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Abstract: Recently, increased attention has been paid to natural sources as raw materials for the
development of new added-value products. Flavonoids are a large family of polyphenols which
include several classes based on their basic structure: flavanones, flavones, isoflavones, flavonols, fla-
vanols, and anthocyanins. They have a multitude of biological properties, such as anti-inflammatory,
antioxidant, antiviral, antimicrobial, anticancer, cardioprotective, and neuroprotective effects. Cur-
rent trends of research and development on flavonoids relate to identification, extraction, isolation,
physico-chemical characterization, and their applications to health benefits. This review presents an
up-to-date survey of the most recent developments in the natural flavonoid classes, the biological
activity of representative flavonoids, current extraction techniques, and perspectives.

Keywords: natural compound; bioactive compounds; flavonoids; biological activity; current
extraction techniques

1. Introduction

In recent years, important research efforts have focused on the exploitation and use
of natural compounds in the production of new products as well as the development of
processes on an industrial scale.

In this respect, flavonoids, a class of natural polyphenolic compounds, have attracted
continuously increasing attention. In addition to their widespread nature, they also ex-
hibit a multitude of biological activities, making them exciting for many scientific fields.
Flavonoids are secondary metabolites of plants that contain a benzo-γ-pyrone skeleton
in their structure, being produced by various synthesis pathways, namely the phenyl-
propanoid pathway, the shikimate pathway, and the flavonoid pathway [1–4].

Their physico-chemical parameters, biological activity, and bioavailability are closely
related and conferred based on the chemical structure. Based on the structure of flavonoids
and depending on the change in the main structure, flavonoids can be classified into six
major categories: (i) flavanones, (ii) flavones, (iii) isoflavones, (iv) flavonols, (v) flavanols,
and (vi) anthocyanins [5,6]. Vegetables and fruits are an indispensable natural resource of
flavonoids, but current research has shown that microorganisms, such as fungi and bacteria,
can also produce flavonoids from plant biomass [7].

Recent research has directed on the extraction, isolation, and characterization of these
compounds from different plant families, leading to progression from traditional extraction
methods (e.g., maceration, decoction, percolation, and Soxhlet extraction) to the develop-
ment of modern, environmentally friendly extraction techniques (e.g., microwave-assisted
extraction, ultrasound-assisted extraction, supercritical fluid extraction, pressurized liquid
extraction, matrix solid-phase dispersion, pulsed electric field extraction, and enzyme-
assisted extraction), which could also have industrial applicability in several sectors such
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as the food, pharmaceutical, and cosmetic industries [1,8,9]. The main natural sources of
flavonoids, the possibilities of obtaining them, and the biological activities are summarized
in Figure 1.
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2. Biosynthesis of Flavonoids

Flavonoids are secondary metabolites of plants obtained from primary metabolic
precursors and are generated via various biosynthetic pathways.

The shikimate pathway involves several key enzymes and six-step reactions for the
biosynthesis of shikimic acid, starting with the aldol condensation reaction of phospho-
enolpyruvic acid and D-erythrose 4-phosphate [1,4]. Chorismic acid, the end product of
the shikimate pathway, is converted into the amino acid phenylalanine through the action
of prephenate-aminotransferase (PhAT) and arogenate-dehydratase (ADT) enzymes [4].

The phenylpropanoid pathway also plays a major role in the biosynthesis of flavonoids,
starting from the amino acid phenylalanine [1–4]. In the presence of phenylalanine-
ammonia liase (PhAAL), phenylalanine is desaminated to form trans-cinnamic acid [3,4].
Next, under the action of cinnamate-4-hydroxylase (C4L), it converts trans-cinnamic
acid into 4-coumaric acid. It will provide, under the action of 4-coumarate-CoA-ligase
(C4CoAL), the compound 4-coumaroyl-CoA, which plays a crucial role in the biosynthesis
of flavonoids via the phenylpropanoid pathway, the production of the coumarin skeleton,
and the initiation of the flavonoid pathway [1–4]. The condensation reaction between
4-coumaroyl-CoA with three molecules of 3-malonyl-CoA, under the action of the en-
zyme chalcone-synthase, yields 2′,4′,6′,4-tetrahydroxy chalcone [1–4]. Under the action of
chalcone-flavanone isomerase, this compound is further isomerized in flavanone, initiating
the flavonoid pathway that will produce the different classes of flavonoids.

The shikimate, phenylpropanoid, and flavonoids pathways are summarized in Figure 2.
Flavonoids are derivatives of 2-phenyl-benzo-γ-pyrone (2-phenyl-3,4-dihydro-2H-1-

benzopyran-4-one), being included in the large family of natural polyphenolic compounds
with structure type C3-C6-C3 [1]. This basic structure contains, as seen in Figure 2, two
aromatic benzene rings (A and B) connected by the heterocyclic pyrane ring (C) that contains
an oxygen atom. Chalcones, which do not contain that third ring (C), are generally considered
precursors of the different flavonoid classes [2]. Depending on the degree of nucleus oxidation,
the saturation level of the segment C3, and the place of substituents insertion, there are several
classes of flavonoid compounds, mainly classified as flavanones, dihydroflavonols, flavones,
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isoflavones, flavonols, and anthocyanins [1–4]. Flavonoids are found in plants in free form
(aglycones) or linked to sugars (glycosylated flavonoids) [1–6,10].
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3. Classification and Biological Activity
3.1. Flavanones

Flavanones or 2-arylchroman-4-ones are obtained by the flavonoid pathway, with
isomerization of 2′,4′,6′,4-tetrahydroxychalcone, in the presence of chalcone-flavanone
isomerase [1,5,6,10]. Flavanones can be found in different plant families, such as Compositae,
Fabaceae, and Rutaceae.

Depending on the type of plant, flavanones can be isolated from vegetative parts
(rhizomes, stem, leaves, flowers, and fruits) and generative organs (branches, bark, and
roots) [10]. Citrus fruits (especially grapefruit), peppermint, licorice, tomatoes, and associ-
ated aliments (fruit juices and peeled fruits) are a major dietary source of flavanones [6,10].

Flavanones can be found as forms of aglycones or as complexes with O- or
C-glycosides [1–6,10]. Some examples of such compounds are naringenin (aglycon),
naringin (glycoside), hesperitin (aglycon), hesperidin (glycoside), and eriodictyol
(Figure 3) [5,10].

Naringenin, or 5,7-dihydroxy-2-(4-hydroxyphenyl)-chroman-4-one, is a citrus fla-
vanone that has various biological activities and has been studied as a potential biological
compound for the treatment of a variety of diseases. For example, Wei et al. [11,12] found
that naringenin treatment reduced atrial fibrosis in different species of rats with induced
cardiovascular disease. Additionally, Chtourou et al. [11,13] reported that naringenin in
hepatocytes decreases pro-inflammatory cytokines. According to the literature, naringenin
treatment decreased cancer cell proliferation and induced cell apoptosis in breast can-
cer [14–16], prostate cancer [14,15,17], lung cancer [14,15,18], and colon cancer [14,15,19].
Furthermore, Tutunchi et al. [20] have shown that naringenin may be considered a promis-
ing treatment strategy against COVID-19.
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Hesperidin, or hesperetin-7-O-rutinoside, is used for different biological activities,
such as the treatment of type 2 diabetes; antioxidant, anti-inflammatory, anticancer, and
antiviral effects; biofilm protection; and protection against cardiovascular disorders [21–25].

Eriodictyol, or 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-2,3-dihydrochromen-4-one,
and its glycoside Eriocitrin were reported in the literature to have a broad spectrum
of biological activities, such as protection against cardiovascular issues; skin protection;
antitumor, antioxidant, and anti-inflammatory activity; and immunomodulatory and hep-
atoprotective effects [26–28].

3.2. Flavones

Flavones, or 2-aryl-4H-chromen-4ones, are synthesized by the dehydrogenation of
flavanones, generating a double bond between positions C-2 and C-3, under the action of a
group of enzymes known as flavone-synthases [1–4].

Depending on their prevalence in nature, most flavones can be found in all parts of
plants, in the form of compounds obtained by methylation, glycosylation, hydroxylation,
acylation, or other modifications [29]. They are the primary pigments in white flowers and
realize the co-pigmentation effect with anthocyanins in blue flowers [29,30].

The most widespread flavones are apigenin, luteolin, chrysin, acacetin, baicalein,
wogonin, and diosmetin (Figure 4) [1,29–31]. Luteolin and apigenin are widespread in
grains, vegetables, and medicinal herbs, being considered the most representative in food
sources [29,30].

Several biological activities of flavones have been reported in the scientific literature,
such as abiotic and biotic protection and anti-inflammatory, antimicrobial, and anticancer
activities [29,31]. For example, Liu R. et al. have shown that in mouse models with induced
amnesia, apigenin ameliorates spatial learning and memory deficits, protects microvessel
integrity, and attenuates neuronal loss [32]. A systemic review has shown the biological
potentials of baicalein and wogonin against ischemia-induced neurotoxicity and damage in
the brain and retina [31,33].
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3.3. Isoflavones

Isoflavones, or 3-aryl-4H-chromen-4ones, are synthesized from flavanones under the ac-
tion of two enzymes: isoflavone-synthase and hydroxy-isoflavanone dehydratase [1–4,34–36].
According to the literature, isoflavones are included in the large group of nutraceuticals [36].
The most common isoflavones are genistein, daidzein, glycitein, and formononetin (Figure 5).

Plants 2023, 12, x FOR PEER REVIEW 5 of 26 
 

 

 
Figure 4. Examples of flavones. 

Several biological activities of flavones have been reported in the scientific literature, 
such as abiotic and biotic protection and anti-inflammatory, antimicrobial, and anticancer 
activities [29,31]. For example, Liu R. et al. have shown that in mouse models with induced 
amnesia, apigenin ameliorates spatial learning and memory deficits, protects microvessel 
integrity, and attenuates neuronal loss [32]. A systemic review has shown the biological 
potentials of baicalein and wogonin against ischemia-induced neurotoxicity and damage 
in the brain and retina [31,33]. 

3.3. Isoflavones  
Isoflavones, or 3-aryl-4H-chromen-4ones, are synthesized from flavanones under the 

action of two enzymes: isoflavone-synthase and hydroxy-isoflavanone dehydratase [1–
4,34–36]. According to the literature, isoflavones are included in the large group of 
nutraceuticals [36]. The most common isoflavones are genistein, daidzein, glycitein, and 
formononetin (Figure 5). 

 
Figure 5. Examples of isoflavones. Figure 5. Examples of isoflavones.

Soybeans and other leguminous plants are the main sources of isoflavones [37]. Accord-
ing to their molecular structure, isoflavones represent one of the most common categories
of phytoestrogens, are similar in particular to 17-β-estradiol, manifest different biolog-
ical activities—especially fungistatic, antibacterial, antiviral, and antioxidant—prevent
angiogenesis, and exert estrogenic and/or antiestrogenic effects [34,38,39].
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3.4. Flavonols

Flavonols are hydroxylated at position C-3 of ring C by flavonol synthase [1–4].
Quercetin, rutin, myricetin, kaempferol, and morin are some popular flavonols found
in a wide variety of foods (Figure 6).
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A systemic chapter showed the anti-inflammatory efficacy of flavonols against rheuma-
toid arthritis [40]. Quercetin, or 3,3,4,5,7-pentahydroxyflavone, is abundantly found in
nature, being one of the most widely occurring polyphenols. Quercetin protects the body
against oxidative stress by downregulating the level of malondialdehyde and scavenging
several free radicals (e.g., hydrogen peroxide, superoxide, and hydroxyl radicals) [41,42].
Chen et al. [41,43] showed that quercetin increased cell IFN-γ expression and decreased
interleukine-4 positive cell expression. Some other studies demonstrated that quercetin
exerts an effect on cancer cells by inducing extrinsic and intrinsic pathways of apoptosis
and autophagy [41,44]. Another research study revealed that quercetin’s antimicrobial ac-
tivity disrupts cell membrane integrity, inhibits nucleic acid synthesis, and inhibits biofilm
formation [45].

Rutin (3,3′,4′,5,7-pentahydroxyflavone-3-rhamnoside), or vitamin P, is a flavanol gly-
coside derivative of quercetin found in various medicinal plants and food sources. In
a study carried out by Sui et al., rutin was shown to exhibit anti-inflammatory activity
by negatively regulating Rho-related coiled-coil protein kinase signaling by promoting
the expression of cystathionine-β-synthase and effectively inhibiting the inflammatory
progress of osteoarthritis [46]. Li et al. reported that rutin inhibits ox-LDL-mediated
macrophage inflammation and foam cell generation, which are both associated with au-
tophagy activation [47]. In addition, rutin is known to have anti-atherosclerotic, antiallergic,
anti-inflammatory, and antiviral properties [48,49].

3.5. Flavanols

Flavanols are a subgroup of flavonoids characterized by the absence of a double bond
between the carbon atoms C2 and C3 in the (C) ring, while featuring a hydroxyl group (s) in
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C3 or C4. Four types of flavanols have been found in nature: (i) flavan-3-ols, (ii) flavan-4-ols,
(iii) isoflavan-4-ols, and (iv) flavan-3,4-diols [1–4,50]. The most common flavanols are
catechin, epigallocatechin, and afzelechin (Figure 7).
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The biological properties of flavanols have been extensively studied to reveal their anti-
inflammatory, anticancer, antiviral, antimicrobial, and cardioprotective properties [50–52].
The most common sources of flavanols are cocoa and green tea, and there are numerous
studies that have shown that health-promoting effects have been attributed to these natural
compounds [53].

3.6. Anthocyanins

Anthocyanins are the glycosylated forms of the corresponding aglycones named an-
thocyanidins and are formed of a flavylium cation backbone hydroxylated in different
positions under the action of dihydroflavonol-reductase and leucoanthocyanidin dioxy-
genase [1–4,54,55]. They are natural pigments responsible for the color of plants (blue,
red, and purple) and can be found in all plant tissues, including leaves, flowers, and
fruits. The color and stability of anthocyanins are influenced by pH, metal ions, light, and
temperature [54,56]. Anthocyanins became of interest as natural therapeutic compounds
because they have the ability to suppress neuroinflammation and support antioxidant
activity, antimicrobial activity, antitumor activity, and immune function [55,56].

The most common anthocyanins are cyanidin, delphinidin, pelargonidin, petunidin,
and malvidin (Figure 8).
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Samarpita et al. showed that cyanidin can be used as a small-molecule drug to treat
patients with rheumatoid arthritis because it suppressed IL-17A, a cytokine found in
the serum and synovial fluid of patients with rheumatoid arthritis [57]. Another study
by Wang et al. showed that cyanidin ameliorated CCl4-induced liver injury in mice by
improving the activity of antioxidant enzymes such as SOD and CAT and by decreasing
the level of oxidative products such as TNF-α, IL-β, and IL-6. They also pointed out that
with administration of cyanidin, the protein levels of NF-κB, a regulator of inflammation,
and its downstream genes were significantly reduced [58].

Wu et al. identified the molecular mechanism in which delphinidin inhibited the
viability of HER-2-positive breast cancer cell lines by decreasing the protein expression
level of p-c-Raf, p-MEK1/2, and p-ERK1/2 and regulating the protein expression level
of Bax and Bcl-2 and also inhibited the activation of NF-κB and nuclear translocation of
NF-κB/p65 by inducing phase arrest and apoptosis of G2/M [59]. Kang et al. revealed
that combined treatment by delphinidin with γ-ionizing radiation enhanced apoptotic
cell death, activated the JNK/MAPK pathway, and effectively improved antiproliferative
effects by increasing radiation sensitivity in A549 cells (human non-small cell lung cancer)
by upregulation of autophagy after radiation therapy [60].

Cremonini et al. investigated the effects of supplementation with a cyanidin- and
delphinidin-rich extract on postprandial dysmetabolism, inflammation, and redox and
insulin signaling, triggered by the consumption of a high-fat meal. The study revealed that
the extract rich in cyanidin and delphinidin reduced postprandial increases in other markers
of inflammation, such as lipopolysaccharides binding protein plasma concentration and
TNFα levels in peripheral blood mononuclear cells, as well as those of cardiometabolic
outcomes (plasma levels of glucose, triglycerides, and cholesterol) [61].

In Table 1, we summarize some of the most important biological activities of the main
representatives of the six classes of flavonoids.

Table 1. The basic skeleton of the various classes and biological activity of flavonoids.

Classification Flavonoid Biological Activity References

Flavanones
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2-[3-(4-hydroxy-3-
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(hydroxymethyl)-2,3-
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Antioxidant, anti-inflammatory, and 
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[65] 

Apigenin (5,7-dihydroxy-2-
(4-hydroxyphenyl)-
chromen-4-one) 

Neuroprotective [32]  

Naringenin (5,7-dihydroxy-2-(4-
hydroxyphenyl)-chroman-4-one)

Antifibrinolytic, decreases
pro-inflammatory cytokines in

hepatocytes, antineoplastic
activity (breast cancer, prostate
cancer, lung cancer, and colon
cancer), a promising treatment

strategy against COVID-19, and
therapeutic application in bone

disorders and bone tissue
engineered constructs

[11–20,62,63]

Hesperitin ((2S)-5,7-dihydroxy-2-(3-
hydroxy-4-methoxyphenyl)-2,3-

dihydrochromen-4-one)

Anti-diabetic, antioxidant,
anti-inflammatory, anticancer,

antiviral, antibiofilm,
antimicrobial, and

cardiovascular
protective activities

[21–25,64]

Eriodictyol (2-(3,4-
dihydroxyphenyl)-5,7-dihydroxy-

2,3-dihydrochromen-4-one)

Cardiotonic, skin protection,
antitumoral, antioxidant,

anti-inflammatory,
immunomodulatory,
and hepatoprotective

[26–28]

Silymarin (3,5,7-trihydroxy-2-[3-(4-
hydroxy-3-methoxyphenyl)-2-

(hydroxymethyl)-2,3-dihydro-1,4-
benzodioxin-6-yl]-2,3-

dihydrochromen-4-one)

Antioxidant, anti-inflammatory,
and anticancer [65]
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Genistein (5,7-dihydroxy-3-
(4-hydroxyphenyl)-
chromen-4-one) 

Fungistatic, antibacterial, antiviral, 
anti-inflammatory, kidney 
protective, antioxidant, prevents 
angiogenesis, exerts estrogenic 
and/or antiestrogenic effects, and 
promising therapeutic 
application in bone disorders and 
bone tissue engineered 
constructs 

[34,38,39,63,74
–77] 

Daidzein (7-hydroxy-3-(4-
hydroxyphenyl)-
chromen-4-one) 

Fungistatic, antibacterial, antiviral, 
antioxidant, prevents 
angiogenesis, exerts estrogenic 
and/or antiestrogenic effects, and 
promising therapeutic 
application in bone disorders and 
bone tissue engineered 
constructs 

[34,38,39,63,77
–79] 

Apigenin (5,7-dihydroxy-2-(4-
hydroxyphenyl)-chromen-4-one) Neuroprotective [32]

Baicalein (5,6,7-trihydroxy-2-
phenyl-4H-chromen-4-one)

Neuroprotective,
antiviral activity, possible

treatment agent
against SARS-Cov2

[31,33,66]

Wogonin
(5,7-dihydroxy-8-methoxy-2-
phenyl-4H-chromen-4-one)

Neuroprotective [31,33]

Luteolin (2-(3,4-dihydroxyphenyl)-
5,7-dihydroxychromen-4-one)

Anti-inflammatory, antiallergy,
and anticancer [67]

Chrysin (5,7-Dihydroxy-2-phenyl-
4H-chromen-4-one)

Neuroprotective, anti-aging, skin
protective,

antioxidant,
anti-inflammatory, anticancer,

anti-diabetic,
vasodilatory effect,

and antihypertensive

[68–71]

Acacetin (5,7-dihydroxy-2-(4-
methoxyphenyl)-chromen-4-one)

Antiproliferative, neuroprotective,
cardioprotective, anticancer,

anti-inflammatory,
anti-inflammatory

diabetic, antimicrobial

[72]

Diosmetin
(5,7-dihydroxy-2-(3-hydroxy-4-

methoxyphenyl)-chromen-4-one)

Antioxidant, anti-inflammatory,
anti-apoptotic, and

anticancer properties
[73]

Isoflavones
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Genistein (5,7-dihydroxy-3-(4-
hydroxyphenyl)-chromen-4-one)

Fungistatic, antibacterial,
antiviral, anti-inflammatory,

kidney protective, antioxidant,
prevents angiogenesis, exerts

estrogenic and/or antiestrogenic
effects, and promising therapeutic
application in bone disorders and
bone tissue engineered constructs

[34,38,39,63,74–77]

Daidzein (7-hydroxy-3-(4-
hydroxyphenyl)-chromen-4-one)

Fungistatic, antibacterial,
antiviral, antioxidant, prevents
angiogenesis, exerts estrogenic

and/or antiestrogenic effects, and
promising therapeutic application
in bone disorders and bone tissue

engineered constructs

[34,38,39,63,77–79]

Glycitein
(7-hydroxy-3-(4-hydroxyphenyl)-6-

methoxychromen-4-one)

Fungistatic, antibacterial,
antiviral, antioxidant, prevents

angiogenesis, and exerts
estrogenic and/or

antiestrogenic effects

[34,38,39,80,81]

Formononetin (7-hydroxy-3-(4-
methoxyphenyl)-chromen-4-one)

Fungistatic, antibacterial,
antiviral, antioxidant,

anti-inflammatory,
neuroprotective, prevents
angiogenesis, and exerts

estrogenic and/or
antiestrogenic effects

[34,38,39,82–84]
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hydroxyphenyl)-6-
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Quercetin (3,3,4,5,7-
pentahydroxyflavone) 

Downregulates malondialdehyde 
level and scavenges several free 
radicals (e.g., hydrogen 
peroxide, superoxide, and 
hydroxyl radicals), increases cell 
IFN-γ expression, decreases 
interleukine-4-positive cell 
expression, induces extrinsic and 
intrinsic pathways of apoptosis 
and autophagy, antimicrobial 
activity, inhibits biofilm 
formation, inhibits nucleic acid 
synthesis,~~~antiviral activity, 
and possible treatment against 
SARS-Cov2 

[41–45,66]  

Anti-inflammatory, anti-
hypolipemiant, anti-
atherosclerotic, antiallergic, anti-
inflammatory, and antiviral  

[46–49] 

Morin (2-(2,4-
dihydroxyphenyl)-3,5,7-
trihydroxychromen-4-
one) 

Antioxidant,~~~anti-inflammatory, 
~~~anticancer, ~~~anti-diabetic, 
anti-inflammatory, 
antihypertensive, and gastric 
protector effects 

[85] 

Kaempherol (3,5,7-
trihydroxy-2-(4-
hydroxyphenyl)-
chromen-4-one) 

Antioxidant, antimicrobial, and anti-
inflammatory 

[86,87] 

Myricetin (3,5,7-trihydroxy-
2-(3,4,5-

Antioxidant, anti-inflammatory, anti-
diabetic, anti-epileptic, anti-
Alzheimer, anti-apoptotic, 

[88–90] 

Quercetin
(3,3,4,5,7-pentahydroxyflavone)

Downregulates malondialdehyde
level and scavenges several free

radicals (e.g., hydrogen peroxide,
superoxide, and hydroxyl

radicals), increases cell IFN-γ
expression, decreases

interleukine-4-positive cell
expression, induces extrinsic and
intrinsic pathways of apoptosis
and autophagy, antimicrobial

activity, inhibits biofilm
formation, inhibits nucleic

acid synthesis,
antiviral activity, and possible
treatment against SARS-Cov2

[41–45,66]

Rutin
(3,3′,4′,5,7-pentahydroxyflavone-3-

rhamnoside)

Anti-inflammatory,
anti-hypolipemiant,

anti-atherosclerotic, antiallergic,
anti-inflammatory, and antiviral

[46–49]

Morin (2-(2,4-dihydroxyphenyl)-
3,5,7-trihydroxychromen-4-one)

Antioxidant,
anti-inflammatory,

anticancer,
anti-diabetic, anti-inflammatory,

antihypertensive, and gastric
protector effects

[85]

Kaempherol (3,5,7-trihydroxy-2-(4-
hydroxyphenyl)-chromen-4-one)

Antioxidant, antimicrobial, and
anti-inflammatory [86,87]

Myricetin (3,5,7-trihydroxy-2-(3,4,5-
trihydroxyphenyl)-chromen-4-one)

Antioxidant, anti-inflammatory,
anti-diabetic, anti-epileptic,

anti-Alzheimer, anti-apoptotic,
antithrombotic, neuroprotective,

potential therapeutic agent
against COVID-19, and
hepatoprotective effect

[88–90]
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4. Actual Limitations of Extended Utilization of Flavonoids 

Catechin
(2-(3,4-dihydroxyphenyl)-3,4-

dihydro-2H-chromene-3,5,7-triol)

Anti-inflammatory, anticancer,
antiviral, antimicrobial, and

protective
cardiovascular properties

[50–53]

Epigallocatechin
(2-(3,4,5-trihydroxyphenyl)-3,4-

dihydro-2H-chromene-3,5,7-triol)

Anti-inflammatory, anticancer,
antiviral, antifungal,

antimicrobial, and protective
cardiovascular properties

[50–53,66]

Afzelechin
(2-(4-hydroxyphenyl)-3,4-dihydro-

2H-chromene-3,5,7-triol)

Anti-inflammatory, anticancer,
antiviral, antimicrobial, and

protective
cardiovascular properties

[50–53]
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4. Actual Limitations of Extended Utilization of Flavonoids 

Cyanidin (2-(3,4-dihydroxyphenyl)-
chromenylium-3,5,7-triol)

Immunomodulator and
anti-inflammatory [57,58,61]

Delphinidin
(2-(3,4,5-trihydroxyphenyl)-
chromenylium-3,5,7-triol)

Anti-HER-2 effect, regulates the
protein expression level of Bax

and Bcl-2, inhibits the activation
of NF-κB, induces G2/M phase

arrest and apoptosis,
pro-apoptotic, anti-proliferative
effects, and anti-inflammatory

[59–61]

Pelargonidin (2-(4-hydroxyphenyl)-
chromenylium-3,5,7-triol)

Antioxidant and
anti-inflammatory [91–93]

Petunidin (2-(3,4-dihydroxy-5-
methoxyphenyl)-chromenylium-

3,5,7-triol)
Antioxidant and anti-MIRI effects [92,93]

Malvidin (2-(4-hydroxy-3,5-
dimethoxyphenyl)-chromenylium-

3,5,7-triol)

Hypoglycemic, hypolipidemic,
gastroprotective,

hepatoprotective, antiadhesive,
and antibiofilm effects

[94–97]

4. Actual Limitations of Extended Utilization of Flavonoids

The actual limitations of the use of flavonoids in medical, pharmaceutical, food, and
cosmetic fields are governed by two major issues: (i) chemical and biophysical properties,
such as low solubility, chemical stability, bioavailability, and pharmacokinetics through
metabolic stability (hepatic, intestinal, and intestinal microflora); (ii) plant production,
such as very low yield of these secondary metabolites of plants relative to biomass and
difficulties regarding the improvement of biosynthesis and complicate isolation, extraction,
and purification methods [98].

One of the main limitations of flavonoids is represented by their pharmacokinetic
properties within the human body (Figure 9).

One of the main concerns regarding flavonoids is their low bioavailability. After oral
administration, a small percentage of flavonoids are absorbed in the upper gastrointestinal
tract (oral cavity) and a significant amount can reach the small intestine and can also
interact with the intestinal microbiota (colon). Others may be metabolized under the action
of liver metabolizing enzymes (cytochrome P450) to generate active metabolites [98–101].

The absorption rate of flavonoids in the human body is different due to the confor-
mation of the molecular structure and pH values. After being absorbed by the intestinal
epithelium, flavonoids are transformed into conjugated metabolites, namely glucuronides,
sulphates, and methylated metabolites, first in the intestine and then in the liver.

The aglycones of flavonoids, with a small molecular structure and high hydrophobicity,
enter through the hepatic portal vein in the liver, where two main metabolic reactions occur:
the oxidation reaction by cytochrome P450 enzymes (Phase I) and the binding reaction
(Phase II) [99,100]. Flavonoid glycosides possess higher hydrophilicity and molecular
weight and can only be absorbed after being hydrolyzed to aglycone or phenolic acid by
the intestinal microbiota. There are four main types of cleft rings in the colon: (i) flavones
and flavanones to form C6-C3 phenolic acids; (ii) flavonols to form C6-C2 phenolic acids;
(iii) flavanols to form C6-C3 phenols; (iv) isoflavones to form derivatives of ethylphe-
nols [99,100]. Flavonoid–microbiome interactions may also prove helpful in the treatment
of different diseases [100–104]. Rapid metabolic elimination of flavonoids highlights the
need to develop novel pathways to improve their delivery.
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5. Current Extraction Techniques

Selection of the most appropriate method for the extraction of flavonoids from different
plants is often difficult and depends on several factors, such as the stability of the flavonoids,
the nature of the solvents, the amount of extract required, and the appropriate techniques
and equipment used for extraction. However, the most important extraction options can
be classified into three groups: conventional or traditional techniques, reflux and Soxhlet
techniques, and recently developed (modern) techniques (Figure 10).
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5.1. Traditional Extraction Techniques

Traditional extraction techniques are most often used over time because they do not
require special equipment and large amounts of product can be obtained.

Maceration is the most common extraction technique, with the disadvantages of a
longer extraction time and lower extraction selectivity and efficiency compared to other
methods [8,9]. Maceration is applied to the extraction of vegetable products containing
active ingredients that are slightly soluble in a temperature-proper solvent. As a working
method, plant products are treated with a specified volume of solvent (e.g., methanol,
ethanol, acetone, or water). They are kept in contact with the solvent for a fixed and
variable time, mainly between 12 h and a few days. After this step, the process is followed
by filtration. Other disadvantages of the maceration process include the use of large
amounts of solvent and the need to purify the extract.

Percolation is more efficient than maceration as an exhaustive extraction technique,
being a continuous process in which the solvent and the plant material flow in opposite
directions and the solvent is constantly replaced by fresh solvent [105].

The decoction extraction technique may not be used to extract thermolabile or volatile
components due to the high processing temperatures and has the disadvantage of many
water-soluble impurities present in the extract [105]. The decoction process is used on plant
products with stronger plant walls, such as rhizomes, roots, and bark.

5.2. Reflux and Soxhlet Extraction Techniques

The Soxhlet extraction technique represents a combination of percolation and macer-
ation methods, where the plant product is positioned in a porous cotton thimble-holder,
being gradually filled with condensed fresh solvent from a distillation flask during the
whole process. Once the level of fresh solvent reaches above the siphon bend, the solvent
flows into the flask through the siphon tube and is repeatedly unloaded back into the distil-
lation flask, carrying the extracted analytes in the bulk liquid until extraction is considered
complete [106]. The Soxhlet technique involves smaller amounts of solvent and a shorter
extraction time compared to traditional extraction techniques, being used only for extracts
that contain thermostable flavonoids.

Reflux extraction is a technique more commonly used compared to percolation and
decoction and represents an extraction process at a constant temperature with repeatable
evaporation and condensation of the solvent [107].

Some reports on such extraction techniques will be reviewed in more detail. Babich et al.
used Soxhlet extraction with methanol to obtain biologically active substances (luteolin-7-
glucoside, acacetin, apigenin-7-O-glucoside, and hesperetin) from G. glabra. The methanol
extracts of G. glabra obtained by the Soxhlet method exhibited the highest antibacte-
rial activity against E. coli, P. aeruginosa, and B. subtilis [108]. In a study carried out by
Nuzul et al., high amounts of total phenolics (107.65 ± 0.01 mg GAE/g) and flavonoids
(43.89± 0.05 mg QE/g) were obtained from Bambusa beecheyana using the Soxhlet method
and methanol as the solvent. Moreover, the extract exhibited strong antioxidant activity
compared to ascorbic acid, with an IC50 value of 40.43 µg/mL [109]. Yuan Ma et al. [110]
used reflux extraction to obtain polyphenols from the shell of Pleioblastus amarus (Keng)
and showed that the best extraction parameters were an ethanol concentration of 75%, a
20:1 liquid to solid ratio, and an extraction time of 2.1 h. Sati et al. showed that reflux extrac-
tion was the most efficient technique for the recovery of flavonoid (quercetin, kaempferol,
and isorhamnetin) glycosides from Ginkgo biloba, as well as for obtaining the highest
antimicrobial and antioxidant activities [86].

5.3. Modern Extraction Techniques

The extraction methods described above have several disadvantages, such as the use of
large amounts of solvent, long processing times, occasional loss of solvents by evaporation,
low selectivity, and the necessity of purifying the extract. To overcome these bottlenecks,
advanced extraction techniques have been developed with many advantages, including



Plants 2023, 12, 2732 14 of 25

prevention of pollution, avoidance of the concentration phases of the extract, reduction of
solvent consumption, and the possibility of automation [8,9].

5.3.1. Microwave-Assisted Extraction

Microwave-assisted extraction is a selective technique that uses microwave energy to
heat solvents in contact with a sample to partition analytes from the sample matrix into the
solvent [8,9,111]. It has advantages such as shorter time and a higher extraction rate, fewer
solvent requirements, and lower costs (Figure 11).
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In a study conducted by Niu et al., microwave-assisted extraction was used to extract
flavonoids from the leaves of Alpinia oxyphylla Miq. The optimal extraction conditions
were determined as follows: 50% ethanol concentration, 1:20 solid–liquid ratio, 70 ◦C
temperature, cycle index of 3. Under the optimized conditions, the extraction yield of
total flavonoids was 28.24% [112]. Zhao et al. showed the potential of microwave-assisted
extraction to extract epicatechin gallate (GAE) from the fruit of Melastoma sanguineum. The
optimal extraction conditions were 31.33% ethanol and 45 min extraction time at 52.24 ◦C
and 500 W, resulting in the highest value of total phenolic content of 39.02 ± 0.73 mg
GAE/g dry weight. Furthermore, microwave-assisted extraction significantly reduced the
amount of organic solvent and the extraction time compared to Soxhlet extraction [113].
Choommongkol et al. used microwave-assisted extraction to recover 2′,4′-dihydroxy-
6′-methoxy-3′,5′-dimethyl-chalcone, a flavonoid with anticancer activity, from Syzygium
nervosum fruit. Compared to other solvents, ethanol produced the highest flavonoid yield
at 1298 ± 5 µg/g dry weight [114].

5.3.2. Ultrasound-Assisted Extraction

The ultrasound-assisted extraction technique, or sonication, consists of the use of
ultrasound energy in the form of waves and solvents to extract target bioactive compounds
from various plant matrices [8,9,115]. Ultrasound waves generate small vacuum bubbles
in the liquid, resulting in high temperatures and pressures [115]. Ultrasonic power is an
important parameter that affects the extraction yield of flavonoids. Although increasing
the ultrasonic power is obviously beneficial for the extraction yield, it should also be noted
that excessive ultrasonic energy can produce damaging effects on flavonoids (Figure 12).
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Several recent studies reported excellent results using this technique. Pham et al.
developed an efficient ultrasound-assisted procedure for the extraction of flavonoids from
C. hindsii leaves. A maximum total flavonoids content of 23.6 mg QE/g was obtained using
130 W ultrasonic power, 40 ◦C extraction temperature, 29 min extraction time, and 65%
ethanol concentration [116]. Mai et al. also optimized the ultrasound-assisted extraction
conditions but using the response surface methodology method to extract antioxidants
from ‘Jinfeng’ kiwifruit. Optimal conditions were established as 68% ethanol concentration,
20 mL/g liquid/solid ratio, 30 min extraction time, 42 ◦C extraction temperature, and 420 W
ultrasonic power. Under these optimal conditions, the ABTS value of the kiwifruit extract
was 18.5% higher compared to that obtained by conventional solvent extraction [117]. Gu-
effai et al. demonstrated that basically the same parameters, extraction time, temperature,
and solvent concentration had a significant impact on the phenolic compounds content
in black cumin defatted extracts. The total phenolic content of the product obtained by
ultrasound-assisted extraction under optimal conditions was significantly higher than that
extracted by the conventional technique [118].

5.3.3. Supercritical Fluid Extraction

Supercritical fluid extraction (SFE) uses fluids in conditions above their thermody-
namic critical point of temperature and pressure. The density of supercritical fluids is
similar to that of liquids; their viscosity is low, resulting in high diffusivity, and these prop-
erties enable supercritical fluids to penetrate more easily into solid compounds [8,9,119].
Although it requires specific and more expensive equipment, SFE is also considered a viable
method, particularly when the extraction process needs higher selectivity (Figure 13).
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Buelvas-Puello et al. found that SFE can be a suitable extraction method to obtain
flavonoids from mango kernel, which showed consistent antioxidant activity. These extracts
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modified the oxidative stability of edible sunflower oil without adding other antioxidants.
The total flavonoid content was equal to or greater than that obtained by Soxhlet extrac-
tion [120]. Végh et al. developed SFE to coextract sesquiterpene lactones and lipophilic
flavonoids from the leaves of Tanacetum parthenium L. Twelve flavonoid components (in-
cluding apigenin and luteolin) were detected in the extract, and eight additional methylated
flavonoids were identified [121].

5.3.4. Matrix Solid-Phase Dispersion Extraction

The matrix solid-phase dispersion extraction technique consists of three main steps.
An additional solid-phase extraction clean-up step can be carried out by adding a cosorbent
to the bottom of the extraction column or using different external columns [8,122,123]. The
extract was evenly dispersed throughout the extraction column. The critical parameters
were (i) the ratio of sample to solid material, (ii) the choice and composition of the eluent,
and (iii) the type of dispersant material [122]. Mansur et al. developed a method based on
matrix solid-phase dispersion extraction, compared to ultrasound-assisted extraction and
homogenate-assisted extraction, to obtain flavonoids from common buckwheat sprouts and
Tartary buckwheat sprouts. They showed that the main flavonoids of common buckwheat
sprouts were extracted with significantly higher yields using the developed method than
by the other mentioned techniques [124].

5.3.5. Pulsed Electric Field Extraction

The pulsed electric field extraction technique is a modern technique in which a very
short voltage pulse with high electric field strength is applied to a biomaterial located
between two electrodes, causing permeabilization and destruction of cell membranes by
electroporation [8,9,125]. This method is recommended primarily in combination with
other extraction techniques (Figure 14).
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Kim et al. determined the optimal extraction conditions of the flavonoid quercetin
from dried onion skin using the pulsed electric field technique as a pretreatment for the
subcritical water extraction method [126]. Manzoor et al. reported that a combination of
pulsed electric field and ultrasound extraction techniques can be an alternative in food
processing industries. The results showed an improvement in the total phenolic content,
the total flavonoid content, and the antioxidant activity of almond extract [127].

5.3.6. Enzyme-Assisted Extraction

Enzyme-assisted extraction is a pretreatment technique that uses specific enzymes
to disrupt the cell wall of the source material to improve extraction yield [8,128]. It can
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be combined with various other techniques to enhance the overall recovery of bioactive
compounds from different biomaterials. Granato et al. used a mixture of pectinases,
cellulases, beta-1-3-glucanases, and pectin lyases to recover anthocyanins and polyphenols
from blackcurrant press cake. The optimal extraction conditions were a solid:solvent ratio
of 1:10 and 1:4 w/v, pH 5.5, while the temperature was chosen according to the type of
enzyme—50 ◦C for cellulases and 40 ◦C for pectinases [129]. Amulya et al. optimized the
extraction conditions by using the response surface methodology and central composite
design for the recovery of anthocyanin pigments by enzyme-assisted extraction from
eggplant peel. The best enzyme-assisted extraction parameters were a temperature of
37.32 ◦C, 5% enzyme concentration, and 1 h extraction time. This extraction technique was
recognized as an effective way to extract bioactive compounds from eggplant peel [130].

Table 2 summarizes some of the most recent reports for the extraction of important
flavonoids from plants using modern extraction techniques.

Table 2. Summary of recent reports on modern extraction techniques of flavonoids.

Extraction Technique Target Flavonoids References

Microwave-assisted extraction (MAE) Flavonol, catechins [113,131]

Ultrasound-assisted extraction (UAE)
Flavonols (isoquercitrin, quercetin) [132–134]

Anthocyanins [135]
Flavones (methoxyflavones) [136]

Supercritical fluid extraction (SFE)
Flavanone (pinocembrin) [137]

Flavonol (galangin) [138]
Flavones [121,139]

Pulsed electric field extraction (PEFE) Flavanones [140]

Enzyme-assisted extraction (EAE) Anthocyanins [129,130,141]
Flavones [142–144]

UAE + deep eutectic solvents Flavanones, flavonols [145,146]
UAE + butylene Glycol Flavonols (catechins) [147]

MAE + deep eutectic solvents Flavones (trifolin, isoquercetin, kaempferol),
flavonols (astragalin, quercetin, hyperoside) [148]

UAE + EAE Anthocyanins [149]
MAE + ionic liquids Flavones [150]

6. Outlook and Perspectives

Flavonoids are important secondary metabolites produced by plants and microorgan-
isms with several biological activities. Awareness of the biological properties of flavonoids
has triggered increasing interest in flavonoids’ uses in medical, pharmaceutical, cosmetic,
food, and/or nutraceutical industrial processes. Current trends in research and develop-
ment activities on flavonoids relate to the identification, extraction, new functions, and
applications of flavonoids for health benefits. Molecular docking, combined extraction
methods, and inclusion of flavonoids in various delivery systems are also used to obtain
larger amounts of flavonoids, higher solubility, and stability, allowing the development of
new industrial manufacturing technologies.

One of the main limitations blocking the broader use of flavonoids is their low bioavail-
ability and solubility, poor absorption, and rapid metabolism. One of the future solutions to
address these flavonoid limitations is the widespread use and development of nanotechnology.

Nanotechnology offers opportunities in all areas of scientific research, such as medical
chemistry, medicine, and pharmaceutical science. The properties of nanoparticles, such
as their small size and high surface, make them the best approach in the medical and
pharmaceutical fields. They are able to improve the effectiveness of products extracted
from plants, increase the yield of secondary plant metabolites relative to biomass, reduce
adverse effects, and increase bioavailability.

Nano-vesicle systems (e.g., liposome and ethosome), micro- and nanoparticles, solid
lipid nanoparticles, nanostructured lipid carriers, nanomicelles, and cyclodextrins, and
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dendrimers are some of the most common biocompatible and biodegradable nanoparti-
cles [151–153]. The main flavonoid delivery systems are illustrated in Figure 15.
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For example, a recent review by Manocha et al. focused on nanonutraceuticals with
enhanced bioavailability, solubility, stability, improved encapsulation, and sustained and
targeted delivery with enhanced therapeutic activity. Nanotechnology has the potential
to increase the stability and control of encapsulated flavonoids and non-supplements
against natural changes, and nanoparticles offer promising potential as nutraceutical
transporters [154].

Another study discusses the unique properties of nanomicelles for efficient delivery
and improved bioavailability of various nutrients, such as flavonoids. Nanomicelles have
several advantages due to their size and structural composition, increase the stability of
drugs, protect them against elimination by the mononuclear phagocyte system, and lead to
prolonged blood circulation [155].

A study by Sysak et al. revealed multiple synthesis possibilities for flavonoid–metal
nanoparticle conjugates (e.g., silver nanoparticles and gold nanoparticles) and hybrids
(metal oxide nanoparticles), also reviewing their characterization, biological properties,
and medical applications [156].

The applications of nanotechnology for the targeted delivery of flavonoids to improve
their bioavailability are beyond doubt. However, until now, such flavonoid delivery
systems have been largely replicated in vitro and to a lesser extent in human models. In the
near future, clinical trials could greatly contribute to improving the effectiveness and safety
of using flavonoids as new treatment methods for human diseases, as well as to further the
development of the medical and pharmaceutical fields.

The development of the production of flavonoids and their use for medical purposes
will certainly be connected with overcoming the actual drawbacks and ensuring an optimal
path from improved biosynthesis in plants (or engineered microorganisms) to extraction,
clinical trial, and therapeutic use. At present, each of these aspects shows promising
perspectives, but a consistent research effort is still needed to change the actual status of
flavonoids from mostly dietary supplements to authorized drugs.
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