0.9326 0.9491

From Table 2, YOLOv7-S is almost the same as YOLOv7 in terms of various indexes
because compared with CSPSPP, CSPSPPF only reduced the amount of computation and
had no significant impact on the model effect. Therefore, this paper will not discuss the
influence of only adding the CSPSPPF module on the model detection (that is, the compari-
son between YOLOv7-C and YOLOv7-SC, YOLOv7-B and YOLOv7-SB, and YOLOv7-CB
and YOLOv7-SCB is no longer performed.); only the experiments with SPPFCSPC (i.e.,
YOLOv7-SC, YOLOv7-SB, and YOLOv7-SCB) are analyzed.

Both YOLOv7-SC and YOLOv7-SB improved AP to some extent, but YOLOv7-SC
had the problem of lower precision and YOLOv7-SB had the problem of lower recall. For
YOLOv7-SCB, it improved AP by 2.03% while the rest of the evaluation metrics were similar
to or better than the original model, which proved the effectiveness of the various modules
in our approach.

2.4. Comparison with Mainstream Networks

On dataset 2, experiments were conducted on several mainstream target detection
networks as well as the YOLOv7-plum proposed in this paper, and the results of the
experiments are shown in Table 3. In terms of AP metrics, The AP of YOLOv7-plum is
94.91%, which is significantly better than 90.83% of faster R-CNN, 92.68% of YOLOv5,
and 93.94% of DETR. Since the AP of faster R-CNN is the lowest and its model size is
larger, faster R-CNN is not discussed anymore. Although YOLOv5s has the smallest
model size, the AP is 2.23% lower than YOLOv7-plum, and the model size of YOLOv7-
plum is acceptable compared to the reduced AP. The AP of DETR is the closest to that of
YOLOv7-plum, only 0.97% lower than that of YOLOv7-plum, but the model size is about
6.6 times that of YOLOv7-plum. The AP of YOLOv8l is 1.01% lower than YOLOv7, and
the model size increases by 12.2 MB, which is still inferior to YOLOv7-plum. The above
results showed that YOLOv7-plum had higher detection accuracy in plum fruit detection,
which was better than the current mainstream target detection networks and can support
continuous detection and analysis during plum growth.

Table 3. Comparison results with mainstream models.

Model Faster R-CNN YOLOv5 DETR YOLOv7 YOLOv8l YOLOv7-Plum

AP (%) 90.83 92.68 93.94 92.88 93.90 94.91
Model Size (MB) 102 14.4 474 71.3 83.6 71.4
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2.5. Statistical Analysis

To verify the robustness of the model, new plum images were acquired through
growers in Gulin County, which were taken on 22 October 2022, as the plums are not yet
fruiting now. This is called as dataset 3. It contained a total of 81 images, which were
classified into four categories, A, B, C, and D, according to the number of plums in the
images, and each category was described as follows:

A: The number of plums in a single picture was less than or equal to 5;
B: The number of plums in a single picture was greater than 5 and less than or equal

to 10;
C: The number of plums in a single picture was greater than 10 and less than or equal

to 15;
D: The number of plums in a single picture was greater than 15.
Eighty-one images were manually counted in dataset 3, which had a total of 504 plum

fruits. This paper utilized YOLOv7-plum and YOLOv7 for detection and counting respec-
tively on dataset 3. Examples of the results of detection and counting by YOLOv7-plum
are shown in Figure 3. Figure 3 shows the detection of YOLOv7-plum on four types of
images, A, B, C, and D, respectively, and shows the counting results in the upper left corner
of the images. As a result, YOLOv7 detected 418 plum fruits, and YOLOv7-plum detected
483 plum fruits. The counting results of YOLOv7-plum were closer to the real number of
fruits, which indicated that our proposed method was superior to YOLOv7.
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Figure 3. Examples of the results of detection and counting by YOLOv7-plum. (a) Example of
detection and counting on a Class A image; (b) Example of detection and counting on a Class B image;
(c) Example of detection and counting on a Class C image; (d) Example of detection and counting on
a Class D image.

A statistical analysis was conducted on the detection results of the two models, which
are clearly shown in Figure 4. The linear regression equation (red line) of the YOLOv7-plum
counting results fits better with the true value (green line). The correlation index R2 of
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YOLOv7-plum is 0.98, which is 0.09 higher than the correlation coefficient R2 of YOLOv7,
and the mean absolute percentage error (MAPE) of YOLOv7-plum is 2.72%, which is 11.53%
lower than the MAPE of YOLOv7. This proves that the detection error of YOLOv7-plum is
smaller than that of YOLOv7.
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3. Materials and Methods
3.1. Dataset
3.1.1. Experiment Field and Data Acquisition

Gulin County, Luzhou City, Sichuan Province, with fertile land and abundant light,
has about 35,000 mu of plum fruit groves and a perennial production of about 15 million kg,
making it one of the best places for high-quality plums in China (People’s Government
of Gulin County, 2022). In recent years, the Gulin County government and departments
at all levels have promoted the development of the local plum industry by establishing
professional cooperatives and combining modern agriculture and tourism industries, and
the plum industry has now become a characteristic and advantageous industry in Gulin
County. The data collection area of this study is a plum orchard located in Gulin County
with GPS coordinates of 105◦96′ E and 28◦10′ N. Figure 5 shows the geographic location.
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The dataset was captured in July 2022, and the plums were all grown in their natural
state. To meet sample diversity and improve network robustness, plum images were
acquired by multiple devices, including a Redmi K20 pro (Xiaomi Technology Co., Ltd.,
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Beijing, China), a Canon camera (60D, 18 megapixels, 18–200 IS lens), and a Sony camera
(Alpha 6400, 24.2 megapixels, 17–70 mm lens). Figure 6 shows sample images taken with
both devices. We took 2624 images of plums, and after we manually filtered them to remove
some duplicates and similar data, 700 images were finally selected as our initial data set.
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Figure 6. Examples of images taken by different devices. (a) Redmi k20 pro; (b) Canon 60D; (c) SONY
Alpha6400.

3.1.2. Data Enhancement and Data Annotation

In order to increase the diversity of the training set and improve the generalization
ability [48] of the model in this study, 700 images of the initial dataset were data enhanced
by flipping them at random angles, mirror transforming them, adjusting their brightness,
adding random noise, etc. An example of data enhancement is shown in Figure 7, Figure 7a
shows the original images, and Figure 7b shows the data enhanced images. Finally, an
experimental dataset of 1220 images was obtained, with each image containing anywhere
from 1 to 20 plum fruits.
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According to the proportion of 8:1:1, the dataset was divided into a training set, a
validation set, and a test set, and the dataset was labeled using the open-source script
LabelImg from https://github.com/HumanSignal/labelImg (accessed on 9 July 2023).

https://github.com/HumanSignal/labelImg
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An example of the annotation of the dataset is shown in Figure 8. The labeling process
produced a total of 8745 labeled boxes, of which the training set contained 7042 labeled
boxes, the validation set contained 834 labeled boxes, and the test set contained 869 labeled
boxes. The division of the dataset and the distribution of the number of labeled boxes are
shown in Table 4.
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Figure 8. Example of labeling plums.

Table 4. Division of the dataset and distribution of labeled boxes.

Dataset Percentage Number of Pictures Number of Labeled Boxes

training set 80% 976 7042
validation set 10% 122 834

test set 10% 122 869
Total 100% 1220 8745

3.2. Experimental Platform

This study was carried out on a professional server. The frame image source was
PyTorch 1.8.1, the training environment of Python 3.8 (ubuntu18.04) was used, and Cuda
11.1 was used as the computing architecture. The hardware GPU was RTX 3080 × 1, and
the video memory was 10 GB. The CPU adopted a 15-core Inter (R) Xeon(R)Platinum 8358P
CPU @2.60GHz, and the memory was 80 GB.

3.3. Deep Learning Network Construction
3.3.1. CSPSPPF Module

The Spatial Pyramid Pooling (SPP) module [36] can convert feature maps of arbitrary
size into fixed-size feature vectors in the feature extraction process. Glenn Jocher, one of
the authors of YOLOv5, has adjusted the structure of SPP to propose the SPP-Fast(SPPF)
module [49], which makes the model much less computationally intensive and improved
the model speed. The SPP module used in YOLOv7 is Cross Stage Partial Spatial Pyramid
Pooling (CSPSPP) [33]. CSPSPP introduces a CSP structure based on the traditional SPP
structure, which performs better than SPPF on the COCO dataset, but the number of
parameters and calculation amount are greatly improved.

The idea of the improvement of SPPF over SPP was referenced. In the CSPSPP module
used in YOLOv7, two 5 × 5 convolution operations replaced a 9 × 9 convolution operation
and three 5 × 5 convolution operations replaced a 13 × 13 convolution operation, and the
parallel structure was changed into a more lightweight series structure, which reduced
the amount of computation while ensuring the same perceptual field and improved the
computational efficiency of the model. The improved module was called Cross Stage Partial
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Spatial Pyramid Pooling–Fast (CSPSPPF). The structure diagram of SPP, SPPF, CSPSPP, and
CSPSPPF is shown in Figure 9.
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3.3.2. Bilinear Interpolation

The interpolation algorithm is a basic and important task in image scaling processing
to fill the gaps between pixels during image transformation. Common interpolation
algorithms include nearest neighbor interpolation [38], bilinear interpolation [47], and
bicubic interpolation [50]. The YOLOv7 model uses the nearest neighbor interpolation
algorithm in the upsampling process.

The nearest neighbor interpolation finds the nearest pixel from the location of the
inserted pixel and inserts it as its own pixel value; bilinear interpolation calculates the
pixel value of the inserted pixel location based on the pixel values of the four points
closest to the inserted pixel location; bicubic interpolation obtains the inserted pixel point
pixel value by a weighted average of the 16-pixel points closest to the inserted pixel
location in the rectangular grid. Experiments were conducted to transform the data in the
model run by twice the number of pixels using three interpolation algorithms, derived the
transformed images using different interpolation algorithms, and calculated the time spent
on transforming the images. Examples of the results of transforming the data in this study
using the three interpolation algorithms are shown in Figure 10, and the time spent on
transforming the images is shown in Table 5.

From Figure 10 and Table 5, it can be seen that among these three interpolations, bicubic
interpolation worked better than bilinear interpolation and nearest neighbor interpolation
but was slower than nearest neighbor interpolation and bilinear interpolation in terms of
computational speed. The quality of the transformed image after bilinear interpolation
was between nearest neighbor interpolation and bicubic interpolation, but in terms of
execution time, bicubic interpolation increased the time spent by 77.75% compared to
nearest neighbor interpolation, and bilinear interpolation increased the time spent by only
22.21% compared to nearest neighbor interpolation. Considering the time feasibility and
the quality of the transformed image, bilinear interpolation was used instead of the nearest
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neighbor interpolation used in YOLOv7 in order to obtain better target detection results
while keeping the speed as fast as possible.
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Table 5. Comparison of time spent on different interpolation algorithms.

Interpolation Algorithm Original Image Nearest Neighbor
Interpolation Bilinear Interpolation Bicubic Interpolation

Image Size (pixels) 664 × 498 1325 × 996
Execution time (seconds) 0.008976 0.010970 0.015955

3.3.3. Attention Mechanism

The introduction of an attention mechanism in deep learning can make the network
focus on the target region, reduce the interference of invalid targets and improve the
effective feature extraction ability of the network, thus improving the detection of targets
of concern. The Convolutional Block Attention Module (CBAM) is a lightweight attention
module that focuses on both channel and space dimensions [43], and the module structure
is shown in Figure 11.

Two CBAMs were embedded between the head and backbone of the YOLOv7 network
structure to improve the performance of the network. After embedding the CBAMs the
network was able to serially generate attention feature map information in both channel
and spatial dimensions separately during feature extraction and then carry out adaptive
feature correction between the two kinds of information and the original input feature
map to generate the final feature map. YOLOv7 with the addition of CBAM increased the
channel weights of the detection target and expanded the perceptual field of the original
image. Therefore, in this study, the key information of plum fruit can be better focused
from the complex background.
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3.3.4. YOLOv7-Plum Deep Learning Network Structure

YOLO (You Only Look Once) is a typical single-stage target detection algorithm.
YOLOv7 is the structure introduced in the YOLO series in 2022, and it offers significant
improvements in feature extraction for targets compared to previous models [33]. The
basic architecture of the YOLOv7 consists of three modules: input, trunk, and detection
head. The input module first preprocesses the image by aligning it to an image size of
640 × 640. The backbone module consists of three parts, CBS, ELAN, and MP. The input
image is passed through the backbone module for feature extraction. YOLOv7 has three
detection heads; after feature fusion, the detection heads will pass the feature information
to the output layer, which predicts the location and class of the target and generates the
corresponding bounding box [51,52].

Two CBAMs were added between the head and backbone in the YOLOv7 network
structure to improve the model’s ability to perceive different spaces and different channels,
enabling the model to pay more attention to the plum fruit as the focal information in the
complex background. Then, the nearest neighbor interpolation used in the up-sampling
of the original network was changed to the more effective bilinear interpolation, which
resulted in a significant improvement of the image quality during the up-sampling process
without a significant increase in the training time of the model. Finally, the improved
CSPSPPF structure replaced the CSPSPP structure in the original network, which reduced
the number of parameters and the computational effort and improved the computational
efficiency of the model while ensuring that the sensory field of the model remained un-
changed. The improved network achieved better results for plum fruit detection in complex
natural environments, and the improved network was called YOLOv7-plum. The network
structure of YOLOv7-plum is shown in Figure 12.
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3.4. Evaluation Indicators

In this paper, precision, recall, and average precision (AP), the most commonly
used evaluation indexes in object detection, were used as the evaluation indexes in
this experiment.

According to the combination of the real category and prediction category, the sample
was divided into four cases: true positive (TP), false positive (FP), true negative (TN), and
false negative (FN). The parameters were defined in Table 6.

Table 6. Parameter definition.

Confusion Matrix
Predicted Results

Positive Negative

Actual Results
Positive TP FN

Negative FP TN

Precision can be understood as “In the data that the model predicts to be correct, its
true value is the proportion of the samples that are correct”. The formula was:

Precision =
TP

TP + FP
(1)

Recall is “The percentage of samples that are predicted to be correct by the model out
of all samples that are correct”. The formula was:

Recall =
TP

TP + FN
(2)

In the PR (precision–recall) curve, P stood for precision and R stood for recall, and
it stood for the relationship between precision and recall. Generally, recall is set as the
abscissa and precision as the ordinate.

AP meant the area under the PR curve, and AP was also an indicator of PR. The better
the classifier, the higher the AP value.

4. Discussion
4.1. Feasibility Analysis

In order to promote the development of intelligent cultivation of the plum industry, this
study applied the YOLOv7 model to the fruit detection of plums in the natural environment
and obtained the YOLOv7-plum plum fruit detection model by improving the limitations
of YOLOv7. The results showed that the YOLOv7-plum model could perform the task of
plum fruit detection better. For the feasibility of the proposed method in this paper, we
developed the following discussion:

(1) The model size of our proposed YOLOv7-plum network was 71.4 MB, which was
almost the same as that of YOLOv7, and it took only 0.0193 s to infer a single image in
the experimental environment (GPU is RTX 3080 × 1 with 10 GB of video memory). Our
model inferred a single image time of 0.186 s in a personal laptop environment (GPU of
NVIDIA GeForce GTX 1050 × 1 with 2 GB of video memory). Then, we exported the model
and deployed it on a development board environment (ARM® Cortex®-A53, quad-core,
1.2 G) for testing, and the inference time for a single image was 0.842 s. The experimental
results showed that our model could meet the requirements of hardware deployment and
the processing speed could meet the practical needs;

(2) Few studies have been conducted for intelligent plum planting, and the models
used include YOLOv4 [53], faster RCNN, and EfficientDet [4], with AP values ranging
from 59.81% to 88.56%. The models of the above studies are not novel enough, and the
detection accuracy is low. This study promoted the application of novel computer vision
algorithms on plum fruit detection to some extent;
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(3) YOLOv7-plum has low equipment requirements and can be deployed on platforms
with limited computing power, providing great convenience for the practical application of
the model.

In summary, the method proposed in this study could meet practical needs and had
certain advantages over existing studies, which could well accomplish the task of plum
fruit detection in the natural environment and was expected to be further used for tasks
such as robotic picking and plum pest detection.

4.2. Contribution to Intelligent Cultivation of the Plum Industry

At present, most plum-growing industries still use traditional manual techniques,
which have disadvantages, such as low efficiency, high labor cost, and subjectivity, so it
is necessary to carry out research on the intelligent growth of the plum industry. This
study achieved the detection of plum fruits in a natural environment using a deep learning
algorithm, and the contribution to the intelligent planting of plums was as follows:

(1) Manual picking of plum fruits is a labor-intensive task that takes a lot of labor cost,
while robotic picking can help reduce labor requirements and can improve efficiency. This
study achieved real-time detection of plum fruits, which could be further used for robotic
picking [27];

(2) Due to the suddenness of crop pests and diseases, real-time monitoring of plum
growth was beneficial to the timely detection of pests and diseases. This study can be used
as a basis for the study of plum fruit pests and disease detection in the natural environment;

(3) Manual judgment of whether plum trees need to be thinned was influenced by
human subjectivity, so this study can realize the counting of young fruits with fruit detection
on plum fruit trees, which can avoid subjective influence and help growers optimize orchard
management [32]. It is also possible to use a combination of two-sided imaging and four-
sided imaging for plum yield prediction based on this study [54].

5. Conclusions

In this study, deep learning technology was applied to the detection of plum fruits, and
the YOLOv7 model was improved to obtain a YOLOv7-plum model with a better detection
effect on plum fruits. First, the collected plum image data were enhanced and marked, and
then, the plum fruit detection data set was formed. Second, the CSPSPP structure used by
YOLOv7 was modified to the CSPSPPF structure to improve the computational efficiency in
the feature extraction process. Third, bilinear interpolation was used to replace the nearest
neighbor interpolation used by the original model to improve the image quality in the
upsampling process. Finally, two CBAMs were embedded between the head and backbone
of the model structure to make the model pay more attention to the important information
of plum fruit in the image during operation. The main conclusions were as follows:

(1) The AP of the YOLOv7-plum model proposed in this study reached 94.91%, 2.03%
higher than that of the YOLOv7 model. It was found that the YOLOv7-plum model
could alleviate the missing detection of the YOLOv7 model to some extent. Therefore, the
improved method is believed to be effective, and the YOLOv7-plum model can effectively
support continuous detection and analysis during plum growth;

(2) Through comparative tests, it was found that the detection accuracy of the YOLOv7-
plum model was better than that of the current mainstream target detection network model.
The size of 71.4 M was acceptable, and only 0.0193 s was needed to process a single image.
The results showed that YOLOv7-plum could accurately complete the plum fruit detection
task and could be run on lightweight devices;

(3) The method proposed in this study could effectively realize the detection of plum
fruit under the natural background and reduced the problems of traditional manual de-
tection, such as low efficiency, high cost, and subjectivity, which is conducive to the
development of intelligent planting in the plum industry, such as yield prediction and
pest detection.
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