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Abstract: For the majority of higher plants, silicon (Si) is considered a beneficial element because of the
various favorable effects of Si accumulation in plants that have been revealed, including the alleviation
of metal(loid) toxicity. The accumulation of non-degradable metal(loid)s in the environment strongly
increased in the last decades by intensified industrial and agricultural production with negative
consequences for the environment and human health. Phytoremediation, i.e., the use of plants to
extract and remove elemental pollutants from contaminated soils, has been commonly used for the
restoration of metal(loid)-contaminated sites. In our viewpoint article, we briefly summarize the
current knowledge of Si-mediated alleviation of metal(loid) toxicity in plants and the potential role of
Si in the phytoremediation of soils contaminated with metal(loid)s. In this context, a special focus is
on metal(loid) accumulation in (soil) phytoliths, i.e., relatively stable silica structures formed in plants.
The accumulation of metal(loid)s in phytoliths might offer a promising pathway for the long-term
sequestration of metal(loid)s in soils. As specific phytoliths might also represent an important carbon
sink in soils, phytoliths might be a silver bullet in the mitigation of global change. Thus, the time is
now to combine Si/phytolith and phytoremediation research. This will help us to merge the positive
effects of Si accumulation in plants with the advantages of phytoremediation, which represents an
economically feasible and environmentally friendly way to restore metal(loid)-contaminated sites.

Keywords: heavy metals; phytoliths; complexation; co-precipitation; abiotic stress; metal(loid)
sequestration

1. Introduction

Numerous prokaryotes as well as eukaryotes have been evolutionarily adapted to use
dissolved silicon (Si) in the form of monomeric silicic acid (H4SiO4) for the formation of
hydrated amorphous silica (SiO2 · nH2O) in a process called biosilicification [1]. Based on
their origin, biogenic silica (BSi) structures and residues in soils represent BSi pools that can
be distinguished as follows: (i) bacterial BSi (formed in bacteria), (ii) fungal BSi (formed in
fungi), (iii) phytogenic BSi (formed in plants), (iv) zoogenic BSi (formed in animals), and
(v) protistic BSi (formed in protists) [2].

Phytogenic silica can be found (i) in living plants within cells (i.e., in the cell wall
and the cell lumen) forming relatively stable, recognizable phytoliths, that can be found in
soils as plant microfossils or (ii) in intercellular spaces and extracellular (cuticular) layers
forming relatively fragile silica structures [3,4]. Phytoliths are mainly made of SiO2 ·
nH2O, but also commonly contain organic matter and various elements like aluminum
(Al), calcium (Ca), iron (Fe), manganese (Mn), and phosphorus (P) [5,6]. Against this
background, the potential of carbon sequestration in phytoliths is under controversial
discussion recently [7]. For the majority of higher plants, Si is considered a beneficial
substance nowadays because of the various favorable effects of Si accumulation in plants
that have been revealed, i.e., increased plant growth and resistance against biotic and
abiotic stresses like fungal infections, drought, or heavy metal toxicity [8–10].
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The term “heavy metals” often refers, but is not limited, to chromium (Cr), cobalt (Co),
nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), cadmium (Cd), tin (Sn), mercury (Hg), and
lead (Pb). As the term “heavy metal” is misleading and imprecise, because it is not clearly
defined and often mixes metals and metalloids that are associated with environmental
contamination and potential toxicity, we use the term “metal(loid)” instead [11]. Based
on their role in organisms, metal(loid)s are categorized as essential (e.g., Cu, Fe, Mn,
Ni, or Zn) or non-essential (e.g., Pb, Cd, As, or Hg), whereby essential metal(loid)s can
also become toxic when they exceed specific concentrations. The accumulation of non-
degradable metal(loid)s in the environment strongly increased in the last decades by
intensified industrial and agricultural production with negative consequences for the
environment and human health [12–14].

Phytoremediation is referred to all methods that use plants to (i) extract and remove
elemental pollutants from contaminated soils or (ii) to decrease the bioavailability of these
pollutants in soils [15]. In comparison to many other soil remediation methods, which are
typically expensive, disruptive, and appropriate only for small areas, phytoremediation
represents a cost-effective and environmentally friendly alternative. Moreover, plants’
roots are able to absorb metal(loid)s that are present in soils at concentrations too low
for physicochemical remediation techniques. This is why phytoremediation has been
commonly used for the restoration of contaminated sites, e.g., former surface mining
areas [16–19].

However, it should be noted that phytoremediation is frequently slower than conven-
tional engineering technologies, and thus has to be considered as a long-term remediation
solution. In fact, decreasing metal(loid) concentrations of contaminated soils to environ-
mentally safe levels and below specific regulatory limits might take decades to several
hundreds of years [20,21]. Factors that mainly influence phytoremediation duration are
contaminant concentrations in soils, size of the contaminated area, and plant-specific prop-
erties (e.g., growing time, biomass, and the potential to accumulate metal(loid)s). In this
context, hyperaccumulators, i.e., plant species that can safely accumulate metal(loid)s in
concentrations 100- to 10,000-times higher than in non-hyperaccumulating species [22–24]
with high biomasses might be most qualified for a fast remediation of contaminated sites.

In general, the potential of Si for phytoremediation has not been addressed in the
literature until now, although the knowledge of the benefits of Si for the alleviation of
metal(loid) toxicity in plants has been well known for decades. Thus, in our viewpoint
article, we aim to join the current knowledge of beneficial Si accumulation effects in plants
to the knowledge of phytoremediation advantages, i.e., economic efficiency and environ-
mental friendliness. For this purpose, we briefly summarize the current knowledge of
Si-mediated alleviation of metal(loid) toxicity in plants and the potential role of Si in the
phytoremediation of soils contaminated with metal(loid)s. In this context, a special focus
is on metal(loid) accumulation in (soil) phytoliths. Our summary ends with concluding
remarks, where future directions are outlined. As sustainability and environmental com-
patibility have become more topical than ever, we hope that our article will help foster
future research on the promising role of plant Si in metal(loid) toxicity alleviation and the
phytoremediation of metal(loid)-contaminated soils.

2. Silicon Uptake and Accumulation in Plants

Although Si is very abundant in Earth’s crust (>90 vol. % consist of SiO2 and silicates),
Si bioavailability is often limited in soils because plant-available Si (H4SiO4) is (i) leached
as a result of rainfall and irrigation, especially in agricultural soils; (ii) is bound to the
surface of minerals and their competition for binding sites with, e.g., phosphorus or organic
carbon; and (iii) is subject to polymerization/precipitation reactions [25]. Soils with a low
Si bioavailability generally can be characterized as highly weathered, leached, acidic, and
low in base saturation.

Si contents vary considerably between plant species with values ranging from about
0.1 to 10% Si per dry mass [26]. Based on their Si content, plants have been traditionally
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divided into three groups, i.e., (i) non-accumulators or excluders (a Si content per dry
mass < 0.5%), (ii) intermediate accumulators (a Si content per dry mass of 0.5–1%), and
(iii) accumulators (a Si content per dry mass > 1%) [27]. Field crops, especially cereal
grasses of the family Poaceae (or Gramineae), are known as Si accumulators. Si absorption
by plants is controlled by two different types of Si transporters (called “Low silicon”, Lsi),
i.e., specific influx (called Lsi1 and Lsi6) and efflux (called Lsi2 and Lsi3) channels, which
have been found especially in crops like rice (Oryza sativa), wheat (Triticum aestivum), or
sorghum (Sorghum bicolor) [28,29]. While Lsi1 and Lsi6 represent aquaporins, which allow
for the passive diffusion of H4SiO4 across the plasma membrane, Lsi2 and Lsi3 are proton
(H+) antiporters that can export H4SiO4 from cells. However, it should be kept in mind that
the mechanisms behind the uptake, transport, and accumulation of Si in plants (active vs.
passive Si transport) as well as Si-induced plant resistance (mode of action of Si in plants)
are still not fully understood, and thus are under controversial discussion [30–33].

The size of Si precipitates in plants ranges from about 100 nm to 1 mm [34,35], whereby
phytogenic Si can be found in almost all plant organs, e.g., in leaves, stems, and roots [36].
In this context, the mode of silica deposition in plants seems to be organ-specific. In
roots, e.g., three basic modes of Si deposition have been identified, i.e., (i) impregnation
of endodermal cell walls (e.g., in wheat), (ii) formation of Si aggregates associated with
endodermal cell walls (e.g., in sorghum and sugarcane), and (iii) formation of Si aggregates
in “stegmata” cells forming a sheath around sclerenchyma fibers (e.g., in some palm
species) [37]. On the contrary, in stems and leaves, silica is mainly deposited in the
epidermis [38]. For plant microfossils (soil phytoliths), an international nomenclature based
on phytolith morphology has been developed, which is especially used in archeological,
paleo-environmental, evolutionary, taxonomic, and climatological studies for the taxonomic
identifications of plants [39].

Si uptake and storage in plants have been analyzed for several ecosystems. Regarding
natural ecosystems, Si storage in aboveground vegetation has been reported, e.g., for the
Great Plains [40], the tropical humid grass savanna [41], or forested biogeosystems [42–44].
Si uptake at agricultural sites has been reported for, e.g., wheat, rice, and sugarcane, which
represent Si accumulators with relatively high Si contents as well as biomasses [45–47].
In contrast to natural ecosystems, where BSi is recycled to great amounts, agricultural
sites are subject to high Si exports by harvest, gradually depleting plant-available Si in
soils (anthropogenic desilication) year by year [48,49]. To ensure a sufficient Si supply
for plants, soil and foliar Si fertilizers are widely used, especially in rice and sugarcane
production [10,50]. In this context, Si-rich sludges or slags are frequently used as Si
sources as they show appropriate characteristics like high Si solubility and a reasonable
cost/benefit ratio. However, due to the fact that these materials are often metal(loid)-laden,
a potential metal(loid) contamination of the food chain has to be carefully evaluated [51]. In
contrast, crop straw recycling has been identified as a promising, environmentally friendly
alternative for increasing Si bioavailability in agricultural soils, and thus also a promising
alternative for preventing anthropogenic desilication in the long term [52].

3. Silicon-Mediated Metal(loid) Toxicity Alleviation in Plants

In general, there are numerous publications on various mechanisms of the Si-mediated
alleviation of metal(loid) toxicity in plants, comprising processes in soil (solution) and
plants [53,54].

In soils, metal(loid)s are complexed with dissolved silicic acid, forming slightly sol-
uble metal–silicate complexes, especially if metal and Si concentrations and soil pH are
sufficiently high [55–57]. More recently, it was shown that particulate compounds formed
from the reaction between silicic acid and metals at concentrations restrict the precipitation
of metal silicates in aqueous solution [58]. In this context, the metals, particularly Cu,
were structurally incorporated into the polymeric network of polymerizing silicic acid.
Moreover, those compounds might also form in acidic soils, removing metals from solution
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by the same processes, e.g., adsorption on surface silanol groups, diffusion/occlusion in the
interior of polymerizing silica, and structural incorporation, depending on the metal [59].

The main mechanisms in planta potentially comprise (i) complexation and co-precipitation
of metal(loid)s with Si, (ii) Si-induced stimulation of antioxidant systems, (iii) Si-mediated
enhanced photosynthesis efficiency, and (iv) Si-induced alterations in membrane transport-
related gene expression.

Complexation and co-precipitation of metal(loid)s with Si in metabolically less active
cell compartments like cell walls might inhibit the allocation of toxic metal(loid)s within
other plant tissues that play important roles in plant metabolism [60–62]. Some studies of
Si foliar fertilization, e.g., showed reduced metal(loid) concentrations and accumulation in
plant parts, which are of agricultural interest, e.g., rice grains [61,63,64]. As evaporation
plays an important role in silica precipitation, modifications of transpiration rates of plants
by Si supply can affect silica deposition (silicification) [65]. In this context, silicification in
plants seems to be initiated and controlled by specific cell wall polymers and proteins [33].

Stimulation of antioxidant systems in plants seems to play a further important role in
alleviating metal(loid) toxicity [66–69]. Generally, Si can reduce oxidative stress induced
by metal(loid) toxicity by enhancing the activities of enzymatic (e.g., superoxide dismu-
tase, peroxidase, and catalase) and non-enzymatic (e.g., ascorbic acid and glutathione)
antioxidants. This decreases the accumulation of reactive oxygen species like hydrogen
peroxide (H2O2) and hydroxyl radicals (•OH), which are responsible for errors in cell sig-
naling pathways that cause severe cell damage or death [70–72]. Cooke and Leishman [73]
statistically assessed the responses of plants under abiotic stress to Si application in a
meta-analysis. They found that Si consistently alleviates oxidative stress and that responses
differed among plant families.

Enhanced photosynthesis efficiency seems to result from different effects induced by
Si fertilization like metal(loid)–Si complexation and co-precipitation and the stimulation
of antioxidant plant systems. In consequence, a reduction in harmful effects on the photo-
synthetic apparatus and enhanced chlorophyll biosynthesis under metal(loid) stress can
be observed [74–76]. These findings are corroborated by the meta-analysis of Cooke and
Leishman [73], who found that Si addition significantly increased photosynthetic rates
and total chlorophyll concentrations in plants under abiotic stress. In general, the mode
of action of Si fertilization on photosynthesis under metal(loid) stress is not clarified in
detail yet and both direct (i.e., an active Si influence on photosynthesis) and indirect (i.e.,
photosynthesis profits from other beneficial plant impacts) effects of Si application are
discussed [53,77]. In this context, Nwugo and Huerta [78] identified 50 proteins associated
with, e.g., photosynthesis and pathogen response that were significantly regulated by Si,
indicating an active involvement of Si in plant physiological processes.

Si-induced alterations in membrane transport-related gene expression might also play
a role in the alleviation of metal(loid) toxicity in plants. Studies with Si-supplied Arabidopsis
thaliana and rice plants showed up- and down-regulations of Si and metal transport-
related gene expressions, respectively [79–81]. However, as our current knowledge of
Si accumulation in plants on the molecular level is still in its infancy, further research is
necessary to unravel the underlying mechanisms. In fact, only few Si influx and efflux
channels (namely Lsi1, Lsi2, Lsi3, and Lsi6) have been identified in a limited number
of plant species like rice, barley (Hordeum vulgare), wheat, maize (Zea mays), cucumber
(Cucumis sativus), pumpkin (Cucurbita moschata), and soybean (Glycine max) [28].

4. Metal(loid) Accumulation in Phytoliths

While knowledge of enhanced metal(loid) tolerance in plants induced by Si dates
back to at least the 1950s (see, e.g., Ma and Takahashi [27] and the references therein), the
accumulation of metal(loid)s within phytogenic silica or phytoliths is a phenomenon that
has been reported as of the end of the 1990s or the beginning of the 2010s, respectively
(Table 1). Neumann et al. [82], e.g., found Zn-silicates in the epidermal cell walls of
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Minuartia verna and Bringezu et al. [83] described the accumulation of Zn and Sn within
silicates in the cell walls of Silene vulgaris.

Table 1. Accumulation of metal(loid)s in phytogenic silica or phytoliths.

Year Metal(loid) Plant Location of Metal(loid)
Accumulation Reference

1997 Zinc (Zn) Minuartia verna (Caryophyllaceae) Silicates in epidermal cell
walls of leaves Neumann et al. [82]

1999 Zinc (Zn), Tin (Sn) Silene vulgaris (Caryophyllaceae) Silicates in epidermal cell
walls of leaves Bringezu et al. [83]

2013 Diverse Different species (Ericaceae) Phytoliths in leaves Buján [84]

2013 Diverse Hordeum vulgare (Poaceae) Phytoliths in awns, stems,
and leaves Kameník et al. [5]

2019 Lead (Pb) Oryza sativa (Poaceae) Phytoliths in rice straw and
soils Nguyen et al. [85]

2019 Copper (Cu) Grasses dominated by Axonopus
compressus (Poaceae)

Phytoliths in grass shoots
and soils Tran et al. [86]

2020 Diverse Arundo donax and Phragmites
australis (Poaceae) Phytoliths in reed shoots Delplace et al. [87]

2020 Cadmium (Cd)
Urochloa decumbens, Urochloa
brizantha, and Megathyrsus

maximus (Poaceae)
Phytoliths in grass shoots de Melo Farnezi et al. [88]

2021 Arsenic (As)
Phragmites japonicus (Poaceae) and

Thelypteris palustris
(Thelypteridaceae)

Phytoliths in plant shoots Min et al. [89]

2022 Diverse Triticum aestivum (Poaceae) Phytoliths in inflorescences,
leaf sheaths, and stems Liu et al. [90]

2023 Diverse Triticum aestivum (Poaceae) Phytoliths in leaf sheaths,
stems, and panicles Liu et al. [91]

Buján [84] analyzed the elemental composition of phytoliths from different species of
the plant family Ericaceae and found numerous metal(loid)s entrapped in these phytoliths.
Kameník et al. [5] analyzed barley phytoliths and showed (i) that these phytoliths were
enriched in terrigenous elements (e.g., Al or Fe), but depleted in the elements that represent
the major inorganic constituents of plants (e.g., potassium (K) or Ca), and (ii) that phytoliths
originating from various plant parts differ in elemental composition. Nguyen et al. [85]
and Tran et al. [86] reported the encapsulation of Pb and Cu in rice and grass phytoliths,
respectively. Some more studies of the accumulation of metal(loid)s in phytoliths of
different plants followed recently [87–90] (details can be found in Table 1). Most recently,
Liu et al. [91] analyzed the encapsulation of toxic trace metal(loid)s in wheat phytoliths.
They found that As and Cr were more often encapsulated in wheat phytoliths than Cd,
Pb, Zn and Cu, which were mainly accumulated in organic tissues, demonstrating that the
potential interaction of plant silica with metal(loid)s is highly variable among elements.

In this context, the origin of phytoliths (cell wall vs. cell lumen phytoliths) might
also play an important role in metal(loid) accumulation. While cell wall phytoliths are
associated with a carbohydrate matrix, lumen phytoliths seem to contain more proteins and
glycoproteins than cell wall phytoliths, which has consequences for phytolith dissolution
kinetics and carbon sequestration [3,7]. If metal(loid)s are accumulated to different amounts
in cell wall and lumen phytoliths, the ratio between cell wall and lumen phytoliths in a spe-
cific plant will be of great interest for the storage of metal(loid)s in phytoliths. Grasses and
cereals, e.g., seem to contain more lumen phytoliths compared to other plant groups [92].
However, as there is no information on metal(loid) accumulation in different types (i.e.,
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cell wall vs. lumen phytoliths) of phytoliths yet, future research on this aspect is urgently
needed (see Section 6).

Moreover, analyses of metal(loid) accumulation in phytoliths have been largely limited
to the plant family Poaceae, which is known for its Si-accumulating plant species (Table 1).
In this context, mainly phytoliths from aboveground plant materials were analyzed. Thus,
there is no or only little information on metal(loid) accumulation in root phytoliths or
phytoliths extracted from soils, respectively. In fact, root phytoliths might be another
important location for the accumulation of metal(loid)s as they can be abundantly found
in some plants, e.g., grasses [93–95]. Soil phytoliths originating from the litterfall of
metal(loid)-accumulating plants might represent an important sink for metal(loid)s in
soils [85,86]. However, more studies are needed to better understand this potential pathway
of metal(loid) (long-term) sequestration in soils (see Section 6).

5. Consequential Perspectives for Phytoremediation

In general, remediation strategies that are using plants can be divided in five main
subgroups, i.e., (i) phytodegradation (breakdown of pollutants by plant enzymes), (ii) phy-
toextraction (accumulation of pollutants in harvestable plant tissues), (iii) phytostabilization
(reduction in the mobility and bioavailability of pollutants in the environment by plants),
(iv) phytovolatilization (transformation of harmful elements into less dangerous ones
within the plant and subsequent release in volatile form via leaves), and (v) rhizofiltration
(filtering polluted water by plant roots) [19,96–98].

As Si generally enhances plant performance in various ways [99], all of these phy-
toremediation strategies might benefit from a Si supply. However, below we focus on the
remediation strategies that are suitable to mitigate the metal(loid) contamination of soils,
i.e., phytoextraction, phytostabilization, and phytovolatilization (phytodegradation and
rhizofiltration are excluded because these strategies are limited to organic pollutants and
aquatic environments, respectively).

Phytoextraction might benefit from a Si supply by the enhanced complexation and
co-precipitation of metal(loid)s with phytogenic silica (see Table 1). In this context, the accu-
mulation of metal(loid)s in soil phytoliths might be a promising pathway for the long-term
sequestration of metal(loid)s in soils, and thus for the phytostabilization of these elements.
Phytovolatilization, which is most effective in climates with low relative humidity and
high evapotranspiration, might benefit from modifications of plant transpiration rates by Si
supply. Aside from these specific effects, phytoextraction, phytostabilization, and phyto-
volatilization might generally benefit from a Si supply of plants by a Si-induced reduction
in oxidative stress caused by metal(loid) uptake, a Si-mediated enhanced photosynthe-
sis efficiency, and Si-induced alterations in membrane transport-related gene expression
(Figure 1).

Although the knowledge of the benefits of Si for the alleviation of metal(loid) toxicity
in plants has been well known for decades (see Section 3), studies on phytoremediation
have mostly not addressed this aspect. In this connection, elemental analyses in phytore-
mediation studies were mainly limited to the metal(loid)s of interest (i.e., the pollutant),
but not to Si. Thus, for many metal(loid)-accumulating plants, specific Si contents are just
unknown (Table 2). However, some plant families that include known metal(loid) accumu-
lating plants (Table 2), are also known for Si accumulating plant species, e.g., the families
Poaceae, Cyperaceae, or Fagaceae [26]. While metal(loid) accumulation in phytoliths of
plants of the Poaceae family has attained some scientific attention recently (see Table 1), we
have almost no information on this aspect regarding other plant families. Thus, the time
is now to combine Si/phytolith and phytoremediation research (see Section 6). This will
help us join the positive effects of Si accumulation in plants to the advantages of phytore-
mediation, which represents an economically feasible (relatively low cost of installation
and maintenance) and environmentally friendly way to restore metal(loid)-contaminated
sites [100,101].
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Figure 1. Effects of Si supply (+Si) on metal(loid) toxicity alleviation in plants and soils (gen-
eral effects, left) and implications for the discussed phytoremediation techniques (specific effects,
right). Metal(loid)s, their volatile forms, metal(loid)-silica complexes or precipitates, and phytolith-
encapsulated metal(loid)s are indicated by different symbols (see key along the bottom).

Table 2. Examples of metal(loid) accumulating terrestrial plants and information on corresponding
Si contents.

Metal(loid) Plant Species Plant Family Si Content 4 (%)

Arsenic (As)

Pteris vittata 1 Pteridaceae ns
Pteridium aquilinum 2 Dennstaedtiaceae 1.5
Corrigiola telephiifolia 2 Caryophyllaceae ns
Sacciolepis cymbiandra 2 Poaceae ns

Cadmium (Cd)

Arabidopsis halleri 1 Brassicaceae ns
Malva rotundifolia 2 Malvaceae ns

Abelmoschus manihot 2 Malvaceae ns
Pterocypsela laciniata 2 Asteraceae ns

Lantana camara 2 Verbenaceae ns

Chromium (Cr)
Brachiaria mutica 2 Poaceae ns
Leptochloa fusca 2 Poaceae ns

Canna indica 2 Cannaceae 0.4

Cobalt (Co) Haumaniastrum robertii 1 Lamiaceae ns
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Table 2. Cont.

Metal(loid) Plant Species Plant Family Si Content 4 (%)

Copper (Cu)
Aeolanthus biformifolius 1 Lamiaceae ns

Brassica campestris 2 Brassicaceae ns
Helianthus annuus 2 Asteraceae 0.03

Lead (Pb)

Noccaea rotondifolia subsp.
cepaeifolia 1 Brassicaceae ns

Pinus sylvestris 2 Pinaceae 0.2
Quercus robur 2 Fagaceae 0.6

Mercury (Hg)

Plectranthus sp. 2 Lamiaceae 0.07 (P. japonicus)
Clidemia sp. 2 Melastomataceae ns

Capsicum annuum 2 Solanaceae 0.05
Phyllanthus niruri 2 Phyllanthaceae ns

Inga edulis 2 Fabaceae ns

Nickel (Ni)
Berkheya coddii 1 Asteraceae ns
Brassica juncea 2 Brassicaceae ns

Typha angustifolia 2 Typhaceae 0.02

Tin (Sn) Cyperus rotundus 3 Cyperaceae ns
Imperata cylindrica 3 Poaceae 0.6

Zinc (Zn)
Noccaea caerulescens 1 Brassicaceae ns

Sinapis arvensis 2 Brassicaceae ns
Tagetes erecta 2 Asteraceae ns

1 taken from Reeves et al. [23], 2 taken from Sharma et al. [19], 3 taken from Ashraf et al. [102], 4 taken from
Hodson et al. [26], ns = not specified.

6. Conclusions and Future Directions

Against the background of global change with increased industrial production and a
growing global population, there is an ample need for sustainable and environmentally
friendly strategies to mitigate human-caused environmental pollution. In this context,
Si-enhanced phytoremediation methods seem to represent the means of choice, if the factor
of time plays a minor part. Moreover, the accumulation of metal(loid)s in phytoliths might
offer a promising pathway for the long-term sequestration of metal(loid)s in soils. However,
to better understand the role of Si in phytoremediation and to evaluate the potential of
metal(loid) storage in the soils’ phytolith pool, the following questions have to be resolved
in future studies.

(i) Which plants are particularly suitable for the accumulation of metal(loid)s in
phytoliths? In this context, grasses (Poaceae) seem to be very promising candidates, as
they usually show relatively high Si contents as well as biomasses [40,103,104]. However,
herbs, shrubs, or fast-growing trees should also be considered in future studies [105,106].
Finding plant species that hyperaccumulate metal(loid)s and that show relatively high Si
contents as well as biomasses might accelerate the phytoremediation duration for a specific
site considerably.

(ii) Which metal(loid)s are accumulated in phytoliths and are there differences between
cell lumen and cell wall phytoliths? If yes, the ratio of cell lumen to cell wall phytoliths [107]
might be a good indicator for the evaluation of the suitability of a specific plant species for
metal(loid) accumulation in phytoliths.

(iii) Can cereal crops be used for phytoremediation of metal(loid)-contaminated agri-
cultural soils? In this context, it should be ensured that metal(loid)s are mainly accumulated
in the non-edible parts of the plants and that specific metal(loid) concentrations in the fruits
are non-hazardous to health [108].

(iv) How long can metal(loid)s be stored in different (cell lumen and cell wall) phy-
toliths in soils? As phytolith dissolution is largely pH dependent, the effects of agricultural
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practices (e.g., liming) on metal(loid) release from phytoliths have to be analyzed in de-
tail [85,86].

The answers to these questions will help us (i) evaluate the potential of specific plants
for the phytoremediation of metal(loid)-contaminated (agricultural) sites, (ii) better under-
stand metal(loid) accumulation in different phytoliths, and finally (iii) identify phytoliths
that are suitable for the long-term sequestration of metal(loid)s in soils.
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