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Abstract: Walnut dieback can be caused by several fungal pathogenic species, which are associ-
ated with symptoms ranging from branch dieback to fruit necrosis and blight, challenging the one
pathogen–one disease concept. Therefore, an accurate and extensive description of the walnut fungal
pathobiome is crucial. To this end, DNA metabarcoding represents a powerful approach provided
that bioinformatic pipelines are evaluated to avoid misinterpretation. In this context, this study aimed
to determine (i) the performance of five primer pairs targeting the ITS region in amplifying genera of
interest and estimating their relative abundance based on mock communities and (ii) the degree of
taxonomic resolution using phylogenetic trees. Furthermore, our pipelines were also applied to DNA
sequences from symptomatic walnut husks and twigs. Overall, our results showed that the ITS2
region was a better barcode than ITS1 and ITS, resulting in significantly higher sensitivity and/or
similarity of composition values. The ITS3/ITS4_KYO1 primer set allowed to cover a wider range of
fungal diversity, compared to the other primer sets also targeting the ITS2 region, namely, GTAA and
GTAAm. Adding an extraction step to the ITS2 sequence influenced both positively and negatively
the taxonomic resolution at the genus and species level, depending on the primer pair considered.
Taken together, these results suggested that Kyo set without ITS2 extraction was the best pipeline to
assess the broadest fungal diversity, with a more accurate taxonomic assignment, in walnut organs
with dieback symptoms.

Keywords: metabarcoding; internal transcribed spacer (ITS); mock communities; environmental
DNA (eDNA); walnut dieback; fungal pathogens

1. Introduction

Walnut (Juglans regia L.) cultivation is one of the most important cultivations of nut
crops worldwide, reaching more than 3.5 billion tons and 1.1 million hectares in 2021 [1].
China is the leading walnut producer, followed by the United States and Iran, while
Europe ranks 5th [1]. Walnut orchards are usually affected by various pathogens, including
Xanthomonas campestris pv. juglandis, which causes walnut blight, Ophiognomonia leptostyla
and species from the Colletotrichum acutatum species complex, both responsible for walnut
anthracnoses, as well as Geosmithia morbida, the causal agent of the “Thousand canker
disease” [2–5]. Walnut dieback has also been frequently reported in California [6] as well
as in Mediterranean-climate countries such as Spain [6,7], Italy [8], Turkey [9], and Czech
Republic [10] over the past decade and more recently in France [11]. This fungal disease is
characterized by symptoms such as fruit necrosis and blight, twig defoliation and dieback
as well as branch canker up to host death [6–11]. The Botryosphaeriaceae family, mainly
represented by the Botryosphaeria, Diplodia and Neofusicoccum genera, and Diaporthe spp.
(teleomorph of Phomopsis spp.) were described as the causal agents in these countries;
however, other pathogenic fungi such as Colletotrichum spp. and Fusarium spp. could be
present in smaller proportions and participate in walnut decay and twig dieback [6,7,11–13].
Walnut dieback is thus likely to be caused by complexes of species working synergistically
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and/or antagonistically to create, foster or mitigate disease onset and development as it
has been demonstrated for dieback diseases affecting other tree crops such as vines [14]. As
such, this disease is an excellent illustration of the pathobiome concept that can be defined
as “the set of host-associated organisms associated with reduced (potentially reduced)
health status, as a result of interactions between members of that set and the host” [15]. It is
therefore important to investigate and thoroughly describe the fungal pathogens associated
with these new symptoms in walnut orchards without neglecting the contribution of
other members of the microbiota to disease development. To do so, environmental DNA
(eDNA) metabarcoding represents a powerful culture-independent technique to decipher
the mycobiota of affected walnut organs as well as their associations and thus gain access
to the pathobiome functioning [16–20].

Metabarcoding has been extensively used to assess microbial diversity of various
agroecosystems [21–24]. Recently, this method has been used to evaluate fungal diversity
associated with leaves [25] and buds [5] of diseased walnut trees. Metabarcoding success
and accuracy depend on the selection of the targeted region, the design of primer pairs,
and the choice of adapted bioinformatic analysis pipelines [26–29]. It is then important to
define an adapted and tailored analysis method for each ecosystem, considering the biases
that may arise at each step of eDNA metabarcoding [26] from polymerase chain reaction
(PCR) parameters and amplification [30–33] to taxonomic assignment of final reads during
bioinformatic analysis [34]. The internal transcribed spacer (ITS) region is the universal
barcode used to study fungal communities [35], and many studies have designed universal
primers for the amplification of this region for a large number of fungal species [36–45].

In order to validate an analysis method, a mock community control is highly rec-
ommended [26,46]. It is composed of DNA solutions of known organisms, likely to be
encountered in the targeted ecosystem, and mixed in known proportions. This positive
control enables to evaluate and estimate numerous experimental, sequencing and bioin-
formatic analysis biases during sample preparation and DNA extraction, PCR sequence
amplification (e.g., over- or under-representation of taxa and chimera formation), and
taxonomic assignment [28,46–49].

To the best of our knowledge, our study is the first to validate metabarcoding protocols
and assess fungal pathogen diversity associated with walnut diseases based on mock com-
munities. The aim of this study was to define a metabarcoding methodology enabling the
characterization of walnut fungal pathobiome associated with walnut dieback disease with
an accurate taxonomic resolution up to the genus or species level. The validated method
was subsequently applied on symptomatic husk and twig samples from walnut orchards.

2. Results
2.1. Analysis of Mock Communities and Identification of the Best Primer Sets

To evaluate the performance of each combination of primer pairs and pipelines in
characterizing fungal mycobiota associated with symptomatic walnut organs, five mock
communities, comprising between 5 to 18 fungal pathogenic and endophytic/saprophytic
walnut-associated DNA species, were sequenced using Illumina MiSeq metabarcoding.

After read filtering, a total number of 3,509,971 sequence reads were obtained from
15 mock community samples (5 mocks × 3 replicates) and all primer pairs, with a mean
number of sequences per sample ranging from 32,318 ± 5232 (GTAAm) to
78,792 ± 18,049 (Kyo) and a retention percentage of at least 41.6% after read trimming
and filtering (Table S1). Rarefaction curves plotting the sequencing depth against the num-
ber of ASVs showed that the plateau phase was reached for every community and every
primer set (Figure S1).

The distribution of genera showed a high repeatability between replicates irrespective
of the mock and primer set (Figure 1). In addition, walnut DNA did not affect the quality
of metabarcoding sequencing as shown by the similar distribution between Mock3 and
Mock5 (Figure 1). Furthermore, similarity of composition values were not significantly
different between these two mock communities (p = 0.2997, Kruskal-Wallis test).
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the five primer sets: ITS (A), ITS1 (B), GTAA (C), GTAAm (D) and Kyo (E). Genera are ordered by 
family taxonomic rank in the legend. The Sarocladium genus is shown separately because it is not a 
component taxon of the mock communities and is identified as a contaminant genus. 

All primer sets demonstrated the ability to detect Botryosphaeriaceae and Diaporthe 
species when these species were not mixed with others (Mock1 and Mock2) as shown by 
the high sensitivity values (Tables 1 and 2). However, they did not detect the complete 
diversity of Mock3, Mock4 and Mock5. The ITS1 primer set detected the lowest number 
of genera (up to 8 species out of 18 in at least one replicate of Mock4), and GTAA failed to 

Figure 1. Histograms showing the relative abundance at the genus level for each replicate (−1, −2,
−3) of mock communities (M1, M2, M3, M4, M5) according to metabarcoding sequencing based on
the five primer sets: ITS (A), ITS1 (B), GTAA (C), GTAAm (D) and Kyo (E). Genera are ordered by
family taxonomic rank in the legend. The Sarocladium genus is shown separately because it is not a
component taxon of the mock communities and is identified as a contaminant genus.

All primer sets demonstrated the ability to detect Botryosphaeriaceae and Diaporthe
species when these species were not mixed with others (Mock1 and Mock2) as shown by
the high sensitivity values (Tables 1 and 2). However, they did not detect the complete
diversity of Mock3, Mock4 and Mock5. The ITS1 primer set detected the lowest number
of genera (up to 8 species out of 18 in at least one replicate of Mock4), and GTAA failed
to amplify Colletotrichum godetiae, and its ability to detect C. fioriniae was relatively low
(between 60 and 116 reads depending on replicate; Table 1). Moreover, considering the
most diverse mock community (Mock4), no significant correlations were found between
obtained and expected relative abundances for ITS (R = 0.012 and p = 0.95) and ITS1 sets
(R = −0.17 and p = 0.35) mainly because of an overrepresentation of Fusarium, Epicoccum
and Gibellulopsis genera and an underrepresentation of Botryosphaeriaceae and Diaporthe
species (Figures 1 and 2).
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Table 1. Genus recovery and primer sensitivity on mock communities. Cells were subdivided when results differed between replicates. Green cells correspond to
True Positive (TP) ASVs (i.e., detected and well assigned at the genus level), blue and red cells to False Negative (FN) ASVs (i.e., detected but inaccurately assigned
at the genus level, or not detected, respectively) and gray cells to species not involved in the mock community.
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Table 2. Sensitivity, precision and similarity of composition values and number of ASVs for each
mock community and each primer pair. Results are presented as mean +/− standard deviation over
the three technical replicates when they showed different values. ASVs assigned to Sarocladium were
not taken into account for the calculation of the performance criteria.

Sample
(Number of

Expected ASVs)
Primer Set Sensitivity Precision Similarity of

Composition
Number of

Obtained ASVs

Mock1
(6 ASVs)

ITS 0.833 b 0.045 c ± 0.001 0.739 c ± 0.016 113 ± 3.6
ITS1 0.833 b 0.242 abc ± 0.007 0.845 a ± 0.003 21.7 ± 0.6

GTAA 1 a 0.500 a 0.846 ab ± 0.001 12
GTAAm 1 a 0.250 ab 0.820 abc ± 0.002 24

Kyo 0.833 b 0.114 bc 0.814 bc ± 0.004 45

Mock2
(5 ASVs)

ITS 1 a 0.099 b ± 0.002 1 a 50.3 ± 1.1
ITS1 1 a 0.341 ac ± 0.014 1 a 14.7 ± 0.6

GTAA 1 a 0.500 a 1 a 10
GTAAm 1 a 0.278 abc 1 a 18

Kyo 1 a 0.135 bc 1 a 37

Mock3
(17 ASVs)

ITS 0.941 a 0.178 ac ± 0.003 0.301 c ± 0.007 90.7 ± 1.5
ITS1 0.804 b ± 0.068 0.518 b ± 0.032 0.324 ac ± 0.005 27.3 ± 0.6

GTAA 0.882 ab 0.454 ab 0.710 ab ± 0.003 34
GTAAm 0.941 a 0.253 abc ± 0.002 0.702 abc ± 0.010 64.3 ± 0.6

Kyo 0.882 ab 0.115 c 0.749 b ± 0.005 132

Mock4
(18 ASVs)

ITS 0.870 b ± 0.032 0.154 b ± 0.011 0.325 ac ± 0.003 103.7 ± 4.9
ITS1 0.685 b ± 0.085 0.457 a ± 0.056 0.292 c ± 0.001 28

GTAA 0.889 ab 0.453 a ± 0.015 0.707 abc ± 0.006 36.3 ± 1.1
GTAAm 0.944 a 0.260 ab ± 0.002 0.751 ab ± 0.006 66.3 ± 0.6

Kyo 0.889 ab 0.115 b 0.769 b ± 0.007 140.7 ± 0.6

Mock5
(17 ASVs)

ITS 0.941 a 0.178 ac ± 0.007 0.312 c ± 0.006 91 ± 3.5
ITS1 0.706 b ± 0.059 0.495 b ± 0.025 0.327 ac ± 0.020 25.3 ± 3.0

GTAA 0.882 ab 0.454 ab 0.731 ab ± 0.009 34
GTAAm 0.941 a 0.255 abc ± 0.002 0.718 abc ± 0.005 63.7 ± 0.6

Kyo 0.882 ab 0.117 c ± 0.004 0.764 b ± 0.009 129.7 ± 4.0

Lowercase letters indicate significant differences at 0.05 threshold based on Dunn’s test. Statistical comparisons
were performed by mock and by column.

Compared to ITS and ITS1 primer pairs, the three other sets targeting the ITS2 barcode
showed overall better performance in terms of sensitivity and/or similarity of composi-
tion; however, Kyo was associated with the lowest precision values along with ITS. This
discrepancy is mainly caused by metabarcoding sequencing with these primer pairs that
generated supernumerary ASVs, thus overestimating the number of ASVs obtained com-
pared to the expected number of ASVs and leading to low precision values at the ASV scale.
First, GTAAm degenerated primer pair permitted the amplification and detection of Col-
letotrichum in addition to other genera of interest when compared with GTAA (Figure 1C,D).
GTAAm was also associated with significantly higher sensitivity values than ITS1 when
considering Mock4 (Table 2). Overall, both GTAAm and Kyo showed the highest positive
and significant correlation coefficients between observed and expected relative abundances
for Mock4 (R = 0.51; p = 2.5 × 10−3 and R = 0.6; p = 2.4 × 10−4 respectively; Figure 2).
Nonetheless, both primer pairs underestimated or overestimated the relative abundance of
a few studied genera. In particular, relative abundance of Lasiodiplodia was underestimated
by both GTAAm and Kyo (with a ratio of expected to recovered relative abundances of
2.254 ± 0.079 and 2.603 ± 0.009, respectively) as well as the Botryosphaeria (1.838 ± 0.047
and 2.080 ± 0.058, respectively) and Diaporthe relative abundances (1.908 ± 0.041 and
1.711 ± 0.050, respectively). Alternaria was underestimated by GTAAm (3.183 ± 0.146),
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and Fusarium was overestimated by both GTAAm (0.383 ± 0.003) and Kyo (0.468 ± 0.005;
Figures 1 and 2).

Given that GTAA failed to amplify Colletotrichum species, which are important
pathogens of interest in walnut, while ITS and ITS1 provided poor similarity of composition
values, only GTAAm and Kyo were utilized for the following steps, i.e., optimization of
bioinformatic analyses and analysis of environmental samples.
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2.2. Evaluation of the Taxonomic-Level Resolution

The genus- and species-level resolution of regions targeted by GTAAm and Kyo was as-
sessed using phylogenetic trees based on ITS2 sequences of wood and
fruit-associated pathogens.

First, phylogenetic trees with Bayesian posterior probabilities (BPP) were constructed
based on our local amplicon databases, subjected or not to an extraction of the ITS2 region,
in order to evaluate the impact of an extraction step with ITSx software on the quality of
taxonomic resolution. Taxonomy of the fungal species included in mock communities was
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manually inspected and validated up to the species or genus level if nodes before clade
containing targeted species or genus were supported by relatively strong BPP values (>0.70,
considering that the analysis is based only on 1 locus; Table 3). At the species level, the
highest assignment rates with both primer pairs were obtained without ITS2 extraction
for Kyo (9 out of 18 species included in mock communities) and with ITS2 extraction for
GTAAm (5 out of 18; Table 3). The main issues resulted from a few Dothiorella species and
N. mediterraneum that were clustered together (in all conditions), N. parvum that was often
clustered with the previous ones (except for Kyo without ITSx extraction condition) and B.
dothidea that could not be differentiated from Neoscytalidium dimidiatum in most conditions
(except for GTAAm with ITSx extraction condition; Table 3). These species were therefore
given new assignments considering their possible multiple assignments (e.g., N. parvum was
reassigned as Neofusicoccum/Dothiorella and B. dothidea as Botryosphaeria/Neoscytalidium for
the relevant conditions). Moreover, L. theobromae sequences were always mixed with other
Lasiodiplodia species, while F. juglandicola sequences were mixed with F. avenaceum ones.

Table 3. Determination of the genus- and species-level resolutions obtained with GTAAm and Kyo
with (w/) or without (wo/) ITSx extraction after DADA2 sequence pre-processing and following
validation of taxonomic assignment with phylogenetic trees. Green cells correspond to a correct
assignment at the genus or species level, blue cells correspond to an inaccurate assignment and gray
cells to fungal species absent from our local databases.

Fungal Species Included in
Mock Communities

GTAAm Kyo
w/ wo/ w/ wo/

Genus Species Genus Species Genus Species Genus Species
Botryosphaeria dothidea

Diplodia seriata
Dothiorella omnivora

Lasiodiplodia theobromae
Neofusicoccum mediterraneum

N. parvum
Diaporthe amygdali

Dia. eres
Dia. foeniculina

Dia. novem
Dia. rudis

Epicoccum nigrum
Colletotrichum fioriniae

C. godetiae
Fusarium juglandicola

F. solani
Gibellulopsis nigrescens

Alternaria alternata

Second, additional phylogenetic trees were built by adding ASVs sequences (from
metabarcoding of mock samples) to our local database to determine their taxonomic
placement within the tree and whether it was in accordance with their assignment after
a blast against our ITS local database. We found that ASVs were generally grouped with
the corresponding reference sequences at the genus or species level, regardless of the
combination of primer pairs and pipelines (Figure 3).

The manually-corrected taxonomy of ASVs, as described above, was also used to
compare the performance criteria of the two selected primer pairs depending on the
addition of an extraction step of the ITS2 sequence. This step did not affect the mean number
of reads after filtering for all mock communities for the two primer pairs, suggesting that
no aspecific amplifications occurred (Table S1). Thus, the average number of ASVs using
mock community remained the same as well as the similarity of composition at the genus
and species level, which was significantly higher with Kyo for Mock3 to Mock5 (Table 4).
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Figure 3. Bayesian inference phylogenetic consensus cladogram gathering ASVs from mock communi-
ties (mockDNA) and from environmental samples (eDNA) obtained from metabarcoding sequencing
with GTAAm with ITSx extraction (A) and Kyo without ITSx extraction (B). Bayesian posterior prob-
abilities values are represented at branches. Taxonomic assignment of ASVs from mock communities
was based on the local ITS database, and taxonomic assignment of supplementary environmental
ASVs (i.e., for Juglanconis and Phaeoacremonium genera) was based on BLASTn results. Phylogenetic
cladograms were rooted with Alternaria.
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Table 4. Sensitivity, precision and similarity of composition values for GTAA182f/GTAA526r
(GTAAm) and ITS3/ITS4_KYO1 (Kyo) primer pairs with (w/) or without (w/o) ITS2 extraction at
the genus (Gen) and species level (Sp) after manual inspection of taxonomic assignment. Results are
presented as mean +/− standard deviation over the three replicates. ASVs assigned to Sarocladium
were not taken into account for the calculation of the performance criteria.

Sample Primer Set

Sensitivity Precision
Similarity of Composition

Genus Species Genus Species

w/ w/o w/ w/o w/ w/o w/ w/o Genus Species

Mock1
GTAAm 0.5 a 0.333 b 0.167 a 0 b 0.143 a 0.1 ab 0.053 a 0 b 0.820 A ± 0.002 0.822 A ± 0.004

Kyo 0.333 b 0.5 a 0.167 a 0.167 a 0.049 c 0.071 bc 0.025 ab 0.025 ab 0.814 B± 0.004 0.826 A ± 0.006

Mock2
GTAAm 1 a 1 a 0.4 a 0.4 a 0.278 a 0.278 a 0.133 a 0.133 a 1 A 0.790 A ± 0.004

Kyo 1 a 1 a 0.5 a 0.6 b 0.135 b 0.135 b 0.059 b 0.086 ab 1 A 0.817 B ± 0.004

Mock3
GTAAm 0.823 a 0.765 b 0.235 ab 0.176 a 0.228 a ± 0.002 0.215 ab ± 0.002 0.078 a ± 0.001 0.060 bc ± 0.001 0.702 A ± 0.010 0.655 A ± 0.008

Kyo 0.765 b 0.823 a 0.236 ab 0.470 b 0.101 c 0.108 bc 0.034 b 0.065 ac 0.749 B ± 0.005 0.745 B ± 0.001

Mock4
GTAAm 0.833 a 0.779 b 0.278 ab 0.222 a 0.237 a ± 0.002 0.225 ab ± 0.002 0.094 a ± 0.001 0.076 ab ± 0.001 0.751 A ± 0.006 0.710 A± 0.003

Kyo 0.778 b 0.833 a 0.245 ab 0.5 b 0.102 c 0.109 bc 0.039 c 0.068 bc 0.769 B ± 0.007 0.770 B ± 0.008

Mock5
GTAAm 0.823 a 0.765 b 0.235 ab 0.176 a 0.229 a 0.219 ab ± 0.002 0.078 a 0.060 bc ± 0.001 0.718 A ± 0.005 0.672 A ± 0.004

Kyo 0.765 b 0.823 a 0.235 ab 0.470 b 0.103 c ± 0.003 0.111 bc ± 0.003 0.034 b ± 0.001 0.066 ac ± 0.002 0.764 B ± 0.009 0.765 B ± 0.010

w/: with ITSx extraction; w/o: without ITSx extraction; Genus: genus level; Species: species level. Lowercase
letters indicate significant differences at 0.05 threshold based on Dunn’s test. Statistical comparisons were
performed by level (genus or species) between primer sets for sensitivity and precision values with and without
ITSx extraction for each mock community. Uppercase letters indicate significant differences at 0.05 threshold based
on Wilcoxon’s test. Statistical comparisons were performed by level (genus or species) and by mock between
primer sets for compositional similarity values.

In contrast, sensitivity at the genus level was significantly higher with GTAAm than
with Kyo when a step of ITS2 extraction was added, while the opposite was found without
the ITS2 extraction step (Table 4). In any case, at the species level, the highest sensitivity rate
was obtained with Kyo without ITS2 extraction, further confirming that these conditions
were the best to correctly assign the fungi of interest at this taxonomic rank (Table 4).
Nonetheless, the precision criterion at the genus level remained significantly higher with
GTAAm with ITS2 extraction than with Kyo (with (p = 3.2 × 10−4) and without (p = 0.008)
ITS2 extraction).

2.3. Application on Environmental Samples

Based on these results, the two combinations GTAAm with ITS2 extraction and Kyo
without ITS2 extraction were then applied on symptomatic environmental samples. The
samples were collected from three French walnut orchards (P7, P10 and P12) and matched
with symptomatic twigs (T) or husks (H). Taxonomic assignment of ASVs corresponding
to phytopathogenic fungi of interest (i.e., fungal taxa introduced in mock communities)
was manually inspected and modified as described above. Taxonomic assignment of the
other fungal taxa was manually corrected at the genus level, or family level when necessary,
based on the first 150 hits obtained with BLASTn.

After read filtering, ITS2 metabarcoding sequencing of the three replicates of six
walnut samples yielded a total of 1,151,054 read sequences with Kyo (63,947 ± 33,362
mean reads per sample clustered into 108 ± 23 ASVs), while 693,700 read sequences
(38,539 ± 10,832 mean reads per sample clustered into 49 ± 17 ASVs) were obtained with
GTAAm. Replicate P7-H-2020-3 was associated with only 173 raw sequence reads when
amplified with GTAAm and was discarded from further analysis. Combining results from
husks and twigs, 25 and 24 genera were obtained for GTAAm and Kyo, respectively, of
which 18 were in common. Each combination of primer pair and pipeline enabled the
detection of the pathogenic genera in walnut trees, i.e., Botryosphaeria/Neoscytalidium, Neofu-
sicoccum/Dothiorella, Colletotrichum, Diaporthe, Fusarium, Juglanconis and Phaeoacremonium
(Figures 3 and 4). Unlike Kyo, GTAAm did not permit the detection of Epicoccum genus as
well as Basidiomycota taxa (Bulleribasidiaceae family mainly represented by Vishniacozyma
genus and to a lesser extent unidentified genera of Sirobasidiaceae family and Tremellales
order). Moreover, Kyo showed a better taxonomic resolution for certain genera within
the Pleosporales order than GTAAm. The genera Angustimassarina and Biatriospora were
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identified with Kyo but were reassigned at the order level (unidentified_Pleosporales) with
GTAAm (Figure 4).
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Figure 4. Histograms showing the relative abundance of fungal genera in environmental samples
collected in 2020 and 2021 in replicates (−1, −2, −3) of walnut husks (H) and twigs (T) from
three orchards (P7, P10, P12). Relative abundances were obtained with metabarcoding sequencing
after amplification with GTAAm with ITS2 region extraction (A) and Kyo without ITS2 region
extraction (B).

For both primer sets, alpha-diversity indices, including Shannon and InvSimpson
indices calculated at the genus level, were not significantly different irrespective of the
index and the type of organ studied. Nonetheless, the number of detected genera (observed
index) associated with environmental husk samples was significantly higher with Kyo
than with GTAAm, further highlighting a better capacity of Kyo to cover a wider range of
diversity (p = 0.004; Figure 5).

Plants 2023, 12, x FOR PEER REVIEW 11 of 27 
 

 

and twigs, 25 and 24 genera were obtained for GTAAm and Kyo, respectively, of which 
18 were in common. Each combination of primer pair and pipeline enabled the detection 
of the pathogenic genera in walnut trees, i.e., Botryosphaeria/Neoscytalidium, Neofusicoc-
cum/Dothiorella, Colletotrichum, Diaporthe, Fusarium, Juglanconis and Phaeoacremonium (Fig-
ures 3 and 4). Unlike Kyo, GTAAm did not permit the detection of Epicoccum genus as 
well as Basidiomycota taxa (Bulleribasidiaceae family mainly represented by Vishniacozyma 
genus and to a lesser extent unidentified genera of Sirobasidiaceae family and Tremellales 
order). Moreover, Kyo showed a better taxonomic resolution for certain genera within the 
Pleosporales order than GTAAm. The genera Angustimassarina and Biatriospora were iden-
tified with Kyo but were reassigned at the order level (unidentified_Pleosporales) with 
GTAAm (Figure 4). 

 
Figure 4. Histograms showing the relative abundance of fungal genera in environmental samples 
collected in 2020 and 2021 in replicates (−1, −2, −3) of walnut husks (H) and twigs (T) from three 
orchards (P7, P10, P12). Relative abundances were obtained with metabarcoding sequencing after 
amplification with GTAAm with ITS2 region extraction (A) and Kyo without ITS2 region extraction 
(B). 

For both primer sets, alpha-diversity indices, including Shannon and InvSimpson in-
dices calculated at the genus level, were not significantly different irrespective of the index 
and the type of organ studied. Nonetheless, the number of detected genera (observed in-
dex) associated with environmental husk samples was significantly higher with Kyo than 
with GTAAm, further highlighting a better capacity of Kyo to cover a wider range of di-
versity (p = 0.004; Figure 5). 

 

Figure 5. Alpha-diversity indices calculated at the genus level on the rarefied dataset in environmental
samples (Husks: H and Twigs: T) from three orchards (P7, P10 and P12) obtained with GTAAm (A)
and Kyo (B) combinations.



Plants 2023, 12, 2383 11 of 26

3. Discussion

The aim of this study was to define both metabarcoding parameters and bioinformatic
pipeline to profile the fungal pathobiome associated with walnut dieback symptoms in
eDNA samples. In order to choose the best combination of barcode and pipeline, we
assessed the ability of five primer pairs to detect, assign and accurately estimate the relative
abundance of fungal strains commonly associated with walnut or walnut dieback included
in mock communities using Illumina MiSeq PE 300 bp sequencing. The selection of targeted
barcodes, primers and bioinformatic pipelines is crucial in light of their significant influence
on the resolution of taxonomic assignment [29,50–53]. The five primer pairs, all targeting
whole or a part of the ITS region designated as the fungal universal barcode [35], i.e., ITS1,
ITS2 and ITS, were compared using the DADA2 bioinformatic tool. Here, targeting the ITS2
region was shown to improve similarity of composition and/or sensitivity compared to
ITS and ITS1. In addition, the quality of the analysis also depends largely on bioinformatic
pipelines that must be tailored according to the fungal taxa expected to be associated with
the considered ecosystem. Many studies have compared various barcodes for optimal
fungal community analyses, which evidenced a lack of consensus in the choice of the
best barcode between ITS1, ITS2 or the whole ITS region probably because it notably
depends on the fungal taxa that are being considered [20,54–58]. For instance, the GTAA
primer pair was set aside in this study because of its inability to amplify Colletotrichum
species, which were not part of the tested fungal species by Morales-Cruz et al. [20]. The
degeneration of the forward primer of this barcode enabled to solve this issue as suggested
by Tedersoo et al. (2016) to minimize primer bias [29].

Interestingly, two primer pairs targeting the ITS2 region, GTAA182fm/GTAA526r and
ITS3/ITS4_KYO1, provided the most accurate identifications and estimations of relative
abundances and were selected for further analyses. On the basis of phylogenetic trees, both
sets showed the same overall ability in distinguishing fungi of interest at the genus level,
while Kyo showed better taxonomic resolution at the species level without the use of ITSx.
This manual inspection step showed that care should be taken with the ASVs assignment
just after bioinformatic pre-processing as it strongly depends on the taxonomic assignment
algorithm as well as on the database even when UNITE database, the largest curated
database dedicated to ITS sequences, is used [53,59]. Note that the same analyses were
performed with the UNITE+INSDC non-redundant fungal ITS database v8.3 (1,039,010 ITS
fungal sequences) before the latest version was released. The accuracy of the taxonomic
assignment was much lower than those obtained with the v9.0 database (6,441,764 ITS
fungal sequences). Thus, the number of sequences in the database, the diversity it covers,
and the quality of the sequences are other crucial parameters in the quality of metabarcoding
sequencing bioinformatic analyses [60–62]. The use of the latest version of a reference
database seems to be essential, especially in view of the increase of knowledge about
microbial diversity and of available sequences. The manual curation step allowed for the
reassignment of ASVs to a more rightful taxonomic rank, notably those initially assigned to
Botryosphaeria dothidea and Neofusicoccum spp. that were found clustered with a few other
genera in the phylogenetic tree and therefore reassigned accordingly (Table 3).

Although Kyo and GTAAm provided high similarity of composition values, there were
a few discrepancies between expected and observed relative abundances, up to a factor of
3. This has been consistently reported in many studies, and it was hypothesized that ITS
length polymorphism likely accounted for such differences [63,64]. In other words, shorter
amplicons are more likely to amplify during PCR [65] resulting in overrepresented taxa and,
consequently, due to the compositional nature of metabarcoding data, underrepresented
taxa [66]. Additional polymorphism form that could lead to an overestimation of taxa is the
copy number variation (CNV) of the targeted region. Recently, Lofgren et al. (2019) inferred
using in silico analysis of fungal genomes that the CNV of ribosomal DNA containing
the ITS region could vary from 14 to 1442 copies among 91 fungal taxa belonging to
Ascomycota, Basidiomycota, Chytridiomycota, Mucoromycota and Zoopagomycota phyla [67].
Another main bias associated with PCR is that more abundant taxa are more likely to be
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amplified [66], which was actually not evaluated in our mock communities mixed in even
proportions. Nanopore and PacBio sequencing technologies do not require a PCR step
and may thus overcome these issues. In addition, sequencing longer reads allow a more
accurate taxonomic assignment. However, the use of these technologies are still limited
probably because of their high cost.

Furthermore, extraction of the variable ITS1 or ITS2 regions from raw sequences is
recommended in many pipelines in order to discard conserved flanking sequences and
thus improve species identification [51,68,69]. Based on this study, the interest of adding
an extraction step depended on the primer set tested. Actually, extraction of the ITS2
region improved sensitivity with GTAAm, while the opposite was found with Kyo, and
most probably was because of the loss of genetic information in sequences obtained with
Kyo in the 28S region. Finally, we evaluated the capacity of the combinations of the two
selected primer pairs with and without ITS2 extraction to describe well the symptomatic
environmental samples. All conditions tested successfully permitted the detection and am-
plification of the major fungal phytopathogens and endophytes or saprophytes associated
with walnut dieback and trunk diseases worldwide, namely, Botryosphaeria, Colletotrichum,
Diaporthe, Fusarium, Neofusicoccum, Juglanconis and Phaeoacremonium genera [5,10,25,70–72].
Alpha-diversity indices were not significantly different between the two primer pairs ex-
cept for the number of detected genera associated with walnut husk samples, which was
significantly higher with Kyo. Note that only Kyo led to the amplification of Basidiomy-
cota sequences, providing a broader view of fungal diversity of the pathobiome in the
environmental samples [38].

4. Materials and Methods
4.1. Identification of Primer Sets Targeting Walnut Pathogens

The internal transcribed spacer (ITS) of the ribosomal DNA region was chosen as
target barcode to identify fungal communities. A local database was built with full length
ITS sequences of 78 species from 17 genera commonly isolated from walnut, almond,
pistachio and olive trees worldwide, i.e., Geosmithia, Botryosphaeria, Diplodia, Dothiorella,
Lasiodiplodia, Neofusicoccum, Neoscytalidium, Diaporthe, Epicoccum, Colletotrichum, Ophiog-
nomonia, Juglanconis, Fusarium, Gibellulopsis, Alternaria, Phaeoacremonium and Cytospora
(Table 5). The database was generated by downloading ITS sequences from the Genbank
database [73] of National Center for Biotechnology Information [74] (accessed on 21 May
2021) for each fungal species using the query word ‘internal transcribed spacer’. Up to
10 sequences per species were retrieved as well as the species reference sequence (RefSeq)
when available [75].

Three universal primer sets amplifying the whole ITS region (ITS1F/ITS4, here-
after ITS [36,37]), the ITS1 region (ITS1F/ITS2, hereafter ITS1 [36,37]) and the ITS2 re-
gion (ITS3/ITS4_KYO1, hereafter Kyo [36,38]) regions were selected. Two primer sets
were added because of their ability to specifically amplify part of the pathogens of in-
terest (GTAA182f/526r and GTAA182fm/526r, hereafter GTAA and GTAAm, respec-
tively) (Table 6 and Figure 6). GTAA was designed by Morales-Cruz et al. [20] to amplify
grapevine-associated pathogens using metabarcoding sequencing, and some of which are
common to those isolated from nut crops (i.e., Botryosphaeria, Diplodia, Dothiorella, Lasiodiplo-
dia, Neofusicoccum, Diaporthe and Phaeoacremonium). In silico amplification of the local
ITS database with the GTAA182f/526r primer pair was performed using Geneious Prime
2021.1.1 (settings: pairs only anywhere on the sequences and two mismatches allowed
except within 15 bp of 3′ end; https://www.geneious.com (accessed on 21 May 2021). Since
primers GTAA182f/526r failed to amplify the targeted region in Colletotrichum spp. because
of a mismatch in the forward primer sequence, it was modified by replacing the C base in
the 9th position by Y and renamed GTAA182fm.

https://www.geneious.com
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Table 5. Fungal species associated with wood and fruit diseases among nut and olive trees.

Classification Species
Host (Species)

ReferencesWalnut
(Juglans regia)

Almond
(Prunus dulcis)

Pistachio
(Pistacia vera)

Olive
(Olea europaea)

Bionectriaceae
Geosmithia flava X [76]

G. lavendula X [76]
G. morbida X [77,78]

Botryosphaeriaceae

Botryosphaeria dothidea X X X X [11,12,79–85]
Diplodia gallae X [70]

D. mutila X X X X [80,83,84,86–88]
D. seriata X X X X [7,80–83,86,87,89–91]

Dothiorella iberica X X X X [80,83,87,91]
Dot. omnivora X [10,70]
Dot. plurivora X [70]

Dot. sarmentorum X X X [7,70,81,91]
Dot. viticola X X [70,87]

Lasiodiplodia citricola X X [70,80,91]
L. mahajangana X X [70,92]

L. pseudotheobromae X X [85,93]
L. theobromae X X X X [70,81,83,84,87]

Neofusicoccum hellenicum X [92]
N. luteum X [83,84]

N. mediterraneum X X X X [7,80,81,83,85,87,88,91]
N. nonquaesitum X X [80,81]

N. parvum X X X X [7,11,80–82,84–87]
N. vitifusiforme X X X X [80,83,87,90,91]

Neoscytalidium dimidiatum X X X X [80,87,94–96]

Diaporthaceae

Diaporthe amygdali X X [7,82,97,98]
Dia. australafricana X X [86,87]

Dia. biguttulata X [99]
Dia. capsici X [100]

Dia. cynaroidis X [86]
Dia. eres X X [10,11,87,99]

Dia. foeniculina X X X X [7,11,80,85,90,98]
Dia. juglandicola X [101]

Dia. novem X X [87], this study
Dia. rudis X X X [83,91,102], this study

Dia. shennongjiaensis X [103]

Didymellaceae Epicoccum nigrum X X [11,84]

Glomerellaceae

Colletotrichum acutatum X X X X [104–108]
C. fioriniae X X X X [5,11,105,107,109–111]

C. fructicola X [112]
C. gloeosporioides X X X [5,107,109,113,114]

C. godetiae X X X [5,11,106,107,109,110]
C. kahawae X X [109,114]

C. nymphaeae X X X [5,109,115–117]
C. siamense X X X [108,113,114]
C. viniferum X [104]

Gnomoniaceae Ophiognomonia leptostyla X [118,119]

Juglanconidaceae Juglanconis appendiculata X [71]
J. juglandina X [71,120]

Nectriaceae

Fusarium avenaceum X X X [121–125]
F. chlamydosporum X X [125,126]

F. culmorum X X [121,123,125]
F. equiseti X [125]

F. graminearum X [123]
F. incarnatum X X [123,125,127]
F. juglandicola X [128]
F. oxysporum X X X [121,123,125,126]

F. proliferatum X X [123,129]
F. solani X X X X [11,124–126,130,131]

Plectosphaerellaceae Gibellulopsis nigrescens X [11]

Pleosporaceae
Alternaria alternata X X X X [79,84,121,132,133]

A. arborescens X X [132,133]
A. tenuissima X X X X [79,84,130,132,133]
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Table 5. Cont.

Classification Species
Host (Species)

ReferencesWalnut
(Juglans regia)

Almond
(Prunus dulcis)

Pistachio
(Pistacia vera)

Olive
(Olea europaea)

Togniniaceae

Phaeoacremonium cinereum X X [70]
P. fraxinopennsylvanicum X [70]

P. italicum X X X [70,134]
P. minimum X X X X [70,85,90]

P. parasiticum X X X X [70,90,134]
P. sicilianum X X [10,134]
P. tuscanum X [70]

P. viticola X X X X [70,135]

Valsaceae

Cytospora atrocirrhata X [136,137]
Cyt. californica X X X [87,88,136]

Cyt. ceratosperma X [137]
Cyt. chrysosperma X [136,138]

Cyt. cincta X [138]
Cyt. gigalocus X [136,137]

Cyt. joaquinensis X X [88,136]
Cyt. nivea X [139]

Cyt. plurivora X X X X [87,136]

Table 6. Summary of PCR primers used in this study for metabarcoding sequencing. Amplicon sizes
are based on the ITS region of N. parvum (OL639139.1) presented in Figure 1.

Barcode Primer Name Set Name Direction Sequence (5′-3′) Amplicon
Size (bp)

Primer
Reference

ITS
ITS1F

ITS
Forward CTTGGTCATTTAGAGGAAGTAA

617
[37]

ITS4 Reverse TCCTCCGCTTATTGATATGC [36]

ITS1
ITS1F

ITS1
Forward CTTGGTCATTTAGAGGAAGTAA

295
[37]

ITS2 Reverse GCTGCGTTCTTCATCGATGC [36]

ITS2

GTAA182f
GTAA

Forward AAAACTTTCAACAACGGATC
337

[20]
GTAA526r Reverse TYCCTACCTGATCCGAGGTC [20]

GTAA182fm
GTAAm

Forward AAAACTTTYAACAACGGATC
337

This study
GTAA526r Reverse TYCCTACCTGATCCGAGGTC [20]

ITS3 Kyo Forward GCATCGATGAAGAACGCAGC
342

[36]
ITS4_KYO1 Reverse TCCTCCGCTTWTTGWTWTGC [38]

In bold, the two primer pairs selected to compare the performance of taxonomic assignment and applied to
metabarcoding sequencing of environmental samples.
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Figure 6. Schematic representation of the fixation sites of forward and reverse primers listed in
Table 6 on the ITS region of N. parvum (OL639139.1) as an example. Forward primers are represented
by right-pointing arrows, and reverse primers by left-pointing arrows.

4.2. Fungal Mock Communities

Taxonomic identity of isolates used to construct mock communities were preliminarily
checked by amplifying the region targeted by the ITS4/ITS5 primer pair, following PCR
conditions described in White et al. [36]. Sanger sequencing of amplicons was performed
by Eurofins Genomics platform (Cologne, Germany). Contig assembly and taxonomic
assignment were performed with Geneious Prime 2021.1.1.

Five mock communities (Mock1–Mock5) were generated by combining DNA solutions
in equal concentrations from pure cultures of walnut fungal pathogens isolated from symp-
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tomatic walnut husks and twigs collected in French walnut orchards. In addition, cultures
from the Westerdijk Fungal Biodiversity Institute (CBS collection, Utrecht, Netherlands)
and the University of Western Brittany Culture Collection (UBOCC, Plouzané, France)
were also included to cover the range of pathogenic fungal species associated with walnut
decay and necrotic twigs reported in several countries (Table 7). DNA extracted from
asymptomatic walnut husks was added in Mock5 to evaluate the potential matrix effect
on species amplification during PCR given the high levels of potential PCR inhibitors,
including polyphenols, in husks [140,141] (Table 7). Besides known walnut pathogens,
mock communities were also composed of DNA from non-phytopathogenic fungi fre-
quently isolated in symptomatic organs during preliminary tests, i.e., Gibellulopsis nigrescens
and Epicoccum nigrum. Pure fungal cultures and mock communities DNA concentrations
were quantified with a Quantus™ Fluorometer and a QuantiFluor® ONE ds DNA Sys-
tem (Promega Corporation, Madison, WI, USA). Three replicates were prepared for each
mock community.

Table 7. Species included in mock communities and their origin. Each mock community was
composed of DNA solutions of the same concentration in the same proportion.

Classification Species Strain No.
DNA Solutions Included in Mocks

Mock1 e Mock2 f Mock3 g Mock4 h Mock5 i

Plant

Juglandaceae Juglans regia - X

Fungi

Botryosphaeriaceae

Botryosphaeria dothidea P12N1I2_2020 a X X X X
Diplodia seriata CBS112555 b X X X X

Dothiorella omnivora CBS140349 b X X X X
Lasiodiplodia theobromae CBS164.96 b X X X X

Neofusicoccum
mediterraneum CBS121718 b X X X X

N. parvum P12N1I1_2020 a X X X X

Diaporthaceae

Diaporthe amygdali CBS126679 b X X X X
Dia. eres P12N2I3_2020 a X X X X

Dia. foeniculina UBOCC-A-122019 c X X X X
Dia. novem UBOCC-A-122020 c X X X X
Dia. rudis P9N3I1_2020 a X X X X

Didymellaceae Epicoccum nigrum P12N5I8_2020 a X X X

Glomerellaceae
Colletotrichum fioriniae UBOCC-A-122017 c X X X

C. godetiae UBOCC-A-122016 c X X X

Nectriaceae Fusarium juglandicola UBOCC-A-119001 d X X X
F. solani UBOCC-A-122023 c X X X

Plectosphaerellaceae Gibellulopsis nigrescens UBOCC-A-122024 c X

Pleosporaceae Alternaria alternata UBOCC-A-122015 c X X X
a Strains isolated from environmental samples and long-time conserved in 20% glycerol at −80 ◦C at LUBEM
laboratory; b Strains from the CBS collection; c Strains isolated from environmental samples and added in UBOCC
for this study; d Strain from the UBOCC; e Six fungal species—equivalent to 16.67% volume each; f Five fungal
species—equivalent to 20% volume each; g Seventeen fungal species—equivalent to 5.89% volume each; h Eighteen
fungal species—equivalent to 5.56% volume each; i Seventeen fungal species and one plant species—equivalent to
5.56% volume each.

4.3. Sampling and Total DNA Extraction

Symptomatic walnut husks (five per orchard) and twigs (12 per orchard) from different
trees were collected from three French orchards (P7, P10 and P12) located in the Southwest
of France in September 2020 and May 2021, respectively. Symptoms on walnut husks were
characterized by blight and necrosis, while symptomatic twigs showed necrosis and dieback
symptoms. Organs were surface-sterilized as follows: 1 min in a 2% active chlorine bleach
solution and 1 min in two sterile distilled water baths before drying in sterile filters. Bark of
twigs was removed, and the border between healthy and necrotic tissues was cut from twigs
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and walnut husks using scalpel. Then, samples were pooled by orchard and by sample type
(husk or twig) before being lyophilized for 48 h (Freeze-dryer Alpha 1-4 LDplus©, Martin
Christ Gefriertrocknungsanlagen GmbH, Osterode am Harz, Germany) and ground in steel
jars using Retsch MM400 (Retsch GmbH, Haan, Germany) until fine powder was obtained.
Environmental DNA extractions were performed in triplicate using FastDNA™ SpinKit
(MP Biomedicals, Fisher Scientific, Waltham, MA, USA) following the manufacturer’s
instructions and quantified with a NanoDrop 1000 Spectrophotometer (Thermo Fisher
Scientific, Waltham, MA, USA). To monitor potential contamination, extraction blanks were
prepared alongside the samples.

4.4. Illumina MiSeq Sequencing and Sequence Analyses

Prior to sequencing, evaluation of success of PCR amplification was performed on
DNA from mock communities and from walnut husks and twigs using the GTAA182f/526r,
GTAA182fm/526r and ITS3/ITS4_KYO1 primer pairs. PCR stages were based on the
protocol described in Morales-Cruz et al. [20] for the two initial primer pairs and in
Toju et al. [38] for the latter, with a volume of 0.2 µL of DNA solution at a concentration of
20 ng/µL. All PCR were performed with a Doppio thermal cycler (VWR™) and GoTaq®

G2 Flexi DNA Polymerase kit (Promega Corporation) but without BSA. The quality of
the PCR products was checked using electrophoresis on 1% agarose gels with Tris-acetate-
EDTA (TAE) buffer 1X (Promega Corporation) and Midori Green Advance® stain (Nippon
Genetics Co. Europe GmbH, Düren, Germany). No PCR products were detected for
extraction blanks.

Amplicon libraries and Illumina MiSeq PE 300 bp sequencing were performed in
the same run at the McGill University and Génome Québec Innovation Center (Montréal,
Canada) with same adapter FLD_ill (forward sequence: ACACTCTTTCCCTACACGACGC-
TCTTCCGATCT; reverse sequence: GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT),
and the PCR conditions are listed in Table S2.

Sequence analysis workflow is depicted in Figure 7. First, we used FIGARO [142]
to determine optimal trimming parameters of forward and reverse reads with the best
percentage of read retention [143] (estimated amplicon length set to 450 bp and minimum
overlap length of 20 bases; Table S3) followed by the DADA2 R package [144] for read
truncation with no ambiguous bases allowed, read denoising and filtering. Quality profiles
were also inspected with DADA2 R package and reads were trimmed according to Figaro
parameters allowing the inclusion of bases with a minimum Qscore of 30 (corresponding to
a probability of an incorrect base call 1 in 1000 times). In the case of ITS, forward and reverse
reads were non-overlapping. Therefore, optimal trimming parameters of the forward and
reverse reads were assessed using FIGARO with an estimated simulated amplicon length
of 450 bp without minimum overlap length (Table S3). Sequences were then concatenated
by adding N bases between forward and reverse reads.

For all primer pairs, amplicon sequence variants (ASVs) were independently inferred
from the forward and reverse reads of each sample using the run-specific error rates, and
read pairs were merged with an overlap setting of 12 bases minimum, except for ITS reads
which were concatenated using the “justConcatenate = TRUE” argument. Then, taxonomic
assignment was performed with BLASTn command line [145] against the UNITE+INSDC
non-redundant fungal ITS v9.0 database [59], and the first hit was extracted [35], and then,
taxonomic assignment was manually checked and corrected by checking the first 150 hits
for each ASV. In addition, a BLASTn against the ITS local database was performed for ASVs
associated with species included in mock communities (details in Section 2.1). To avoid
overrepresentation of rare ASVs, only those represented in at least two samples and with
sequence count greater than 10 were included in community analysis [27,31,146] using the
filter_otus_from_otu_table.py QIIME [147] script.

In order to improve taxonomic resolution, the interest of extracting ITS2 region was
evaluated for both GTAAm and Kyo by adding an ITSx [68] extraction step after read
merging (Figure 7).
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Blank PCR samples provided by the metabarcoding sequencing platform were added
to the analyses, and no sequences were detected after the pre-processing step.

Processing analyses were performed using Phyloseq R package [148]. For the alpha-
diversity indexes, rarefaction was applied to normalize all datasets at the same read counts
based on the smallest samples across all datasets (sample size of 18,201 reads).
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4.5. Comparative Evaluation of Primer Pairs

Four performance criteria, namely, sensitivity, precision and similarity of composition
and number of ASVs were used to evaluate the performance of the five primer pairs [28].
Sensitivity was defined as the ability of a primer pair to assign well an ASV at genus
level and was calculated as TP/(TP + FN), where TP corresponds to the number of true
positive and FN the number of false negative ASVs (i.e., either not detected or detected but
wrongly assigned at the genus level). Precision was defined as the quality of detection of
fungal species and was calculated as TP/(TP + FP), where FP indicates the number of false
positive ASVs (i.e., either supernumerary ASVs or ASVs assigned to unexpected genera).
Similarity of composition between the recovered community and the expected community
was defined as 1-BC, where BC is the Bray–Curtis similarity index and calculated as in
Pauvert et al. [28]. To calculate this last criterion, taxonomic assignment obtained against the
local ITS database was used. Last, the mean number of ASVs obtained for each combination
of primer pair and pipeline was also determined.
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4.6. Evaluation of the Taxonomic-Level Resolution

A database targeting the ITS2 region (and including 5.8S ribosomal RNA and large
subunit (LSU) RNA) was constructed for GTAAm and Kyo. This local database was
generated by downloading culture collection sequences from the Genbank database [73] of
National Center for Biotechnology Information [74] (accessed on 17 February 2023) for each
pathogenic fungal species commonly isolated from nut crops and olives (Table 5) using
the query word ‘5.8S’ with a sequence length from 200 to 5000 bp. The final database was
composed of 3596 sequences for a total of 77 species. The total number of sequences per
species was listed in Table S4.

To assess the taxonomic resolution of the ITS2 region targeted by GTAAm and Kyo
primer pairs, phylogenetic trees were then built using this local database. First, ampli-
cons were extracted for each primer pair following the same settings in Geneious Prime
2021.1.1, as described previously. If no amplicons were obtained in silico with these pa-
rameters, mismatches were allowed anywhere on the primer sequences (settings: pairs
only anywhere on the sequences and two mismatches allowed). For each species, only
unique sequences were retained by removing duplicate sequences. These selected se-
quences, in which taxonomic identification was manually checked using Nucleotide BLAST
(https://blast.ncbi.nlm.nih.gov/Blast.cgi (accessed on 10 November 2021)), were used
to build phylogenetic trees. The Kyo amplicon database contained a smaller number of
species because of the difficulty in retrieving sequences long enough for reverse primer
attachment. Moreover, no long enough ITS sequences of Dothiorella omnivora from culture
collections were available to allow amplification by the two primer pairs (Table S4).

Then, final databases were aligned using MAFFT version 7 online service [149] with
the Auto algorithm for alignment strategy. The resulting alignments were edited using
Gblocks 0.91b [150,151] with all the options to allow less stringent selection. To evaluate the
effect of ITS region extraction on primer pair resolution, the ITS2 region was extracted from
amplicons of GTAAm and Kyo using ITSx [68], and phylogenetic trees were built based
on extracted or non-extracted local databases. Phylogenetic trees were then constructed
based on Bayesian inference with the Bayesian Evolutionary Analysis Sampling Trees 2
(BEAST2) version 2.6.1 package [152]. The best models were estimated for each amplicon
database using the bModelTest add-on in Bayesian Evolutionary Analysis Utility (BEAUti2)
simultaneously with the Bayesian inference analysis [153]. The analysis was performed
using the Markov Chain Monte Carlo (MCMC) method by performing seven independent
repetitions of 100,000,000 generations, and each sampling a tree at every 1000 generations.

Convergence of the independent Bayesian inference analyses was checked using Tracer
v1.7.1 software [154] and the obtained files were combined with the LogCombiner program
(frequency of resampling of 100,000 and burn-in fixed at 10%). Posterior probabilities of
consensus trees were determined using the Treeannotator program and visualized using
FigTree v1.4.4 [155].

Finally, taxonomic placement of ASVs from mock communities and environmental
samples was checked using phylogenetic reconstructions performed following the same
steps after adding the ASVs sequences to the local databases.

4.7. Statistical Analyses

Kruskal–Wallis test followed by Dunn’s test were used to compare performance criteria
obtained with the different primer sets and to evaluate the interest of ITSx extraction
at the genus and the species level for each primer pair. Wilcoxon test without p-value
correction was used to compare similarity of composition values between the two ITS2
region targeting primer pairs (GTAAm and Kyo) for each mock community. Expected and
recovered relative abundances were calculated at the genus level by dividing the expected
and recovered abundances by the total abundance obtained for each replicate. Simple linear
regression between recovered and expected relative abundances were determined and
Pearson correlation coefficient (R) and p-value were calculated. Alpha-diversity indices,

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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after rarefaction based on the lowest number of reads (see Section 4.4) were compared
using Wilcoxon test without p-value correction.

5. Conclusions

In conclusion, these results indicate that targeted barcode and primer pairs greatly dif-
fer in their ability and accuracy to assess the relative abundance of fungi in a metabarcoding-
sequenced community. This study provided recommendations on bioinformatic analyses
and primer performance for metabarcoding sequencing of environmental samples of wal-
nut and other nut and olive trees. Depending on the targeted species, the desired taxonomic
resolution (at the genus or species level) and the scale within fungal communities (the
pathobiome or the phytomicrobiome), the two GTAAm and Kyo primer sets associated
with the DADA2 tool and the ITSx software are good candidates. Further work could
involve a metabarcoding sequencing of other environmental samples from walnut trees
to better characterize fungal communities and particularly pathobiome among different
locations and assess the interactions between these fungi and the associated phytomicro-
biome. Although our study was tailored for walnut samples, it could certainly be applied
to almond, pistachio and olive trees and also any plant samples contaminated by these
pathogens provided that local database is enriched with the plant-associated fungi of
interest that were not included here.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants12122383/s1. Figure S1: Rarefaction curves of high-quality
sequence reads for each mock community replicate. A: ITS primer set. B: ITS1 primer set. C:
GTAA primer set. D: GTAAm primer set. D: Kyo primer set; Table S1: Amplification conditions
for metabarcoding sequencing. Conditions are common to all primer sets. Final volume of reaction
was 25 µL. Conditions were determined by Génome Québec Innovation Center; Table S2: Optimal
trimming parameters of mock and environmental samples indicated by FIGARO for each primer
pair; Table S3: Number of sequences for each species composing our local ITS2 database. The total
number of sequences corresponds to the sequences retrieved from the Genbank database. Number
of GTAAm and Kyo amplicons are the in silico amplicons obtained with the GTAA182fm/526r and
ITS3/ITS4_KYO1 primer pairs. A total of 55 species and 71 species were represented in Kyo and
GTAAm final databases respectively; Table S4: Total number of sequence reads obtained for each
primer set and each mock replicate (−1, −2, −3) after read pre-processing step with and without the
ITS2 region extraction additional step.
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