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Abstract: Apple leaf diseases are one of the most important factors that reduce apple quality and
yield. The object detection technology based on deep learning can detect diseases in a timely manner
and help automate disease control, thereby reducing economic losses. In the natural environment,
tiny apple leaf disease targets (a resolution is less than 32 × 32 pixel2) are easily overlooked. To
address the problems of complex background interference, difficult detection of tiny targets and
biased detection of prediction boxes that exist in standard detectors, in this paper, we constructed a
tiny target dataset TTALDD-4 containing four types of diseases, which include Alternaria leaf spot,
Frogeye leaf spot, Grey spot and Rust, and proposed the HSSNet detector based on the YOLOv7-
tiny benchmark for professional detection of apple leaf disease tiny targets. Firstly, the H-SimAM
attention mechanism is proposed to focus on the foreground lesions in the complex background of
the image. Secondly, SP-BiFormer Block is proposed to enhance the ability of the model to perceive
tiny targets of leaf diseases. Finally, we use the SIOU loss to improve the case of prediction box
bias. The experimental results show that HSSNet achieves 85.04% mAP (mean average precision),
67.53% AR (average recall), and 83 FPS (frames per second). Compared with other standard detectors,
HSSNet maintains high real-time detection speed with higher detection accuracy. This provides a
reference for the automated control of apple leaf diseases.

Keywords: apple leaf diseases; complex background; tiny-object detection; HSSNet; TTALDD-4

1. Introduction

Apples have been widely grown worldwide because of their ecological adaptability,
high nutritional content and economic profit. Influenced by natural environmental factors,
apple leaves are susceptible to infection by a variety of diseases. These diseases seriously
impede the normal metabolic process of apples (e.g., leaf photosynthesis, respiration,
and transpiration), causing leaf decay and even leaf loss, which leads to a decrease in
fruit quality and yield [1,2]. Therefore, the phenotypic characteristics exhibited by leaves
during apple growth and development have important applications for screening diseases,
inhibiting their spread, and reducing economic losses. The traditional manual apple leaf
disease detection methods have the disadvantages of low efficiency and high workload,
and they require the professionalism of the inspectors [3]. There is an urgent need for a
stable automated apple leaf disease detection method to replace manual work. In recent
years, with the rapid development of computer hardware and machine vision technology,
the application of object detection technology to apple leaf disease detection has become
the development trend of modern apple cultivation [4,5].

Currently, in apple leaf disease detection research, traditional machine vision meth-
ods based on machine learning and pattern recognition have achieved certain results
under restricted situations. For example, certain detection and recognition results can
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be achieved in a laboratory environment (uniform illumination and simple background
environment) [6–8]. However, such a standard environment controls the interference of
natural background, and the trained detectors are vulnerable to external noise interference
in real-application conditions. In addition, there are few types of diseases that can be iden-
tified by these methods, which is difficult to put into the natural environment applications.

Recently, deep learning-based methods have begun to be widely discussed and stud-
ied in crop disease identification [9,10]. Deep learning-based object detection algorithms
do not need to extract image features by manually constructing operators, and the ex-
tracted features are more robust. In the early days of deep learning-based object detection
research [11], deep learning-based object detection algorithms commonly adopted the
Two-Stage approach, which explicitly divides the detection process into two stages: region
proposal selection and target region selection. These methods are represented by R-CNN
(region-based convolutional neural network) [12,13] and its variants, which can obtain high
detection precision, but whose detection speed is slow. In 2016, the One-Stage object detec-
tion method, represented by YOLOv1 [14,15], gained widespread interest and gradually
became a mainstream universal detector due to its strong feature-extraction capability, high
scalability, and fast detection speed. Instead of outputting candidate regions in advance, the
One-Stage method outputs the class probability and location of the object in an end-to-end
fashion. This greatly optimizes the overhead of computational resources and improves
the efficiency of detection. So far, the YOLO algorithm family has been evolved to version
v8 [16,17]. It is worth mentioning that the YOLO family of benchmark networks still suffers
from weak global information modeling capability and poor detection of tiny targets.

Following an existing survey [3,18,19], YOLO detectors are widely used for crop
pest detection in uncontrolled environments (e.g., tea plantations and orchards). YOLO
series detectors can achieve high detection accuracy while ensuring the need for real-time
detection. In 2021, Mathew et al. [20] built a UAV platform to capture video and images
of fruit trees on farms and subsequently built their own apple leaf disease dataset. They
successfully detected three common diseases, Apple Scab, Cedar Apple Rust, and Black
rot, with high precision using the original YOLOv3 algorithm. However, the appearance
characteristics of the diseases were not considered. They were not tailored to design apple
leaf, disease-specific network models. In 2022, the YOLOX-ASSANano [21] lightweight
model based on YOLOX-Nano was designed for real-time apple disease detection. The
model showed a performance of 58.85% mAP at 122 FPS on the public dataset PlantDoc.
In 2022, Li et al. [22] proposed Apple-YOLO, a mobile-device-oriented apple leaf disease
detection model based on YOLOv5. The model can automatically extract features of
different disease spots and conduct early phenotypic characterization of eight different
diseases for rapid detection.

The aforementioned studies achieved good results and demonstrated the viability of
the YOLO family of algorithms for leaf disease detection tasks. However, these studies
mainly focused on issues such as improving model inference speed, reducing the number of
model parameters, and not using the state-of-the-art YOLO detector. The influence of tiny
target characteristics of the disease and the complex background of natural environments
on detection models needs to be thoroughly explored. For this reason, we chose the latest
YOLOv7 as the benchmark network to carry out related research. To this end, we chose
the latest YOLOv7-tiny as a benchmark network to carry out related work to explore the
possibility of deep learning to optimize apple leaf disease detection. This paper focuses on
four types of apple leaf diseases, Alternaria leaf spot, Frogeye leaf spot, Grey spot and Rust
disease. Their detailed properties and negative effects will be presented in Section 2.1.

In the current apple leaf disease detection process (e.g., Figure 1), there are three
problems that urgently need to be addressed:
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(a) Complex image background. Apple leaf images in real environments have com-
plex background environments, natural illumination conditions, or shadow occlusion.
The chromaticity and appearance of the background environment may be similar to the
foreground features of the disease. This can interfere with the feature parameters of the
network, interfere with the supervised learning process, and pose a great challenge to the
detection network.

(b) Tiny disease targets. The spot texture of tiny target diseases occupies a small area
on the leaf and is sparsely distributed. The feature information domain is limited and
difficult for the network to capture accurately. The existing standard detectors do not guide
the model to focus on these features and are prone to missed detection.

(c) Prediction box detection bias. When some tiny target diseases are clustered, the
YOLO object detection algorithm tends to generate more dense redundant frames in the
prediction process, and the loss function does not consider the mismatch direction between
the real frame and the predicted frame. This can lead to difficulty in quickly calibrating the
exact location of tiny target diseases, slowing down the training speed and impairing the
detection precision.

For the problem of complex background, the traditional concept uses filters with
hand-constructed operators to reduce background noise [23,24] in order to highlight the
foreground target features. Another kind of method is to extract the significant regions
of lesions in the complex background by preprocessing [25]. However, most of the above
methods are multi-stage, which is not conducive to automating the processing process, and
the algorithms are simple and constrained, making it difficult to be effectively promoted.
For the whole image, the network should be guided to prioritize the primary leaf disease
object information by giving them higher weights while weakening irrelevant signals. The
attention module has been demonstrated to perform this task well [26]. The essence of the
mechanism is to focus the part of interest by a set of weighting coefficients learned through
the network structure and weighed in a way that suppresses weakly associated background
regions. The existing attention modules, e.g., SE (squeeze-and-excitation) [27] and CBAM
(convolutional block attention module) [28] are mostly based on neural networks of one-
dimensional channel type or two-dimensional spatial type. Their architectures are built by a
series of complex convolution and pooling operations, which require additional parameter
overhead and lack interpretability. To address these issues, we propose H-SimAM (simple,
parameter-free attention module) to enhance the ability of detection models to focus on
apple leaf disease characteristics [29]. It is constructed based on three-dimensional weights
(i.e., those considered across spatial and channel dimensions) and energy functions, and
does not add additional network parameters.

In the existing studies, the most general definition of tiny targets comes from MS
COCO, a common dataset in the field of object detection [30]. It defines a tiny target in
terms of absolute scale with an image resolution of less than 32 × 32 pixel2. To address the
problem of tiny object detection, some researches increase the network’s ability to fit tiny
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object features by training strategies such as oversampling and data augmentation [31];
some researches highlight the importance of small objects by reducing the number of large
objects [32]; others increase the resolution of the feature map of small object regions to detect
smaller objects. The emergence of the Transformer architecture provides new thoughts
to solve the small object [33]. The Transformer architecture can encode the contextual
information of tiny targets, fuse more correlation information, and enhance the model’s
perception of tiny targets. Therefore, we propose the SP-BiFormer Block to optimize the
ability of YOLOv7 to detect tiny target disease features. SP-BiFormer is implemented based
on Biformer [34] with dynamic sparse perception capability and SoftPool [35] with a soft
property of the downsampling process, which has the ability to extract apple leaf disease
tiny target features with excellent performance.

To address the problem of more redundant boxes in the prediction process for tiny
targets of disease, the classical IOU loss cannot measure the overlap between the predicted
and real boxes well, so it is more biased towards objects of larger size in the training
process. GIOU [36] introduced the minimum external matrix on top of IOU to express
the intersection property of two boxes more accurately. DIOU [37] directly regressed the
Euclidean distance between the centroids of the two boxes, which accelerated the model’s
convergence. However, the aspect ratio of the bounding box is not considered in the
regression process, and a further improvement in accuracy is still needed. None of the
above loss functions measure the direction of the mismatch between the predicted box and
the real box. For this reason, we use SIOU loss [38] as the loss function, which defines the
angle cost and introduces it into the distance cost, thus prompting the regression process to
efficiently perform the anchor box calibration of the tiny target of the disease.

To address the foregoing issues, in this paper, we propose a novel object detection net-
work, HSSNet, focusing on the detection of tiny target apple leaf diseases, using YOLOv7-
tiny as a benchmark.

(1) We construct an image dataset of the tiny target apple leaf diseases for detection
(TTALDD-4), which contains Alternaria leaf spot, Frogeye leaf spot, Grey spot and Rust
four categories of apple leaf diseases, and 6482 images in total. Among them, 5998 images
contained complex backgrounds, accounting for 92.55% of all disease areas in TTALDD-4,
were accurately labeled with location boxes and corresponding disease category labels.
There was a total of 31,914 target boxes and 22,506 small target boxes, accounting for 70.52%
of all disease areas.

(2) The main improvements of HSSNet are as follows:
(a) For the problem of complex apple leaf disease background, we propose the H-

SimAM attention mechanism. It enhances the expression of neural signals that are highly
correlated with disease targets, and suppresses interfering signals. H-SimAM improves the
ability of YOLOv7-tiny to focus on foreground leaf lesions in complex backgrounds.

(b) For the problem of disease tiny object detection, we propose the SP-BiFormer Block.
This block is based on the BRA module with dynamic sensing queries and SoftPool, which
enhances the ability of YOLOv7-tiny to capture the sparse distribution of tiny targets of
leaf diseases.

(c) To address the problem of biased prediction frame detection, we use the SIOU loss
function to optimize the training process. This loss function takes into account the mismatch
direction between the prediction frame and the real frame to make the training process fit
better with the dense distribution characteristics of tiny targets of apple leaf diseases.

(3) The experimental results show that the detection accuracy of HSSNet is significantly
improved compared with the baseline network YOLOv7-tiny. The proposed model achieves
a good tradeoff between accuracy, detection speed, and parameters.

2. Materials and Methods
2.1. Data Acquisition and Processing

Suitable image datasets are required to train the object detection network. The Ap-
pleLeaf9 dataset [39] provides a useful reference for us as a multi-source fusion dataset
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including PVD, ATLDSD, PPCD2020, and PPCD2021 for healthy apples and eight apple
leaf diseases. A total of 94% of this dataset contains images of the wild environment,
which improves the robustness of the model during real-world applications. In addition,
AppleLeaf9 uses the CLAHE [40] technique to reduce the noise in the images and improves
the diversity of the images through data enhancement. Therefore, we constructed an image
dataset of the tiny target apple leaf diseases for detection (TTALDD-4) based on the defini-
tion of COCO tiny targets in AppleLeaf9 by selecting a total of four types of apple small
target diseases, namely, Alternaria leaf spot disease, Frogeye leaf spot disease, Grey spot
disease, and Rust disease. The dataset contains a total of 6481 images, with 5998 complex
backgrounds, accounting for 92.55%.

Supervised learning for object detection training requires not only the category labels
but also the localization labels of the diseases. Therefore, we used the Labelimg software
(v1.8.1) to accurately label disease areas under the guidance of Yahui Hu [26] from the
Hunan Academy of Agricultural Sciences. Specifically, when labelling an image, we first
use a rectangular box to label the exact region of the disease and then add the category to
which the disease belongs. The edges of this rectangular box fit the geometric edges of
the disease to ensure the accuracy of supervised learning. After the labelling is complete,
the information about the disease in that image is recorded via an XML file format, which
contains the coordinate position of the rectangular box and the category of the disease to
which it belongs. Finally, we obtained 31,914 target boxes, and the tiny target boxes (pixel
area less than 32 × 32 pixel2) are 22,506, accounting for 70.52%. In addition, during the
labeling process, we removed the very blurred images to facilitate the effective training of
the network, and the number of images and labels obtained are statistically shown in Table 1.
In the Image Num column of the table, the front number represents the number of images,
and the back one represents the number of images with complex backgrounds; in the Label
Num column, the former represents the total number of labels, and the latter represents the
number of labels for small targets. Figure 2 shows the results of the labeled boxes.

Table 1. The number and characteristics of apple leaf images.

Category Example Characteristics Image Num Label Num

Healthy
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Table 1. Cont.

Category Example Characteristics Image Num Label Num

Frogeye leaf spot
disease
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In order to improve the expertise of the detector in detecting phenotypic characteristics
of tiny target diseases of apple leaves, we analyzed the four categories of diseases men-
tioned above. Healthy apple leaves are overall ovate or oval in shape, with serrated leaf
margins, well-defined vein textures, and are usually soft or dark green in color. Alternaria
leaf spot disease of apples caused by Streptomyces infection is a devastating disease for
apple production. Infected leaves show dark brown or black leaf spots, and these cells
rapidly spread and accumulate into necrotic lesions that eventually cause leaf abscission [2].
Frogeye leaf spot disease lesions are generally tan in color, and these lesions are distributed
throughout the leaf in dots or patches. Grey spot disease initially appears as subrounded
lesions with well-defined margins that are red-brown. Later, it turns gray with small black
spots scattered in the center and the spots are slightly sunken. It usually occurs at the same
time as rust disease, with a peak incidence in autumn. Rust disease is a fungal disease
that produces small, shiny spots with an orange-red color on the lesions [41]. Rust disease
can spread to other soft green tissues of apple trees, such as shoots and new tips, in severe
cases. It often causes the withering of apple leaves and reduced photosynthetic function.

All four types of diseases have tiny areas of incidence and lesion traits that are more
easily confused with the leaf background. All these problems make the standard detector
performance low. Failure to detect diseases in a timely manner will seriously affect apple
production and make economic benefits significantly impaired. Therefore, the research of
these representative apple leaf disease tiny targets has practical application value for apple
leaf pest control.
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2.2. The Structure of HSSNet

In this paper, a more specialized detection model, HSSNet, is proposed for the charac-
teristic of tiny target diseases of apple leaves. Its network architecture is shown in Figure 3a.
Specifically, a 640 × 640 image of the disease is input and feature extraction is performed
in the backbone network, and the associated dimensional changes are shown in Figure 3.
Before the extracted multi-scale features enter the feature pyramid, we use the H-SimAM
zero-parameter attention module to filter the noisy signals in the complex background.
This mechanism is based on neuroscience theory and enhances the representation of sig-
nals with strong correlation to disease targets without introducing additional parameters
to the network. In the pyramid, multi-scale features are fused through the upper and
lower information paths. Before the fused features enter the detection head, we embed
the SP-BiFormer module to enhance the ability of the network to focus on tiny targets of
the disease. This module has sparse perception capabilities and associates the perception
features of tiny target disease and context, which increases the amount of information of
small target location and category features. In addition, we use SIOU loss to optimize
the model training. SIOU takes into account the direction of mismatch between predicted
and real frames, which makes the model training more suitable to the characteristics of
the aggregated distribution of diseases and improves the detection performance. In the
following, we describe the detailed techniques of the components of HSSNet.
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2.2.1. Hard Simple Parameter-Free Attention Module (H-SimAM)

In the natural environment, the precise location of apple leaf disease is difficult to
capture directly by sensing devices. Areas of lesions under natural lighting are not well
distinguished and can easily be confused with similar backgrounds, leading to missed
detections. In addition, the color of certain diseases is not well differentiated from the
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planting background or the leaves themselves, and the features abstracted by convolutional
networks are easily disturbed by background noise. These complex natural environments
place high demands on the model to accurately focus on disease features. The attention
module in machine vision can be understood as focusing on the part of the input that is
expected to be attended to and suppressing the unimportant interference signals.

As mentioned in the introduction, the SE Attention Module is a classical attention
mechanism for channel dimension. It first performs the global average pooling operation
on the input feature map to compress the global feature volume, and then obtains the
importance of each channel of the feature map through the excitation operation, so that
the neural network can focus on certain feature channels. It consists of two submodules:
the CAM (channel attention module) and the SAM (spatial attention module). The CAM
module compresses the information in the spatial dimension and focuses more on the
information in the input image that is meaningful to the task. SAM compresses the
information in the channel dimension and the module focuses on the location information
of the target. The above attention modules do not pay differential attention to different
feature maps or neurons in spatial locations, which may limit their expressive power. In
addition, these attention modules inevitably increase the parameters and computational
complexity while improving network detection.

For this purpose, we propose a parameterization-free attention module, H-SimAM, as
shown in Figure 3b. It is an improved version of SimAM, which is a product of neuroscience
theory [42], and is more adaptable to the detection of apple leaf pests and diseases. It is
worth emphasizing that this module is a small plug-and-play component with generality.

To select the more important feature signals, SimAM estimates the importance of
individual neurons (computational units) by means of an energy function:

et(t, xi, wt, bt) =
1

M− 1

M−1

∑
i=1

(−1− (wtxi + bt))
2 + (1− (wtt + bt))

2 + ϕw2
t , (1)

where, t and xi are the target and other computational units, respectively, in a single channel
with input feature X ∈ RC×H×W . i is the index of other computational units in the spatial
dimension and M is the number of computational units on a single channel. wt and bt are
the weights and biases of the output of the computational units in the linear transformation.
The values 1 and −1 are binary labels for simple settings. ϕw2

t is the canonical term.
Through minimizing the above equations, the linear differentiability of t and other

computational units in the same channel can be determined, thus enabling the evaluation
of the importance of computational units. The parameters wt and bt, can be determined by
the following analytical solution:{

wt = − 2(t−µt)

(t−µt)
2+2σ2

t +2ϕ

bt = − 1
2 (t + µt)wt

, (2)

where µt =
1

M−1 ∑M−1
i=1 xi and 2σ2

t = 2
M−1 ∑M−1

i=1 (x i − µt)
2 are the mean and variance of the

output of all computational units except t, respectively.
Assume that the values in the same channel have the same distribution pattern. Given

this assumption, the minimum energy of the input features in both H and W dimensions
can be calculated using the following equation [29]:

emin
t =

4
(
σ̂2 + ϕ

)
(t− µ̂)2 + 2σ̂2 + 2ϕ

, (3)

where µ̂ = 1
M ∑M

i=1 xi and 2σ̂2 = 2
M ∑M

i=1 (x i − µ̂)2 are unbiased estimates of the sample
total. This equation reveals that the computational unit with lower energy function output
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has higher priority. Therefore, the computation of attention weights for each computational
unit can be reduced to the inverse of emin

t , i.e., at:

at =
1

emin
t

+ 0.5. (4)

The use of the sigmoid activation function in SimAM may lead to slow learning or
even stagnation due to too large or small input signals during the forward propagation.
Therefore, in this paper, we use the scaling function Hard sigmoid for feature refinement,
which is formulated as follows:

Hard Sigmoid(x) =


0 x < −3

0.2 ∗ x + 0.5 −3 ≤ x ≤ 3
1 x > 3

, (5)

where x is the input signal and Hard sigmoid is an approximate expression for the sigmoid
activation function, which has the advantage that no power calculation is required and the
input signal is gradient stable in the open interval from −3 to 3.

Finally, the whole process can be expressed as follows:

∼
X = Hard Sigmoid(A)� X, (6)

where A groups all attentions at across channels and spatial dimensions, and X ∈ RC×H×W

is the input feature.

2.2.2. SoftPool Bi-Level Routing Vision Transformer (SP-BiFormer)

In the real environment, apple leaf disease targets have low resolution, limited
pixel area, and are characterized by tiny targets. In addition, some of these diseases
are sparsely distributed on the leaves or have a tendency to cluster. In the prediction
phase of the YOLOv7 model, the anchor frames generated by the prediction rely on NMS
(non-maximum suppression) to filter out a large number of low-confidence borders, which
tends to miss the tiny targets. Transformer self-attention is a type of attention mechanism.
The design idea is to reduce the dependence on external information and to use the original
feature information to encode the association information at different locations as much as
possible to achieve attention focusing.

To this end, we propose the SP-BiFormer Block to optimize the ability of YOLOv7-tiny
to focus on tiny targets, as in Figure 3c. It adds the information about tiny targets by
associating the perceptual features of the tiny target and the context, and uses the broader
contextual information in the scene to assist in inferring the location or class of the tiny
target. Specifically, the SP-BiFormer Block is inspired by Sense Time Research’s proposal of
a dynamic and query-aware sparse self-attentive module BiFormer [34]. The core of this
self-attentive module is BRA (bi-level routing attention), which consists of region partition
and input projection, region-to-region routing with directed graph and token-to-token
attention. The key idea is to filter out unimportant key-value pairs to achieve fine-grained
and sparse attention.

According to reference [33], we give a preliminary mathematical definition of a vision
transformer. For a given 2D feature map X ∈ RH×W×C, its attention mechanism can be
constructed from the linear projection queries Q ∈ RNq×C, keys K ∈ RNm×C and values
V ∈ RNm×C of X:

Attention(Q, K, V) = softmax
(

QKT
√

N

)
V, (7)

where H (height), W (width) and C (channel) denote the height, width and number of
channels of the input image, respectively. Q, K and V are numeric vectors. Softmax
function maps the input to the (0, 1) space.

√
N is a scalar.
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Next, we will introduce the three parts of BRA; the first is the “Region partition and
input projection” part. The input feature map X ∈ RH×W×C is initially partitioned into
S× S disjoint regions (assume that X is a square, that is, H equals W), and then the query,
key and value vectors are obtained by the linear projection of X being partitioned:

Q = XrWq, K = XrWk, V = XrWv, (8)

where Q, K, V, and Xr ∈ RS2× HW
S2 ×C; Wq, Wk, and Wv ∈ RC×C are the weight of each

linear projection.
The second part of BRA, “Region-to-region routing with directed graph”, is presented

next. This part calculates the regions that should be focused on by constructing a weighted
directed graph from the input feature map X’s delineated regions. First, the average values
of Q and K in each partitioned region are calculated separately to obtain Qr and Kr ∈ RS2×C.
Then, the adjacency matrix Ar for the semantic correlation between regions is calculated:

Ar = Qr(Kr)T . (9)

To reduce the interaction times of each region with other regions, BRA keeps the k
most relevant query regions for each region by index matrix Ir ∈ NS2×k.

Ir = topkIndex(Ar). (10)

Compared with the conventional transformer, this operation can effectively reduce
the amount of computation.

In the third part of BRA, “Token-to-token attention”, the key and value vectors are
integrated for GPU (graphics processing unit) operations [33]:

Kg = g(K, Ir), Vg = g(V, Ir), (11)

where g(·) is the operation to gather the tensor.
Therefore, we can represent BRA according to the transformer self-attentiveness

defined by Equation (7):

BRA = Attention(Q, Kg, Vg) + LE(V), (12)

where LE(·) is a local enhancement operation of MTA (multi-scale token aggregation) on V
by deep convolutional networks [43].

In order to provide sufficient information about small objects, we constructed the
SP-Biformer Block based on BRA, which can utilize higher-level abstract features as the
context of small targets and query contextual association information from the surrounding
pixels of small objects. In BRA, average pooling for region-to-region routing is used to find
the most relevant token regions. In SP-Biformer Block, we use SoftPool pooling instead of
average pooling in the original BRA to reduce the redundancy of features. The SoftPool
operation can retain. The output feature map of SoftPool is calculated by weighing the sum
of all signal values in the candidate region R with the following equation:

∼
a = ∑

i∈R
wi ∗ ai, (13)

where R is the neighborhood region, wi =
eai

∑j∈R eaj . Then, we sequentially embed the BRA

module and the MLP (multi-layer perceptron) module to build the BiFormer Block for
sparse relationship modeling of tiny targets.
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2.2.3. SIOU Loss

In supervised learning, the loss function as a penalty is the key to guide the model
parameters to update correctly. The accuracy of prediction localization is measured in the
YOLO algorithm by calculating the IOU (intersection and concurrency ratio) loss between
the prediction frame and the ground truth. Existing methods rarely consider the direction
of mismatch between the ground truth and the prediction box. This drawback often leads
to slow convergence and reduced efficiency of the model. Tiny apple disease targets are
difficult to be quickly calibrated in the final prediction process, and the presence of more
perceptual regions leads to a larger number of redundant feature frames. In this paper, we
use SIOU as a loss function to accelerate the tiny target matching of apple leaf diseases.

In particular, SIOU is defined as follows:

L = 1− IOU +
Cdis + Cshape

2
, (14)

where IOU denotes the ratio of the intersection of the prediction box and the ground truth
box to the union set, and Cdis and Cshape are the distance cost and the shape cost that take
into account the angle cost, respectively.

The distance cost is defined as follows:

Cdis = ∑
t=x,y

(
1− e−γρt

)
= 2− e−γρx − e−γρy , (15)

where ρx =

(
bgt

cx−bcx
cw

)2
, ρx =

(
bgt

cy−bcy
ch

)2
,
(
bcx, bcy

)
and

(
bgt

cx, bgt
cy

)
are the center point

coordinates of the prediction box and ground truth box, respectively; and cw and ch are the
width and height of the minimum outer rectangle of the prediction box and ground truth
box, respectively. γ = 2− Cangle, where Cangle is the angle cost, which defined as follows:

Cangle = cos
(

2
(

sin(α)− π

4

))
, (16)

where α is the angle between the line connecting the ground truth box and the center of the
prediction box and the horizontal or vertical line. In the training process, α is minimized if
α < π

4 ; otherwise, π
2 − α is minimized.

The shape cost is defined as follows:

Cshape = ∑
t=w,h

(
1− e−ωt

)θ , (17)

where ωw =
|w−wgt|

max(w,wgt)
, ωh =

|h−hgt|
max(h,hgt)

; (w, h) and
(
wgt, hgt) are the width and height of

the prediction box and the ground truth box, respectively. θ is a constant, usually taken as
2 to 6 [38].

2.3. Evaluation Indicators

Herein, we use the classic P (precision), R (recall), mAP, AR, FPS, and parameter size
to evaluate the performance of the model.

We first define the basic metrics P (precision) and R (recall). P represents the probability
that the predicted category is correct; R represents the proportion of the number of samples
correctly predicted to be positive to the total number that actually turned out to be positive.
The relevant formulas are defined as follows:

P =
TP

TP + FP
× 100%, (18)
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R =
TP

TP + FN
× 100%. (19)

where TP (true positive) represents positive samples predicted by the model to be in the
positive category; FP (false positive) represents negative samples predicted by the model to
be in the positive category; FN (false negative) represents positive samples predicted by
the model to be in the negative category.

The P–R curve is formed by P and R, and its area is AP (average precision), reflecting
the accuracy of a single class. mAP is an average of AP values for multiple prediction cate-
gories and is commonly used to measure the performance of models containing multiple
categories in object detection. In this paper, the model is tested using an mAP value with
an IOU threshold of 0.5. The calculation formula is as follows:

mAP =
∫ 1

0
P(r)dr. (20)

The AR (average recall) is mainly used to measure the degree of model inspection
failure. AR is calculated as follows:

AR =
R
n

. (21)

where n is the number of image frames detected.
FPS (frames per second) is an important measurement of detection speed. In this

paper, it represents the average number of images detected per second. The formula for
calculating FPS is as follows:

FPS =
1
t

. (22)

where t is the time required to process each image from input to output.
In addition, we use Params and GFLOPs to measure model size and computational

complexity. Where FLOPs stands for floating point of operations, and one GFLOP is equal
to one billion (=1 × 10−9) floating point operations per second.

3. Experiment Results and Analysis
3.1. Experimental Environment and Parameter Settings

The experiments in this paper are performed in the same hardware and software
environment to ensure that the results are only relevant to the detector itself, as shown
in Table 2. In order to increase the diversity of samples, we adopted Mosaic and Mixup
data enhancement methods to improve the robustness of the network. The Mosaic method,
derived from YOLOv4 [44], is a data enhancement method that produces a new image by
randomly cropping four images and re-stitching them onto a single image. This can enrich
the background of the image and reduce the dependence of batch size; Mixup, on the other
hand, mixes two images proportionally into a new sample by linear interpolation. It can
effectively prevent overfitting and improve the generalization ability of the model.

Table 2. Hardware and software parameters.

Hardware environment

CPU AMD EPYC 7642 48-Core Processor
GPU RTX 3090
RAM 80 GB

Video Memory 24 GB

Software environment

OS Ubuntu 20.04
CUDA Toolkit V11.7

CUDNN; V8.2.1
Python 3.8
torch 1.11.0

torchvision 0.12.0
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In the training process, we used the YOLOv7 pre-training model to initialize the
parameters, speed up the initial training of the model and reduce the convergence period;
FP16 mixed precision training was used to improve the throughput of single-sample
training; this reduces the memory per iteration round and expands the number of batch
sizes. Overfitting was suppressed by using the label smoothing regularization strategy,
which can narrow the gap between hard and easy samples and improve model overfitting.

We divided the TTALDD-4 dataset by 8:1:1 into training set (5185), validation set (648),
and test set (648) using common ten-fold cross-validation [45]. And the proportion of
division was carried out in the same category. Herein, the training set was used to update
the model parameters; the validation set was used to measure the optimization of the
model but did not participate in the training; and the test set was only used to evaluate
the model performance and also does not participate in the training. During the divisions,
we unfolded across disease categories by randomizing the number of seeds. This was able
to keep the high number of categories from interfering with the feature representation of
the low number of categories, as the training, validation, and test sets were in the same
proportion for each disease category. It is worth mentioning that after randomly dividing
the dataset, the training, validation and test set image IDs for each detector were fixed,
ensuring that the experimental results are only related to the performance of the detectors.

In addition, in real-world environments, the incidence of a fewer number of categories
is lower and sample collection is difficult. If extensive digital enhancement is performed
directly, the resulting image is very similar to the original image in terms of disease
characteristics. For example, the affine transformation leaves the disease values essentially
unchanged, with only a displacement of the disease region. This causes the network to be
trained multiple times with the same disease features, falling into local optimization and
producing overfitting. In order to ensure the generalization performance of the detector
over these classes, we did not carry out further data enhancement strategies.

Considering the hardware resource limitation, we set the Batch size to 32 (at this
moment, the video memory was already full) and Epochs to 150 (the detector has converged
at that number of rounds as in Figure 4); optimizations training was carried out by the SGD
optimizer and cosine annealing strategy [46]. The learning rate first decreases slowly, then
accelerates and finally decelerates again. This can help the network find the convergence
interval quickly and speed up the convergence. Hence, the learning rate ranges from
1 × 10−3 to 1 × 10−5 and the decay rate is 5 × 10−4. We followed PyTorch’s default
settings [47] and set Momentum to 0.9. The experimental parameters are shown in Table 3.
In model testing, we use only test set images and the 150th epoch of convergence points of
the detection model to ensure a fair comparison of test results.
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Table 3. Training parameter settings.

Input shape 640 × 640 Epochs 150
Batch size 32 Momentum 0.9

Learning rate 1 × 10−2~1 × 10−4 Weight decay 5 × 10−4

Lr decay type cosine Optimizer SGD

3.2. Performance Comparison of HSSNet and YOLOv7-Tiny

To verify the optimization performance of HSSNet, we conducted comparative tests
on the main performance indicators, as shown in Table 4. The results show that HSSNet
is significantly higher than YOLOv7-tiny in both mAP and AR. The prediction box fits
the disease area better and effectively classifies four different diseases. This is because
H-SimAM helps YOLOv7-tiny adjust the weight of attention to annotated objects and
similar backgrounds. In addition, SP-BiFormer improves the perception of tiny targets.
Although the FPS of HSSNet decreased slightly compared to the baseline network, the
value of 83 still ensured the high real-time performance of the application process. In
addition, SP-BiFormer inevitably added Params due to the introduction of the transformer
architecture, but based on the lightweight architecture of YOLOv7-tiny, the final model size
of HSSNet is only 40 MB.

Table 4. Performance comparison between HSSNet and YOLOv7-tiny.

Metrics YOLOv7-Tiny HSSNet

AP (Alternaria leaf spot) 62.76 75.69
AP (Frogeye leaf spot) 93.16 93.83

AP (Grey spot) 77.21 82.08
AP (Rust) 88.36 88.58

mAP 80.37 85.04
AR 59.85 67.53
FPS 97 83

Params (M) 6.227 10.396
GFLOPs (G) 13.4 14.1

p value 0.950 0.971
Cohen’s d value 0.0557 0.0482

To verify the optimization performance of HSSNet, we conducted comparative tests
on the main performance indicators, as shown in Table 4. On single-category APs, HSSNet
improved the detection of a small number of categories (Alternaria leaf spot and Rust)
while maintaining the detection accuracy of a large number of categories (Frogeye leaf spot
and Grey spot). The results show that HSSNet is significantly higher than YOLOv7-tiny in
both mAP and AR. The prediction box fits the disease area better and effectively classifies
four different diseases. This is because H-SimAM helps YOLOv7-tiny adjust the weight of
attention to annotated objects and similar backgrounds. In addition, SP-BiFormer improves
the perception of tiny targets. Although the FPS of HSSNet decreased slightly compared to
the baseline network, the value of 83 still ensured the high real-time performance of the
application process. Besides, SP-BiFormer inevitably increases Params and GFLOPs due
to the introduction of the Transformer structure. Among them, the increase in GFLOPs is
small and has a weak impact on the model training time.

Figure 4 shows the training optimization process for both detectors. As can be seen
from the curve changes, both YOLOv7-tiny and HSSNet converge at 150 epochs. Although
HSSNet converges slightly slower than YOLOv7-tiny (converging to the convergence point
at 50 epochs), its convergence point is lower. This indicates that HSSNet better expresses
the disease features, has a better model fit, and is more suitable for tiny-target detection of
apple leaf diseases.

In addition, the introduction of statistical tests can adequately assess whether HSSNet
has a significant improvement in performance. For a disease image in the test set, we
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set the predicted label encodings (encodings consisted of IOU, localization and category
values) and the true label encodings as two independent variables, and then performed
a differentiation analysis on these two variables. Considering that disease location and
category do not present a certain regular distribution on the images, we use the Wilcoxon
Signed-Rank method [48] to carry out statistical tests. This method does not require the
dependent variable to conform to a normal distribution.

In the Wilcoxon Signed-Rank hypothesis test results, the P value represents whether
the error between the detector prediction and the manual labeling of the frames shows
significance. If it presents significance (p < 0.05), it indicates that the gap between the model
prediction results and the accurate labeled boxes is large, and the model prediction effect is
poor; Cohen’s d value can measure the volatility of the detection, and the lower the value,
the more stable the detection effect is. From the table, it can be seen that HSSNet is not only
smaller than YOLOv7-tiny in detection error, but also the detection results are more stable,
with better robustness and stability.

In summary, HSSNet loses some FPS and has an increase in Params and GFLOPs, but
its excellent accuracy gains on a small number of categories are well worth it. In addition,
based on the lightweight architecture of YOLOv7-tiny, the final model size of HSSNet is
only 40 MB.

3.3. Module Validation Experiments
3.3.1. H-SimAM

To improve the ability of the model to extract foreground object features in a complex
background, we embed H-SimAM modules in different levels of the YOLOv7-tiny backbone
network. The comparison results of attention modules in Table 5 show that the accuracy
of the H-SimAM attention module is comparable to that of CBAM, but its zero-parameter
overhead brings great convenience to the actual deployment of the model, and the module
does not affect the detection speed. In SimAM, the introduction of the Sigmoid function
may cause the problem of gradient disappearance, that is, degradation of the network.
Therefore, we optimized with Hard Sigmoid. The results show that the introduction of
Hard Sigmoid improves this problem and improves the detection accuracy.

Table 5. Validation of H-SimAM.

Methods mAP AR FPS Params (M) GFLOPs (G)

YOLOv7-tiny 80.37 59.85 97 6.227 13.4
+SE [27] 81.47 63.51 95 6.399 13.4

+CBAM [28] 82.82 65.48 96 6.399 13.4
+SimAM [29] 82.99 65.44 96 6.227 13.4
+H-SimAM 83.36 66.02 97 6.227 13.4

3.3.2. SP-BiFormer

To enhance the ability of YOLOv7-tiny to focus on tiny disease targets, we added an
SP-BiFormer to the network prediction layer, which is located at layers P3, P4 and P5 of
the feature pyramid, respectively. Their output feature map sizes are 80 × 80, 40 × 40 and
20 × 20, respectively. In SP-BiFormer, the input feature map is divided into multiple token
query windows, and the size of the window will affect the parallel value search of the
sparse effect. Therefore, we first tested the adaptability of different size windows (5 × 5,
10 × 10, 20 × 20) to tiny disease targets.

Table 6 shows that 10 × 10 size windows have the best overall effect. This is due to the
fact that its query area is more adaptable to the range of valid values of small target features.
The 5 × 5 size has more windows and more intensive queries. Correspondingly, parallel
computation time also increases, making model detection slower. The 20 × 20 window is
less numerous and more sparsely distributed, but the accuracy is slightly reduced. This
is because although it is easier to detect the location of small targets, it coincides with the
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feature map region of layer P5, and does not highlight SP-BiFormer’s sparse perceptual
query ability.

Table 6. Validation of SP-BiFormer.

Methods mAP AR FPS Params (M) GFLOPs (G)

YOLOv7-tiny 80.37 59.85 97 6.227 13.4
+BiFormer (5 × 5) [34] 81.98 63.24 70 10.396 14.1
+BiFormer (10 × 10) 84.03 66.91 76 10.396 14.1
+BiFormer (20 × 20) 83.17 65.40 80 10.396 14.1

+SP-BiFormer (10 × 10) 84.46 68.85 78 10.396 14.1

3.3.3. SIOU

To optimize bounding box regression of tiny disease targets in training, we use the
SIOU loss function. Table 7 shows the performance of different IOU losses on apple leaf
diseases. It can be observed that the model’s mAP and AR are improved after SIOU is used,
which indicates that it can better locate leaf lesions. In addition to this, we also tested the
performance of GIOU and CIOU. The results show that both of them are inferior to SIOU in
performance because SIOU pays attention to the characteristics of the angle and direction
of the unmatched prediction frames.

Table 7. Validation of SIOU.

Methods mAP AR FPS Params (M) GFLOPs (G)

YOLOv7-tiny (IOU) 80.37 59.85 97 6.227 13.4
+GIOU [36] 80.88 60.20 97 6.227 13.4
+CIOU [37] 81.55 62.47 98 6.227 13.4
+SIOU [38] 82.72 64.85 98 6.227 13.4

3.4. Ablation Experiments

In order to verify the necessity of various improved algorithms for YOLOv7-tiny, we
conducted ablation experiments on HSSNet, as shown in Table 8.

Table 8. Ablation experiments of HSSNet.

Groups Methods mAP AR FPS Params (M) GFLOPs (G)

A YOLOv7-tiny (IOU) 80.37 59.85 97 6.227 13.4
B +H-SimAM 83.36 66.02 97 6.227 13.4
C +SP-BiFormer 84.46 68.85 78 10.396 14.1
D +SIOU 82.72 64.85 98 6.227 13.4

E +H-SimAM
+SP-BiFormer 84.67 69.39 80 10.396 14.1

F +H-SimAM +SIOU 83.65 67.25 94 6.227 13.4
G +SP-BiFormer +SIOU 84.71 69.96 81 10.396 14.1
H HSSNet 85.04 67.53 83 10.396 14.1

• As shown in Table 8, compared with group A, B, E and F, H-SimAM filters the complex
background while maintaining FPS, effectively promoting supervised learning to pay
attention to foreground disease objects, and there is no parameter quantity overhead.

• Comparing the A, C, E, and G experiments, it was found that SP-BiFormer decreased
in FPS and improved the number of parameters and GFLOPs. However, its improve-
ment in recall and precision is very significant, effectively distinguishing different
categories of disease features and improving detection precision. Such a trade-off is
very meaningful and worthwhile for small-target detection. Therefore, the embedding
of this module is necessary for the detection of sparse tiny target diseases.
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• Comparing group A, D, F, and G, SIOU optimizes the detection training process and
improves the detection precision of the model. In addition, the inclusion of the angle
loss metric is beneficial for the inference speed of the model.

In summary, H-SimAM inhibits unsupervised signals and improves the model’s
effective focus on disease targets. SP-BiFormer is based on sparse perceptual query ability,
which greatly promotes the ability of the model to detect tiny targets. SIOU considers
the direction of the mismatch between the predicted box and the real box, and weighs
the distance loss and angle loss in the design, which improves the model accuracy and
improves the model’s training efficiency.

3.5. Visualization Results

We compared the performance effects of the baseline network YOLOv7-tiny and
HSSNet in the typical scenarios under four categories, and the results are shown in Table 9.
The detection category and confidence score are displayed in the prediction box.

Table 9. Visualization comparison of HSSNet and YOLOv7-tiny.

Category YOLOv7-Tiny HSSNet

(a) Alternaria leaf spot
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Table 9. Cont.

Category YOLOv7-Tiny HSSNet

(d) Rust
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In Table 9 (a), in the detection scene of the Alternaria leaf spots, the disease and the
soil in the background were similar in color. Since YOLOv7-tiny did not add an attention
mechanism to filter the confusing information, the missed detection occurred. HSSNet,
with the help of H-SimAM, monitored the disease segment and showed good confidence.

In Table 9 (b), in the detection scenario of the Frogeye leaf spots, YOLO v7-tiny missed
detection under light changes, while HSSNet detected objects under both strong and low
light, with better robustness.

In Table 9 (c), in the detection scenario of the Grey spots, thanks to the sparsity of SP-
BiFormer, the detection precision of HSSNet on apple leaf disease tiny targets is significantly
improved compared with that of YOLOv7-tiny, and the network’s perception of apple leaf
disease features is more stable.

In Table 9 (d), in Rust’s detection scenario, YOLOv7-tiny missed two lesions similar to
the leaf background. HSSNet predicted both diseases with 53% and 61% confidence.

3.6. Comparison with Other Models

In addition, we also compare the performance of different models to explore the
adaptability of HSSNet in tiny target apples. Table 10 shows that PPYOLOE-S is slightly
better than YOLOv7-tiny in precision, but its FPS and Params are not dominant. YOLOv7-
tiny has better balance in detection speed and accuracy, which is convenient for our practical
application. This is also the reason why we chose it as a baseline. Compared with these
networks, HSSNet has a good adaptability to tiny target diseases in apple leaves, and
greatly improves the missing and false detection of tiny target diseases in YOLOv7-tiny.

In order to explore the scalability of the larger scale YOLOv7 detector on the dataset
of this paper, we conducted related experiments using both the standard and X versions.
The results show that the detection speed, precision, and recall decrease drastically as the
model size increases. This suggests that the YOLOv7 version with a larger number of
parameters suffers from severe overfitting and the model falls into some simple disease
targets. Therefore, the YOLOv7-tiny model is a better fit for the application scenario of
this task.

In addition, we compared other series of detectors of the same era as YOLOv7. In
order to avoid the overfitting of detectors, we chose detectors that are similar to the tiny
version in terms of model size and number of parameters. The experimental results show
that RTMDet-S improves the backbone and neck network of the YOLO series and performs
better in detection accuracy. However, it shows a severe decrease in FPS and an increase in
the number of parameters and GFLOPs. Compared to the YOLOv7-tiny benchmark, it does
not have an advantage in terms of overall performance. We also compare the lightweight
detectors GhostNetV2 and MobileViT-S. Among others, GhostNetV2 has a great advantage
in speed and the extreme lightness of the model makes the GFLOPs very small. However,
this also loses the feature expression ability of the model, and thus the detection accuracy is
poor. MobileViT-S, based on the transformer architecture, has better long-range modeling
capability and is close to YOLOv7-tiny in small-target disease detection. However, the
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model loses serious inference speed as the current hardware does not have a dedicated
transformer accelerator.

Table 10. Performance comparison of HSSNet with other detectors.

Detector Backbone mAP AR FPS Params (M) GFLOPs (G)

YOLOv5-S [49] CSPDarkNet-53 78.34 57.67 81 7.269 16.5
YOLOX-S [50] CSPDarkNet-53 80.87 60.29 72 8.968 26.8

PPYOLOE-S [51] CSPRepResNet 81.15 61.30 90 7.959 17.4
YOLOv7-tiny ELAN-CSPDarkNet 80.37 59.85 97 6.227 13.4

YOLOv7 ELAN-CSPDarkNet 75.59 53.05 59 36.912 104.7
YOLOv7-X ELAN-CSPDarkNet 69.28 45.89 42 71.327 189.9

RTMDet-S [52] Modified CSPDarkNet 82.83 61.73 68 8.990 14.8
GhostNetV2 [53] GhostNetV2 77.39 55.18 122 6.154 0.2
MobileViT-S [54] MobileViT-S 79.34 59.24 62 5.649 2.7

HSSNet ELAN-CSPDarkNet 85.04 67.53 83 10.396 14.1

4. Discussion

The YOLOv7-tiny lightweight baseline network can rapidly detect apple leaf diseases
with a certain accuracy. Based on this, we propose HSSNet to improve the detection
precision of YOLOv7-tiny for apple leaf diseases with complex background features and
tiny target features in natural environments, while ensuring high real-time detection speed.

We selected some typical scenarios in the detection process to discuss the comprehen-
sive performance of the model, as shown in Figure 5:
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(a) When the lighting conditions changed, HSSNet still maintained robustness and
detected tiny targets with high confidence;

(b) HSSNet missed or judged the location and type of disease with low precision when
there was a certain angle between the front surface of the leaf disease and the front surface
of the camera;

(c) HSSNet had difficulty in distinguishing the leaf disease with a deep distance when
the foci of the leaf disease varied in spatial distance from the camera.

Although HSSNet achieved a high detection precision in the four types of apple leaf
disease detection mentioned in this paper, it still has some limitations. In our detection
example, there is a lack of datasets with multi-directional shooting views involved in the
training and testing process, and the model robustness needs to be further optimized.
In addition, the robustness of HSSNet in detection scenarios with multiple apple leaves
and overlapping occlusions still needs to be verified. In view of the limited hardware re-
source budget in practical application environments, a more lightweight real-time detection
network needs to be investigated.
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5. Conclusions

Herein, to explore the optimization of apple leaf disease detection using deep learn-
ing object detection algorithms, we propose an improved HSSNet based on the baseline
YOLOv7-tiny model. First, we constructed a precisely labeled image dataset, TTALDD-4,
with four categories of apple leaf diseases by ourselves. For the complex background
of apple leaf diseases, we propose that the H-SimAM zero-parameter attention module
optimizes the ability of YOLOv7-tiny to focus on foreground targets. The structure can sup-
press the expression of unsupervised signals and prompt the network to focus on disease
information more efficiently. For the characteristics of apple leaf disease mini-targets, we
propose the BRA module-based SP-BiFormer Block to optimize the ability of YOLOv7-tiny
to capture tiny-target disease information. This module aids in inferring small targets
through associating context-aware features of disease small targets and using a wider
range of features in the scene. Furthermore, with these implementations, we address the
problem that it is difficult to quickly calibrate the true location of apple leaf disease tiny
targets resulting in reduced training efficiency and detection accuracy. We use the SIOU
loss function to optimize the model training. SIOU better fits the dense distribution features
of apple leaf diseases in the training process and accelerates the inference process. The
experimental results show that HSSNet achieves 85.04 (+4.67) in mAP and 67.53 (+7.68) in
AR, and effectively reduces the cases of YOLOv7-tiny false detection and missed detection
of small-target diseases. It must be noted that we have not incorporated variety-specific a
priori knowledge into the optimization of the detector because different apple varieties were
not taken into account. Nevertheless, HSSNet was able to perform well in the detection of
small targets in apple leaves of mixed varieties.

In summary, HSSNet significantly improved the precision of the YOLOv7-tiny model
in the field of apple leaf disease detection, while maintaining a balance between model
parameters and detection speed. This research can assist apple growers to accurately
apply pesticides based on the detection results. This provides a fresh reference for deep
learning in ensuring modern pest control planting in the apple growing industry with
practical applications.
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