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Abstract: Anthocyanin, a kind of flavonoid, plays a crucial role in plant resistance to abiotic stress.
Salt stress is a kind of abiotic stress that can damage the growth and development of plant seedlings.
However, limited research has been conducted on the involvement of maize seedlings in salt stress
resistance via anthocyanin accumulation, and its potential molecular mechanism is still unclear.
Therefore, it is of great significance for the normal growth and development of maize seedlings to
explore the potential molecular mechanism of anthocyanin improving salt tolerance of seedlings
via transcriptome analysis. In this study, we identified two W22 inbred lines (tolerant line pur–
W22 and sensitive line bro–W22) exhibiting differential tolerance to salt stress during seedling
growth and development but showing no significant differences in seedling characteristics under
non–treatment conditions. In order to identify the specific genes involved in seedlings’ salt stress
response, we generated two recombinant inbred lines (RILpur–W22 and RILbro–W22) by crossing pur–
W22 and bro–W22, and then performed transcriptome analysis on seedlings grown under both
non–treatment and salt treatment conditions. A total of 6100 and 5710 differentially expressed genes
(DEGs) were identified in RILpur–W22 and RILbro–W22 seedlings, respectively, under salt–stressed
conditions when compared to the non–treated groups. Among these DEGs, 3160 were identified
as being present in both RILpur–W22 and RILbro–W22, and these served as commonly stressed EDGs
that were mainly enriched in the redox process, the monomer metabolic process, catalytic activity,
the plasma membrane, and metabolic process regulation. Furthermore, we detected 1728 specific
DEGs in the salt–tolerant RILpur–W22 line that were not detected in the salt–sensitive RILbro–W22 line,
of which 887 were upregulated and 841 were downregulated. These DEGs are primarily associated
with redox processes, biological regulation, and the plasma membrane. Notably, the anthocyanin
synthesis related genes in RILpur–W22 were strongly induced under salt treatment conditions, which
was consistented with the salt tolerance phenotype of its seedlings. In summary, the results of the
transcriptome analysis not only expanded our understanding of the complex molecular mechanism
of anthocyanin in improving the salt tolerance of maize seedlings, but also, the DEGs specifically
expressed in the salt–tolerant line (RILpur–W22) provided candidate genes for further genetic analysis.
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1. Introduction

Maize is the largest grain product in the world, renowned for its rich protein, starch,
vitamin, and trace element content [1]. Maize exhibits various colors, including yellow,
white, purple, and red [2]. The different colored maize seeds contain different kinds of
pigments [3]. For example, the pigments in yellow maize are mainly carotene and riboflavin,
and the pigments in purple and red maize are mainly anthocyanins [4–6]. As awareness
grows regarding the nutritional and functional health benefits of anthocyanins, there has
been an increased demand for maize varieties enriched with these pigments [7,8].

Anthocyanin is a natural water–soluble pigment and one of the flavonoid compounds
widely found in nature [9]. Enzymes such as phenylalanine ammonialyase (PAL), cinna-
mate 4–hydroxylase (C4H), 4–coumarate CoA ligase (4CL), chalcone synthase (CHS), chal-
cone isomerase (CHI), flavanone 3–hydroxylase (F3H), flavonoid 3′–hydroxylase (F3′H),
flavonoid 3′5′–hydroxylase (F3′5′H), dihydroflavonol 4–reductase (DFR), anthocyanin
synthase (ANS), and flavonoid 3–O–glucosyltransferase (UFGT) are involved in the an-
thocyanin biosynthesis pathway [10–16]. Meanwhile, v–myb avian myeloblastosis viral
oncogene homolog (MYB), basic helix–loop–helix (bHLH), WD–repeat protein (WD40),
and other transcription factors can affect the synthesis of anthocyanins by regulating the
expression of structural genes [17–19]. Furthermore, environmental factors also impact the
accumulation of anthocyanins in plants [20–24].

The global area of saline–alkali land is about 950 million hectares. Saline soil will
directly affect seed germination, seedling morphogenesis, and plant growth and develop-
ment, thus affecting crop yield [25–27]. Under environmental stress, plants can regulate the
expression of structural genes and regulatory genes in the anthocyanin synthesis pathway
to accumulate anthocyanins in plants and thus withstand the damage caused by envi-
ronmental stress [28–31]. Especially under salt stress, in one study, AtDFR expression in
Brassica napus L. was upregulated, anthocyanidin accumulation was increased, and plant
tolerance to salt stress was enhanced [31]. Therefore, increasing the anthocyanin content of
maize seedlings and enhancing their salt stress tolerance are essential for maize production.

A transcriptome refers to the sum of all gene transcription products of a specific
organism at specific development stage. Transcriptome analysis is a powerful tool for
identifying genes that contribute to complex traits [32–35]. The molecular regulation
mechanism of flavonoid biosynthesis under salt stress has been reported in plants such
as sorghum [36], radish [37], grape [38], and alfalfa [39]. Many differentially expressed
genes (DEGs) related to seedling growth via their role in regulating flavonoid biosynthesis
under salt stress have also been identified. However, there is limited research on the role of
anthocyanins in conferring salt stress resistance in maize seedlings. In this study, we used
seedlings of two W22 inbred lines (RILpur–W22 and RILbro–W22) for transcriptome analysis.
Expected to explore the differentially expressed genes (DEGs) involved in the salt tolerance
of maize seedlings via transcriptome analysis, so as to further understand the potential
molecular mechanism of anthocyanin in improving the salt tolerance of maize seedlings.

2. Results
2.1. The Purple–Colored W22 and Bronze–Colored W22 Show Different Seedling Growth under
Salt Stress

The seeds of purple W22 (pur–W22) inbred lines were purple, while the seeds of
bronze W22 (bro–W22) inbred lines were bronze. Upon comparing the seed traits of the
two W22 inbred lines, it was observed that, apart from the color difference, the seed length,
width, and thickness of the pur–W22 inbred lines were significantly larger than those of bro–
W22 (Figure S1a–d). Additionally, bro–W22 displayed a significant decrease in 100–grain
weight (Figure S1e). To evaluate the salt stress tolerance of the pur–W22 and bro–W22 lines,
we subjected them to a 100 mM NaCl solution to simulate salt stress. Under salt–treated
conditions, bro–W22 exhibited shorter seedling length and root length compared to pur–
W22. However, no significant differences in seedling length and root length were observed
between the seedlings under non–treated conditions. Furthermore, both pur–W22 and
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bro–W22 seedlings displayed inhibited root and seedling lengths under salt treatment
compared to non–treated conditions (Figure S1f–i). In addition, both lines exhibited similar
germination rates, exceeding 96%, under both non–treated and salt–treated conditions
(Figure S1g). By simulating a salt stress environment using sand culture, we corroborated
the findings obtained from the germination experiment, indicating that pur–W22 exhibits
stronger salt stress tolerance than bro–W22 (Figure S1j).

After conducting a cross between pur–W22 and bro–W22, we obtained the F2 pop-
ulation through self–pollination. Subsequently, the F6 generation RILs (RILpur–W22 and
RILbro–W22) were derived by self–pollinating the F2 generation plants over multiple genera-
tions. Comparing the seed traits of the two RIL populations, we observed no significant
differences in seed length, width, thickness, or 100–grain weight between RILpur–W22 and
RILbro–W22, except for the variations in color (Figure 1a–e). Furthermore, we observed that
RILpur–W22 seedlings exhibited significantly longer seedling and root lengths compared
to RILbro–W22 under salt stress conditions. And the seedling length and root length of
RILpur–W22 and RILbro–W22 seedlings were inhibited under salt–treated compared with
non–treated conditions (Figure 1f–h). It was noteworthy that RILpur–W22 seedlings still
showed similar salt tolerance to its parent pur–W22 after the differences in seed length,
seed width, seed thickness, and 100–seed weight were removed (Figure 1f–h).

2.2. Transcriptome Analysis of RILs undergoing Salt Treatment

To further investigate the impact of salt treatment on the development of seedlings
of different seed colors, we selected RILpur–W22 and RILbro–W22 seedlings (consisting of
aboveground stems and leaves, with the seeds removed) that had germinated and grown
for 14 days under non–treated and salt stress environments (Figure 2a). We performed two
biological replicates, totaling eight samples, and extracted total RNA for sequencing. Princi-
pal component analysis using the expression data from these samples demonstrated better
repeatability between the two biological replicates (Figure 2b). Moreover, we observed
significant differences between the transcriptomes of non–treated RILpur–W22 seedlings
(NT–RILpur–W22) and salt–treated RILpur–W22 seedlings (salt–RILpur–W22). Similar distinc-
tions were observed between non–treated RILbro–W22 seedlings (NT–RILbro–W22) and
salt–treated RILbro–W22 seedlings (salt–RILbro–W22) (Figure 2b). These findings indicate that
salt stress had a considerable impact on the growth and development of the seedlings of
RILpur–W22 and RILbro–W22.

A total of 369,817,976 clean reads were obtained from transcriptome sequencing. The
number of reads per sample ranged from 44,597,506 to 47,933,524, accounting for 95.15%
to 97.33% of the total unfiltered reads. Following the alignment of the clean reads to the
reference genome of the maize V4 version (Zm–B73–REFERENCE–GRAMENE–4.0), the
number of reads and fragment length were calculated for 46,424 genes, which were then
assigned FPKM (fragments per kilobase of transcript per million mapped reads) values.
Genes with an FPKM value ≥ 1 were considered to be expressed genes. We observed a
similar number of expressed genes in non–treated RILpur–W22 and RILbro–W22, while the
number of expressed genes in non–treated RILs was lower than that in salt–treated RILs,
indicating that there was an induction of gene expression in the salt–stressed environment
compared to the non–treated RILs. Notably, the highest number of expressed genes was
observed in salt–treated RILpur–W22 seedlings (Figure 2c, Table 1).
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two RILs and their (a), seed lengths (b), seed widths (c), seed thicknesses (d), and 100–seed weights 

(e). (f–h) Seedling phenotypes (f), shoot lengths (g), and root lengths (h) of two RILs grown for 14 

days under non–treated and salt–treated (100 mM NaCl solution) conditions. Bar = 1 cm; black 

dots, squares and triangles represent individual values for different samples; p values calculated by 

one–way ANOVA; p < 0.01 indicates that the difference is extremely significant; ns represents no 

difference. 

  

Figure 1. Seeds and seedling characteristics of RILpur–w22 and RILbro–w22. (a–e) Seed phenotypes
of two RILs and their (a), seed lengths (b), seed widths (c), seed thicknesses (d), and 100–seed
weights (e). (f–h) Seedling phenotypes (f), shoot lengths (g), and root lengths (h) of two RILs grown
for 14 days under non–treated and salt–treated (100 mM NaCl solution) conditions. Bar = 1 cm; black
dots, squares and triangles represent individual values for different samples; p values calculated by
one–way ANOVA; p < 0.01 indicates that the difference is extremely significant; ns represents no
difference.
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Figure 2. Seedling transcriptome analysis of RILpur–W22 and RILbro–W22 under non–treated and
salt–treated conditions. (a) Seedling sample schematic for RNA extraction. (b) Principal component
analysis of the gene expression profiles of RILpur–W22 and RILbro–W22 seedlings under non–treated
and salt–treated conditions. (c) The number of expressed genes (FPKM ≥ 1) identified in non–treated
RILpur–W22 (NT–RILpur–W22), non–treated RILbro–W22 (NT–RILbro–W22), salt–treated RILpur–W22 (salt–
RILpur–W22), and salt–treated RILbro–W22 (salt–RILbro–W22). (d) Comparison of the number of up-
regulated and downregulated DEGs in the NT–RILpur–W22 vs. NT–RILbro–W22, NT–RILpur–W22 vs.
salt–RILpur–W22, NT–RILbro–W22 vs. salt–RILbro–W22, and salt–RILpur–W22 vs. salt–RILbro–W22 groups.
(e) Venn diagram drawn using the DEGs in the NT–RILpur–W22 vs. NT–RILbro–W22, NT–RILpur–W22 vs.
salt–RILpur–W22, NT–RILbro–W22 vs. salt–RILbro–W22 and salt–RILpur–W22 vs. salt–RILbro–W22 groups.
Red numbers refer to DEGs specifically expressed in the above groups.

2.3. Differentially Expressed Genes in RILpur–W22 and RILbro–W22 Seedlings

Using the criteria of fold change ≥2 and a corrected p–value of ≤0.01, we screened
the DEGs and compared them in various combinations. In the NT–RILpur–W22 vs. NT–
RILbro–W22 group, which compares non–treated RILpur–W22 and RILbro–W22 seedlings based
on their color difference, we identified 1606 DEGs, including 846 up– and 760 downreg-
ulated DEGs. The NT–RILpur–W22 vs. salt–RILpur–W22 group represents DEGs produced



Plants 2023, 12, 2793 6 of 20

by RILpur–W22 seedlings under salt stress, which accounted for 6100 DEGs, with 3109 up–
and 2991 downregulated DEGs. Similarly, in the NT–RILbro–W22 vs. salt–RILbro–W22 group,
which compares RILbro–W22 seedlings under salt stress, we identified 5710 DEGs, with 2961
up– and 2749 downregulated DEGs. Lastly, the salt–RILpur–W22 vs. salt–RILbro–W22 group
represents DEGs resulting from the combined effects of color difference and salt stress
between RILpur–W22 and RILbro–W22 seedlings. We found 1040 DEGs, including 578 up– and
462 downregulated DEGs (Figure 2d). Furthermore, the volcano plot (Figure S2) provides a
clear and intuitive visualization of the DEGs.

Table 1. Transcriptome sequencing data statistics.

Lines Rep Total Reads Rate of Total Mapped
Reads (%)

Num. of
Expressed Genes

Rate of Expressed
Genes (%)

NT–RILpur–W22 1 47,540,654 96.8 28,187 60.72
2 47,933,524 97.04 28,115 60.56

NT–RILbro–W22 1 44,597,506 97.33 28,317 61.00
2 45,014,472 96.00 28,367 61.10

salt–RILpur–W22 1 47,815,598 96.41 28,991 62.45
2 46,306,714 95.15 28,974 62.41

salt–RILbro–W22 1 45,334,562 96.63 28,886 62.22
2 45,274,946 95.58 28,701 61.82

Note: Total reads: the number of reads after filtering the original data; rate of total mapped reads (%): the ratio
of the remaining reads after filtering to the original unfiltered reads; num. of expressed genes: total number of
expressed genes with FPKM ≥ 1; rate of expressed genes (%): the proportion of the total number of expressed
genes with FPKM ≥ 1 to the total number of genes.

To investigate the genes and pathways influencing the growth and development of
RILpur–W22 and RILbro–W22 seedlings in different groups, we conducted Venn diagram
analysis on the DEGs from the four groups (Figure 2e). The analysis revealed that 371,
1728, 1475, and 140 DEGs had specific roles in the NT–RILpur–W22 vs. NT–RILbro–W22, NT–
RILpur–W22 vs. salt–RILpur–W22, NT–RILbro–W22 vs. salt–RILbro–W22, and salt–RILpur–W22

vs. salt–RILbro–W22 groups, respectively. Moreover, we identified 3160 DEGs that were
exclusively co–expressed in the NT–RILbro–W22 vs. salt–RILbro–W22 and NT–RILpur–W22 vs.
salt–RILpur–W22 groups. These DEGs were considered to be common salt stress response
genes (Figure 2e).

2.4. Common Salt–Induced DEGs in RILpur–W22 and RILbro–W22

Out of the 3160 common salt response DEGs identified in RILpur–W22 and RILbro–W22

seedlings, 1637 DEGs were upregulated, while 1521 DEGs were downregulated (Figure 2e,
Table S1). To gain further insights into the functional pathways associated with these
common DEGs, we conducted a GO functional enrichment analysis (Table S2). Among the
1637 upregulated DEGs, significant enrichment was observed in biological processes (BP)
related to redox processes (GO: 0055114), monomer metabolic processes (GO: 0044710),
transmembrane transport (GO: 0055085), and small molecule metabolic processes (GO:
0044281). The significantly enriched molecular functions (MF) were primarily associated
with oxidoreductase activity (GO: 0016491), catalytic activity (GO: 0003824), ion binding
(GO: 0043167), and transport activity (GO: 0005215). The significantly enriched cellular
components (CC) were linked to the cell periphery (GO: 0071944), plasma membrane (GO:
0005886), and apoplast (GO: 0048046) (Figure 3a, Table S2). Regarding the 1521 downregu-
lated DEGs, significant categories were mainly associated with biological regulation (GO:
0065007), metabolic process regulation (GO: 0019222), DNA binding (GO: 0003677), and
ubiquitin protein transferase activity (GO: 00004842) (Figure 3b, Table S2). These findings
indicate that processes such as oxidoreductase activity, ion binding, catalytic activity, and
monomer metabolism play crucial roles in promoting salt stress tolerance in RILpur–W22

and RILbro–W22 seedlings.
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Figure 3. GO enrichment analysis of 3160 DEGs’ common response to salt stress in RILpur−W22

(NT−RILpur−W22 vs. salt−RILpur−W22) and RILbro–W22 (NT–RILbro–W22 vs. salt–RILbro–W22) seedlings,
of which 1637 DEGs were upregulated (a) and 1521 DEGs were downregulated (b). The size and color
scale of the points in the figure represent the number and significance level of DEGs in GO terms,
respectively. (c,d) qRT–PCR (c) and RNA–seq (d) analysis of the DEGs with regard to oxidoreductase
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activity. (e,f) qRT–PCR (e) and RNA–seq (f) analysis of the DEGs with regard to the regulation of the
developmental process. GAPDH was used as an internal control. Values are shown as means ± SE,
n = 3; p values calculated by one–way ANOVA; p < 0.05 represents a significant difference; p < 0.01
indicates that the difference is extremely significant.

To validate the transcriptome results, we selected several DEGs involved in the oxi-
doreductase activity term and performed qRT–PCR to measure their expression levels in
NT–RILpur–W22, NT–RILbro–W22, salt–RILpur–W22, and salt–RILbro–W22 seedlings. Remark-
ably, the expression patterns of these DEGs were consistent with the transcriptome data,
reinforcing the reliability of the transcriptome sequencing results (Figure 3c).

2.5. Specific Salt–Induced DEGs in RILpur–W22 and RILbro–W22

In comparison to RILbro–W22 seedlings, RILpur–W22 seedlings exhibited stronger salt
tolerance. We identified 1728 DEGs (887 up– and 841 downregulated) that were exclusively
expressed in non–treated RILpur–W22 seedlings and salt–treated RILpur–W22 seedlings (NT–
RILpur–W22 vs. salt–RILpur–W22) and were not observed in other groups (Figure 2e, Tables
S3 and S4). Therefore, these genes are considered to be DEGs specifically responding to salt
stress in RILpur–W22 seedlings. Additionally, we discovered 1475 DEGs (818 up– and 657
downregulated) exclusively expressed in non–treated RILbro–W22 seedlings and salt–treated
RILbro–W22 seedlings (NT–RILbro–W22 vs. salt–RILbro–W22).

We examined the expression patterns of these DEGs in RILpur–W22 and RILbro–W22

seedlings and observed that the specific DEGs in the NT–RILpur–W22 vs. salt–RILpur–W22

group exhibited significant expression changes in RILpur–W22 seedlings under salt stress
compared to non–treated RILpur–W22 seedlings, while the expression levels in RILbro–W22

either remained unchanged or changed to a lesser extent (Figure S3a). Similarly, specific
DEGs were identified in the NT–RILbro–W22 vs. salt–RILbro–W22 group, and consistent
findings were observed in RILpur–W22 (Figure S3b).

To gain further insights into the functional pathways of the DEGs specifically ex-
pressed in RILpur–W22 and RILbro–W22 seedlings, we conducted a GO enrichment analysis
on the 3203 DEGs identified in these two groups (Table S6). The analysis revealed that
the 887 specific, upregulated DEGs in the NT–RILpur–W22 vs. salt–RILpur–W22 group were
significantly enriched in functional pathways related to single biological metabolic pro-
cesses (GO: 0044710), redox processes (GO: 0055114), oxidoreductase activity (GO: 0016491),
and the plasma membrane (GO: 0005886) (Figure 4a). On the other hand, the 841 specific,
downregulated DEGs were primarily enriched in functional pathways associated with
the regulation of anabolism, such as biological regulation (GO: 0065007), the regulation
of cellular processes (GO: 0050794), and the regulation of primary metabolic processes
(GO: 0080090) (Figure 4b). Additionally, under salt stress, RILpur–W22 seedlings exhibited
the induction of genes involved in the anthocyanin synthesis pathway, leading to antho-
cyanin accumulation (Figure 4b). The upregulation of genes related to redox processes and
oxidoreductase activity in RILpur–W22 seedlings after salt treatment further indicates the
enhancement of salt tolerance, as it promotes the accumulation of antioxidant substances.

Furthermore, we observed that the GO enrichment analysis of the 818 specific, upregu-
lated DEGs in the NT–RILbro–W22 vs. salt–RILbro–W22 group revealed significant enrichment
in functional pathways related to cell metabolism (GO: 0044237), nitrogen compound
metabolism (GO: 0006807), chloroplast (GO: 0009507), photosynthesis (GO: 0009768), and
quercetin 7–O–glucosyltransferase activity (GO: 0080044) (Figure 4c, Table S7). On the other
hand, the 657 specific, downregulated DEGs showed significant enrichment in functional
pathways associated with biological regulation (GO: 0065007), the nucleus (GO: 0005634),
gene expression regulation (GO: 0010468), ion transport (GO: 0006811), and the regulation
of developmental processes (GO: 0050793) (Figure 4d, Table S7). Notably, the enrichment
analysis of upregulated DEGs in RILbro–W22 seedlings revealed the enrichment of genes re-
lated to quercetin 3–O–glucosyltransferase activity and quercetin 7–O–glucosyltransferase
activity. These enzymes are involved in the glycosylation of unstable anthocyanins in
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the flavonoid synthesis pathway, resulting in the production of stable and antioxidant
quercetin [40,41]. Additionally, the enrichment of downregulated DEGs in genes related to
the regulation of developmental processes indicates that the growth and development of
RILbro–W22 seedlings were hindered under salt stress. Moreover, the results of a qRT–PCR
analysis of seven DEGs that regulate the developmental process and the seedling growth
phenotype of RILbro–W22 under salt treated also confirmed this point (Figure 3d).

In addition, to investigate additional functional pathways that may contribute to the
salt tolerance of RILbro–W22 under salt–treated conditions, we conducted a GO enrichment
analysis on 140 DEGs (65 upregulated DEGs and 75 downregulated DEGs) specifically re-
sponsive to salt stress in the salt–RILpur–W22 vs. salt–RILbro–W22 group (Figure 2e, Table S5).
The enrichment analysis revealed that the upregulated DEGs, in addition to being enriched
in functional pathways related to single–cell biological processes, oxidoreductase activity,
and redox processes, were also significantly enriched in functional pathways associated
with ester bond hydrolase activity (GO: 0016788), glycosyltransferase activity (GO: 0016757),
and the carbohydrate metabolism process (GO: 0005975) (Figure 5a, Table S8). On the other
hand, the downregulated DEGs showed significant enrichment in functional pathways
related to the plasma membrane (GO: 0005886), iron ion binding (GO: 0005506), signal
transduction (GO: 0007165), cell response to stimulation (GO: 0051716), and transport activ-
ity (GO: 0005215) (Figure 5b, Table S8). The enrichment of these functional categories in the
upregulated genes suggests potential mechanisms underlying the enhanced salt tolerance
of RILbro–W22. Additionally, it was observed that the RILbro–W22 seedlings exhibited greater
damage under stress conditions compared to RILpur–W22 seedlings, particularly affecting
the plasma membrane system.
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Figure 4. GO analysis of the 1728 DEGs which specifically respond to salt stress in RILpur–W22

(NT–RILpur–W22 vs. salt–RILpur–W22) seedlings. The left side refers to the 887 upregulated DEGs (a),
and the right side refers to the 841 downregulated DEGs (b). GO analysis of the 1475 DEGs which
specifically respond to salt stress in RILbro–W22 (NT–RILbro–W22 vs. salt–RILbro–W22) seedlings. The
left side refers to the 818 upregulated DEGs (c), and the right side refers to the 657 downregulated
DEGs (d). The size and color scale of the points in the figure represent the number and significance
level of DEGs in GO terms, respectively.

2.6. Analysis of DEGs Related to Anthocyanin Biosynthesis in RILs

To further investigate the role of anthocyanin accumulation in RILpur–W22 and RILbro–W22,
we focused on 44 DEGs associated with the anthocyanin biosynthesis metabolic pathway.
Analysis of these DEGs revealed that they could be classified into 11 types of enzymes
involved in the anthocyanin synthesis pathway. These enzymes catalyze the conversion of
phenylalanine into stable anthocyanins. To visualize the expression patterns of these genes,
we normalized the gene expression data across all samples and generated a heat map.
The results demonstrated that the majority of genes encoding enzymes in the anthocyanin
synthesis pathway were strongly induced in salt–treated RILpur–W22 seedlings, exhibiting
higher expression levels than in non–treated RILpur–W22 seedlings. Interestingly, some
genes were also slightly induced in salt–treated RILbro–W22 seedlings. Notably, the genes
Zm00001d034635 and Zm00001d001960, which encode CHI enzymes, showed even stronger
induction in RILbro–W22 seedlings compared to RILpur–W22 seedlings (Figure 6a). In the
previous qRT–PCR verification results, we found that the anthocyanin–synthesis–pathway–
related genes Zm00001d014914 (a2), Zm00001d018181 (fls2), and Zm00001d047425 (F3′5′H)
were upregulated in RILpur–W22 under salt stress (Figure 3c). At the same time, the results
of previous studies in our laboratory have shown that salt stress can induce the expression
of the anthocyanin–synthesis–pathway–related genes F3H, DFR, and ANS [20], and the
expression levels of these three genes in RILpur–W22 seedlings are always higher than those
in RILbro–W22, regardless of whether they are untreated or salt–treated (Figure 6).
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Figure 5. GO analysis of the 140 DEGs which specifically respond to salt stress in salt–treated
RILpur–W22 and RILbro–W22 (salt–RILpur–W22 vs. salt–RILbro–W22) seedlings. The left side refers to the
65 upregulated DEGs (a), and the right side refers to the 75 downregulated DEGs (b). The size and
color scale of the points in the figure represent the number and significance level of DEGs in GO
terms, respectively.

Plants 2023, 12, 2793 13 of 23 
 

 

 

Figure 6. Clustering heatmap of genes related to anthocyanin synthesis pathway in expressed 

genes. Each sample has two compartments, which are two biological replicates. According to the 

standardized FPKM, red and blue indicate high and low abundance, respectively. 

3. Discussions 

3.1. The Salt Stress Tolerance in Maize Seedlings May Be Mediated by Plant Hormones 

Hormones play a crucial role in regulating plant responses to abiotic stress. Nu-

merous studies have demonstrated the involvement of hormones in mediating plant 

tolerance to stress conditions [44–47]. In our study, transcriptome analysis revealed that 

a significant number of DEGs was enriched in the “plant hormone signaling” pathway 

when comparing non–treated and salt–treated RILpur–W22 and RILbro–W22 seedlings. Addi-

tionally, through KEGG pathway enrichment analysis, we observed the enrichment of 

precursor synthesis or metabolic pathways related to various plant hormones [48–51]. 

For instance, the “tryptophan biosynthesis” pathway is associated with auxin, the “me-

thionine metabolism” pathway corresponds to ethylene, the “carotenoid synthesis” 

pathway is related to abscisic acid (ABA), and the “linoleic acid metabolism” pathway is 

correlated with jasmonic acid (Jas) (Figure S3). These findings indicate the involvement 

of multiple hormone pathways in the response of RILpur–W22 and RILbro–W22 seedlings to 

salt stress. 

Under abiotic stress conditions, plants exhibit the upregulation of genes related to 

ABA biosynthesis pathway. High levels of ABA can induce the accumulation of H2O2 in 

chloroplasts, leading to stomatal closure and enhancing plant resistance to abiotic stress 

[52]. Additionally, gibberellins (GAs) can regulate seed germination and seedling 

growth tolerance to abiotic stress by maintaining ROS homeostasis, thereby increasing 

the germination rate and productivity [53]. IAA plays a crucial role in plant tolerance to 

abiotic stresses. For instance, loss of function of the OsIAA20 gene in rice reduces salt 

Figure 6. Clustering heatmap of genes related to anthocyanin synthesis pathway in expressed
genes. Each sample has two compartments, which are two biological replicates. According to the
standardized FPKM, red and blue indicate high and low abundance, respectively.



Plants 2023, 12, 2793 12 of 20

Furthermore, anthocyanin serves as a non–enzymatic scavenger of reactive oxygen
species (ROS) and can effectively neutralize excessive ROS under stress conditions, thereby
contributing to salt tolerance in seedlings [42,43]. In the case of RILpur–W22 seedlings
exposed to salt stress, the genes involved in the anthocyanin synthesis pathway were
induced, resulting in increased anthocyanin accumulation in the seedlings (Figure 6).
Therefore, it can be speculated that RILpur–W22 seedlings enhance their tolerance to salt
stress by accumulating anthocyanins and participating in the scavenging of reactive oxygen
species.

3. Discussions
3.1. The Salt Stress Tolerance in Maize Seedlings May Be Mediated by Plant Hormones

Hormones play a crucial role in regulating plant responses to abiotic stress. Numerous
studies have demonstrated the involvement of hormones in mediating plant tolerance to
stress conditions [44–47]. In our study, transcriptome analysis revealed that a significant
number of DEGs was enriched in the “plant hormone signaling” pathway when comparing
non–treated and salt–treated RILpur–W22 and RILbro–W22 seedlings. Additionally, through
KEGG pathway enrichment analysis, we observed the enrichment of precursor synthe-
sis or metabolic pathways related to various plant hormones [48–51]. For instance, the
“tryptophan biosynthesis” pathway is associated with auxin, the “methionine metabolism”
pathway corresponds to ethylene, the “carotenoid synthesis” pathway is related to abscisic
acid (ABA), and the “linoleic acid metabolism” pathway is correlated with jasmonic acid
(Jas) (Figure S3). These findings indicate the involvement of multiple hormone pathways
in the response of RILpur–W22 and RILbro–W22 seedlings to salt stress.

Under abiotic stress conditions, plants exhibit the upregulation of genes related to
ABA biosynthesis pathway. High levels of ABA can induce the accumulation of H2O2
in chloroplasts, leading to stomatal closure and enhancing plant resistance to abiotic
stress [52]. Additionally, gibberellins (GAs) can regulate seed germination and seedling
growth tolerance to abiotic stress by maintaining ROS homeostasis, thereby increasing
the germination rate and productivity [53]. IAA plays a crucial role in plant tolerance
to abiotic stresses. For instance, loss of function of the OsIAA20 gene in rice reduces
salt tolerance, affecting yield and seed viability [54]. In apples, the degradation of the
MdIAA26 protein by auxin promotes anthocyanin accumulation in fruits [55]. In this study,
DEGs enriched in the “plant hormone signal transduction” pathway were analyzed. It
was found that of the 98 DEGs, 38 encoded proteins related to indole–3–acetic acid (IAA),
13 encoded ABA–related proteins, 12 encoded ethylene–related proteins, and 16 encoded
proteins related to Jas, salicylic acid (SA), brassinosteroids (BR), cytokinins (CTK), and
GA (Figure 7a). The cluster heat map of the above hormone–related DEGs was drawn,
and it was found that only 15 IAA–related genes were upregulated, while the remaining
23 were downregulated (Figure 7b). Similarly, there were six upregulated and seven
downregulated DEGs related to ABA, five upregulated and seven downregulated DEGs
related to ACC, one upregulated and five downregulated DEGs related to Jas, and three
upregulated and two downregulated DEGs related to SA (Figure 7c–f). Based on the results
of previous studies and the transcriptome analysis performed in this study, we speculated
that the biosynthesis and signal transduction of plant hormones are inhibited during the
development of RILbro–W22 seedlings under salt stress conditions. As a result, RILbro–W22

seedlings may experience difficulty in efficiently removing excessive ROS accumulation,
leading to reduced salt tolerance.
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Figure 7. DEGs identified in “plant hormone pathways”. (a) The types of hormones in the “plant
hormone pathway” and the number of DEGs belonging to these types. (b–f) Heatmap clustering
of the 46 DEGs related to auxin (IAA, (b)), abscisic acid (ABA, (c)), ethylene (ETH, (d)), Jas monic
acid (Jas, (e)), and salicylic acid (SA, (f)) in non–treated and salt–treated RILpur–W22 and RILbro–W22

seedlings (NT–RILpur–W22, salt–RILpur–W22, NT–RILbro–W22, and salt–RILbro–W22). Each sample has
two compartments, which are two biological replicates. According to the standardized FPKM, red
and blue indicate high and low abundance, respectively.
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3.2. Mining Transcription Factors That Potentially Regulate Salt Stress Tolerance in
Maize Seedlings

Previous studies have demonstrated the involvement of transcription factors belong-
ing to the bZIP, NAC, MYB, and WRKY families in regulating plant responses to salt
stress [56–59]. In this study, we retrieved a total of 2194 transcription factors from the
Plant Transcription Factor Database (http://planttfdb.gao--lab.org/index.php, accessed
on 26 June 2023). And we identified 472 and 420 DEGs encoding transcription factors
in the NT–RILpur–W22 vs. salt–RILpur–W22 and NT–RILbro–W22 vs. salt–RILbro–W22 groups,
respectively (Figure 8a). KEGG analysis revealed the significant enrichment of DEGs en-
coding transcription factors in the “plant hormone signal transduction” and “plant MAPK
signaling pathway” categories for both groups (Figure S4). These results further support the
involvement of plant hormones in mediating salt stress tolerance in maize seedlings. No-
tably, studies by Cai et al. have demonstrated that maize ZmWRKY17 negatively regulates
ABA signal transduction to enhance salt tolerance in seedlings [60], while rice OsWRKY50
gene positively regulates ABA–independent signaling to enhance salt tolerance [61]. These
findings further corroborate our speculations.

Further analysis focused on the 46 enriched transcription factors (Figure 8b). Among
them, twelve DEGs belonged to the bZIP family, ten belonged to the WRKY family, and
the remaining belonged to ERF (five DEGs), bHLH (three DEGs), and TCP (three DEGs)
families. By comparing the expression patterns of these 46 transcription factors between
non–treated and salt–stressed RILpur–W22 and RILbro–W22 seedlings, we observed significant
changes in expression levels in RILpur–W22 seedlings under salt stress compared to non–
treated RILpur–W22 seedlings. Similarly, DEGs exclusively expressed in the NT–RILbro–W22

vs. salt–RILbro–W22 group showed similar expression patterns in RILbro–W22 seedlings under
different treatments (Figure 8c–e). These findings suggest that different transcription factors
may positively regulate seedling tolerance to salt stress while others may exert negative
regulatory roles. This also provides new insights and candidate genes for further research
on transcription factors to enhance the salt tolerance of maize seedlings by regulating
anthocyanin–synthesis–related genes in the future.
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Figure 8. Analysis of DEGs encoding transcription factors. (a) DEGs encoding transcription factors in
the NT–RILpur–W22 vs. salt–RILpur–W22 and NT–RILbro–W22 vs. salt–RILbro–W22 groups. (b) Transcrip-
tion factor types and numbers. (c) Heatmap of 20 transcription factors which exhibit special expression
in non–treated and salt–treated RILpur–W22 (NT–RILpur–W22 vs. salt–RILpur–W22) seedlings (seven
upregulated and thirteen downregulated). (d) The heatmap of thirteen transcription factors which
special expression in non–treated and salt–treated RILbro–W22 (NT–RILbro–W22 vs. salt–RILbro–W22)
seedlings (five upregulated and right downregulated). (e) The heatmap of thirteen transcription
factors which common expression in non–treated and salt–treated RILpur–W22 and RILbro–W22 (NT–
RILbro–W22 vs. salt–RILbro–W22 ∩ NT–RILbro–W22 vs. salt–RILbro–W22) seedlings (four upregulated
and nine downregulated). Each sample has two compartments, which are two biological replicates.
According to the standardized FPKM, red and blue indicate high and low abundance, respectively.

4. Materials and Methods
4.1. Evaluation of Plant Materials and Traits

The purple W22 (pur–W22) inbred line was obtained from the laboratory of Professor
Mingliang Xu, International Maize Improvement Center, China Agricultural University.
The bronze W22 (bro–W22) inbred line was obtained from the mutant maize COOP stock
center. The homozygous RILpur–W22 and RILbro–W22 materials were selected from the
cross–pollination (or reciprocal cross) of pur–W22/bro–W22 for generations in both Sanya
(Hainan province) and Zhuozhou (Hei Bei province), in winter and summer, respectively.

Standard germination: 90 seeds (3 replicates, 30 in each replicate) were disinfected
in 0.1% sodium hypochlorite for 5 min, rinsed with distilled water three times, and then
sown in germination paper. The rolled germination paper was placed vertically in a sealed
plastic bag and cultured in an incubator with a light/dark cycle of 16 h/8 h at 25 ◦C.

Salt–treated paper germination: 90 seeds were disinfected using standard germination
steps, seeded on germination paper containing 100 mM NaCl solution, and then cultured
according to standard germination culture conditions.

Cultivation in sand: 90 seeds were sterilized in 0.1% sodium hypochlorite solution,
washed three times with distilled water, and sowed in sandy soil containing 0 mM and
100 mM NaCl solutions. The germination box after sowing was placed in an incubator
at 25 ◦C and cultured at a 16 h/8 h light–dark ratio for 14 days. Stem length and root
length were measured with a ruler 14 days after sowing. The histogram of root length and
seedling length was drawn using the Graphpad Prism 8 software package, and the p value
was calculated by one–way analysis of variance.
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4.2. Phenotypic Analysis of Seed Morphology

Fifty randomly selected seeds were scanned three times repeatedly using an EPSON
J221A scanner (Seiko Epson Corporation, Suga, Nagano–ken, Japan), and then the data
regarding seed length, seed width, and seed thickness were analyzed using the Seeds
Identification and Photoshop software packages [62]. Finally, the Graphpad Prism 8
software package was used to plot the measured data, and one–way analysis of variance
was used to calculate the p value.

4.3. RNA Extraction and Sequencing

RILpur–W22 and RILbro–W22 seedlings (including shoots and roots, with the seeds re-
moved) germinated for 14 days in 0 mM and 100 mM NaCl solution environments for RNA
sequencing, with two replicates for each sample. Total RNA was extracted using the RNA
extraction kit (Mei5bio, Beijing, China). RNA concentration and quality were measured
using an ultra–micro spectrophotometer ND2000 (Thermo Scientific, New York, NY, USA).
The prepared RNA was sent to Annoroad Gene Technology (Beijing, China) for library
construction, sequencing, and data filtering (Table S9). Using the DNBSEQ–T7 sequencing
platform, and the libraries were sequenced with a read length of 150 bp (pair–end).

4.4. Sequence Data Analysis

The filtered data were used to establish a genome index file using the Hisat2 pro-
gram and were compared to the maize reference genome (B73_RefGen_v4) [63]. The
Samtools program was used to convert the compared.sam format file into a .bam format
file for subsequent data call and analysis. Transcripts were assembled and gene expression
was estimated using the Stringtie and FeatureCounts programs. Differentially expressed
genes were analyzed using the R language program DESeq2 (https://bioconductor.org/
packages/release/bioc/html/DESeq2.html, accessed on 26 June 2023) [64]. When analyz-
ing the RNA–Seq data of non–treated and salt–treated seedlings, the screening conditions
were an adjusted p–value of <0.01 and an absolute difference multiple fold change (FC)
of ≥2. The FPKM value is calculated using the number of raw reads, and the formula is:
FPKM = read count/(mapping reads (millions)) × exon length (KB). If FPKM ≥ 1 in at
least one sample, the gene was considered to be an expressed gene. All of the expressed
genes from different samples were applied to TBtools for PCA calculation, using the default
settings [65].

4.5. Cluster Analysis and Functional Annotation Enrichment Analysis

The obtained differentially expressed genes were subjected to gene ontology (GO)
enrichment analysis using agriGO v2.0 (agriGO single species analysis) [66]. After the
gene ID was converted using MaizeGDB (https://www.maizegdb.org/gene_center/gene,
accessed on 26 June 2023), KOBAS (http://kobas.cbi.pku.edu.cn/, accessed on 26 June 2023)
was used for Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment
analysis [67].

4.6. qRT–PCR Analysis

First–strand cDNA was synthesized using a StarScript II RT Mix with gDNA Remover
kit (GenStar, Beijing, China). qRT–PCR was performed using 2 × HQ SYBR qPCR Mix
(Zomanbio, Beijing, China) in triplicate on an ABI Life Q6 real–time fluorescent quantitative
PCR instrument (Applied Biosystems, Waltham, MA, USA) and using the obtained results
and the 2–∆CT method for relative quantification. The GAPDH was used as an internal
control. The primer sequences used are listed in Table S10.

5. Conclusions

We screened two maize W22 inbred lines (salt–tolerant line pur–W22 and sensitive line
bro–W22) regarding the different salt tolerance levels of seedlings under a salt stress envi-
ronment and performed transcriptome analysis of their RILs to identify the genes related to

https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://www.maizegdb.org/gene_center/gene
http://kobas.cbi.pku.edu.cn/
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the salt stress tolerance of maize seedlings. We found that the specific expression of DEGs in
the salt tolerance of RILpur–W22 seedlings was mainly related to the redox process, biological
regulation, and the plasma membrane. Among them, anthocyanidin–synthesis–related
genes were strongly induced under salt treatment, which was partially consistent with the
physiological results regarding salt tolerance in seedlings. The results showed that improv-
ing the anthocyanidin–synthesis–related genes in maize could effectively compensate for
seedling growth inhibition caused by salt stress. This study could lay a foundation for
mining and cloning key genes affecting the salt tolerance of maize seedlings under salt
stress conditions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants12152793/s1. Figure S1: Characteristic analysis of seeds
and seedlings for pur–W22 and bro–W22. (a–e) Seed phenotypes (a), seed lengths (b), seed widths (c),
seed thicknesses (d), and 100–seed weight (e) of pur–W22 and bro–W22. (f–i) Seedling phenotypes
(f), seed germination rates (g), shoot lengths (h), and root lengths (i) of pur–W22 and bro–W22 grown
for 7 days under non–treated and salt–treated (100 mM NaCl solution) conditions. Bar = 1 cm; black
dots represent individual values; p values calculated by one–way ANOVA; p < 0.05 represents a
significant difference; p < 0.01 represents the difference is extremely significant; ns represents no
difference. (j) Seedling phenotypes of pur–W22 and bro–W22 grown for 14 days under non–treated
and salt–treated conditions. Figure S2: The volcano plots of differentially expressed genes (DEGs) in
the NT–RILpur–W22 vs. NT–RILbro–W22 (a), NT–RILpur–W22 vs. salt–RILpur–W22 (b), NT–RILbro–W22 vs.
salt–RILbro–W22 (c), and salt–RILpur–W22 vs. salt–RILbro–W22 (d) groups. Figure S3: Heatmap cluster
of DEGs which specifically expressed in RILpur–W22 (a) and RILbro–W22 (b) seedlings in response salt
stress. The left side shows upregulated DEGs, and the right side shows downregulated DEGs. Each
sample has two compartments, which are two biological replicates. According to the standardized
FPKM, red and blue indicate high and low abundance, respectively. Figure S4: KEGG analysis of
DEGs in the NT–RILpur–W22 vs. NT–RILbro–W22 (a), salt–RILpur–W22 vs. salt–RILbro–W22 (b), NT–
RILpur–W22 vs. salt–RILpur–W22 (c), NT–RILbro–W22 vs. salt–RILbro–W22 (d), and NT–RILpur–W22 vs.
salt–RILpur–W22 ∩ NT–RILbro–W22 vs. salt–RILbro–W22 (e) groups. Figure S5: KEGG analysis the DEGs’
encoding transcription factors in the NT–RILpur–W22 vs. salt–RILpur–W22 (a), NT–RILbro–W22 vs. salt–
RILbro–W22 (b) and NT–RILpur–W22 vs. salt–RILpur–W22∩NT–RILbro–W22 vs. salt–RILbro–W22 (c) groups.
Table S1: Common DEGs’ responses to salt stress in RILpur–W22 and RILbro–W22 seedlings. Table S2:
GO analysis of common DEGs. Table S3: Specially expressed DEGs in RILpur–W22 seedlings under
non–treated and salt–treated conditions. Table S4: Specially expressed DEGs in RILbro–W22 seedlings
under non–treated and salt–treated conditions. Table S5: Specially expressed DEGs in RILpur–W22

and RILbro–W22 seedlings under salt–treated conditions. Table S6: GO analysis of specially expressed
DEGs in RILpur–W22 seedlings under non–treated and salt–treated conditions. Table S7: GO analysis
of specially expressed DEGs in RILbro–W22 seedlings under non–treated and salt–treated conditions.
Table S8: GO analysis of specially expressed DEGs in RILpur–W22 and RILbro–W22 seedlings under
salt–treated conditions. Table S9: Summary of RNA–Seq data. Table S10: Primer list for qRT–PCR.
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