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Abstract: Fucus distichus L. is the dominant canopy-forming macroalga in the rocky intertidal areas
of the Arctic and Subarctic. In the present study, the impact of the geographic location of F. distichus
collected in the Baffin Sea (BfS), Norwegian Sea (NS), White Sea (WS), and Barents Sea (BS) on the
variations in biochemical composition, antiradical properties, and health risk was evaluated. The
accumulation of main carbohydrates (fucoidan, mannitol, and alginic acid) varied from 335 mg/g
dry weight (DW) in NS to 445 mg/g DW in BS. The highest level of the sum of polyphenols and
flavonoids was found in samples of F. distichus from WS and was located in the following ranking
order: BS < BfS < NS < WS. The 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity of seaweed
is correlated with its phenolic content. It is notable that in most Arctic F. distichus samples, Cd, Cr, Pb,
and Ni were not detected or their concentrations were below the limit of quantification. According to
calculated targeted hazard quotient and hazard index values, all studied samples of Arctic F. distichus
are safe for daily consumption as they do not pose a carcinogenic risk to the health of adults or
children. The results of this study support the rationale for using Arctic F. distichus as a rich source of
polysaccharides, polyphenols, and flavonoids with important antiradical activity. We believe that
our data will help to effectively use the potential of F. distichus and expand the use of this algae as a
promising and safe raw material for the food and pharmaceutical industries.

Keywords: arctic; Fucus distichus; carbohydrates; polyphenols; algae; toxic metals; antioxidants

1. Introduction

Arctic brown seaweeds are a specific source of unique compounds that may be used
to create various products with beneficial properties. In the Northern Hemisphere, the
intertidal areas of many cold and warm temperate regions are dominated by the genera
Fucus, Ascophyllum, and Pelvetia of the Fucaceae family [1,2]. These algae are the most
prominent and have increased relevance due to their high content of various phytochem-
icals with industrial applications [3]. The dominant canopy-forming macroalga in the
rocky intertidal areas of the Arctic and Subarctic is Fucus distichus Linnaeus, 1767 [2,4].
The dynamic development and almost ubiquitous distribution of F. distichus in the littoral
zone of the shelf allow us to consider this species as a potential commercial one. In an
undisturbed natural environment, the biomass of F. distichus can reach 25 kg/m2 [5]. The
chemical composition and high ecological and economic value of Fucus spp. stimulate
significant interest and promote the study of its chemical composition and activities for
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practical applications. F. distichus is nutritionally rich macroalga, containing, based on dry
weight, 8.1–10.0% of protein, 1.1–3.0% of lipids, 17.6–26.7% of soluble carbohydrates, 70.6%
of total carbohydrate content, and 18.6–20.5% of minerals [6–9]. However, these values
have geographical and seasonal variations [7].

Like other Phaeophyceae, F. distichus is a rich source of valuable biologically active
compounds such as fucoidans [8,10,11], mannitol [8,12], alginic acid [8,12], pigments [13],
phenolic constituents, and essential minerals [14,15]. Fucoidans are common in the Fu-
caceae family and are only present in brown seaweeds [16,17]. Fucoidan from F. distichus
is composed of 61.9 mol.% fucose, 6.9% sulfate, and 26.1% uronic acid [10]. The main
structural units are represented by 1→ 4 and 1→ 3 linked L-fucose [12,18,19]. F. distichus
fucoidan exhibits anti-inflammatory and anticoagulant activities [10], which have a ben-
eficial effect on age-related macular degeneration [20,21]. In previous publications, the
promising antioxidant potential of F. distichus was associated with I ts high phlorotannin
content [11]. Brown seaweeds, like F. distichus are known for their enhanced capacity for
the accumulation of minerals and organic and inorganic contaminants from sediments and
seawater due to their unique structural and physiological characteristics [22–25]. Consum-
ing edible seaweed regularly could result in increased health hazards due to its capacity to
accumulate elements.

In the present study, the biochemical composition of F. distichus L. collected in different
seas of the Arctic region was analyzed. The antiradical properties and health risks were
estimated. Our results highlight the potential of Arctic F. distichus as a promising source of
functional compounds with multi-biological activity for use in the food and pharmaceutical
industries.

2. Materials and Methods
2.1. Samples Collection

Samples of F. distichus were harvested in the coastal zones (low tide at 0.6–1.0 m depth)
of the Baffin Sea (BfS), Norwegian Sea (NS), White Sea (WS), and Barents Sea (BS) (Figure 1)
in summer 2019. The details of the collection procedure were described in [26,27].

F. distichus samples were collected in Greenland, Norway, and Russia, namely in:
Disko Bay of the BfS (Station (St.) 1); NS, Ringvassøya Island (St. 2); WS, Pezhostrov Island
of the Kandalaksha Bay Islands (St. 3); and BS, Teriberskaya and Zelenetskaya bays (St. 4–6)
(Table 1).

Table 1. Characterization of collection sites of F. distichus.

Sea Area Sampling Site Coordinates Station on
Figure 1

Mean Water
Temperature, ◦C Range of Salinity, ‰

Baffin Sea Disko Bay 69.219858 N
51.111819 W St. 1 11.0 25.8–26.2

Norwegian Sea Ringvassøya Island 69.815097 N
19.027894 E St. 2 10.6 33.7–34.3

White Sea Pezhostrov Island 66.273315 N
33.934406 E St. 3 17.2 22.1–22.3

Barents Sea Teriberskaya Bay
(Korabelnaya Bay)

69.173088 N
35.168468 E St. 4 11.2 14.7–15.5

Barents Sea Teriberskaya Bay
(Zavalishina Bay)

69.184068 N
35.259487 E St. 5 9.1 19.9–20.7

Barents Sea Zelenetskaya Bay 69.117150 N
36.070790 E St. 6 10.3 31.0–32.0

St. 1–St. 6–station 1–station 6.
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Figure 1. Map of the sampling sites: (A) Baffin Sea – Station (St.) 1 (Disko Bay); (B) Norwegian Sea 
– St. 2 (Ringvassøya Island; (C) White Sea – St. 3 (Pezhostrov Island of the Kandalaksha Bay); (D) 
Barents Sea – St. 4 (Teriberskaya Bay (Korabelnaya Bay)), St. 5 (Teriberskaya Bay (Zavalishina Bay)), 
and St. 6 (Zelenetskaya bay).  

Figure 1. Map of the sampling sites: (A) Baffin Sea–Station (St.) 1 (Disko Bay); (B) Norwegian
Sea–St. 2 (Ringvassøya Island; (C) White Sea–St. 3 (Pezhostrov Island of the Kandalaksha Bay);
(D) Barents Sea–St. 4 (Teriberskaya Bay (Korabelnaya Bay)), St. 5 (Teriberskaya Bay (Zavalishina
Bay)), and St. 6 (Zelenetskaya bay).
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2.2. Chemicals

DPPH (2,2-diphenyl-1-picrylhydrazyl), quercetin, phloroglucinol, fucose (>99%), xy-
lose (>99%), and the Folin-Ciocalteu reagent were all purchased from Sigma-Aldrich
(St. Louis, MO, USA). Local chemical suppliers provided all other analytical-grade chemi-
cals and solvents for extraction and testing. Ultrapure water (resistivity of 18.2 MΩ cm)
for all solution preparations was obtained using a Milli-Q purification system (Millipore,
Bedford, MA, USA). Multi-Element Calibration Standard 3 for element analysis was from
PerkinElmer, USA.

2.3. Carbohydrates Composition

For fucoidan content determination, seaweed samples were processed following the
procedure described in [28]. The fucoidan content was measured by the cysteine-sulfuric
acid method [29]. L-fucose was used as a reference.

For carbohydrate analysis, fucoidan samples (10–15 mg) were hydrolyzed with 2 M
trifluoroacetic acid (0.5 mL) at 121 ◦C for two hours to determine the concentration of
monosaccharides. Then samples were cooled in an ice water bath, centrifuged at 5000 rpm
for 5 min, and the liquid fraction was adjusted to pH 7 with 2 M NaOH [30]. The carbohy-
drate content was estimated by high-performance liquid chromatography (HPLC Model
LC 20 AT Prominence, Shimadzu, Kyoto, Japan) and equipped with a refractive index
detector (RID-10A, Shimadzu, Kyoto, Japan) as described previously [31].

The level of mannitol in F. distichus samples was determined according to E. Obluchin-
skaya (2008). Briefly, the powdered seaweed sample (3 g) was extracted three times with
25 mL aqueous solution of CuSO4 (0.5% w/v) in a boiling water bath for 0.5 h. After-
ward, the mixture was filtered, combined, and made up to 100 mL with water. 10 mL
sample solution was mixed with 0.1 mL concentrated H2SO4 and after 30 min added 5 mL
4 M NaOH and 5 mL CuSO4 (12.5% w/v). The solutions were mixed and incubated for one
hour at room temperature. Centrifugation was used to remove the precipitate. Finally, the
absorbance was measured at 597 nm (Shimadzu UV 1800, Shimadzu, Kyoto, Japan) and
compared to a mannitol calibration curve [32]. Results were expressed in percent per dry
weight (DW). All measurements were performed in triplicate.

The alginic acid content was determined by reaction with 3,5-dimethylphenol and
sulfuric acid [33]. Briefly, 0.5 mL of alginic acid (ranging from 0.002 to 0.1 mg/mL) and
0.5 mL 0.01% water solution of the sample was added to 0.5 mL of 20% H3BO3 in a
0.1 M NaOH solution and 4 mL of concentrated H2SO4. The solutions were mixed and
incubated at 22 ◦C for 10 min and then at 70 ◦C in a water bath for 40 min, and after cooling
to room temperature, 0.1 mL 3.5-dimethylphenol (0.1% w/v) was added and stored for
180 min at room temperature. The absorbance of the standards and extracts was measured
at 400 nm (A400) and 450 nm (A450). Alginic acid was used as a standard at an absorbance
A400–A450. Results were expressed as percentages per DW, and all measurements were
conducted three times for accuracy.

2.4. Analysis of Total Phenolic, Total Flavonoids, and Antiradical Activity

For the analysis of the content of total phenolics (TPC), total flavonoids (TFC), and
DPPH scavenging activity of the samples of F. distichus, they were extracted by the
method [34] with some modifications. Briefly, the powdered seaweed samples (2 g) were
extracted three times with 50 mL aqueous MeOH (60% v/v) in a dark place at room tem-
perature for 24 h under continuous stirring at 200 rpm on a Multi Bio RS-24 rotator (Biosan,
Riga, Latvia). Afterward, the mixtures were centrifuged at 3500 rpm for 10 min, filtered
(Whatman filter paper N 1), and combined. The filtrate was concentrated to dryness under
reduced pressure using a rotary evaporator IR-1m (PJSC Khimlaborpribor, Klin, Russia) to
remove MeOH, and the residue was dissolved in 25 mL volumetric flasks with 60% (v/v)
aqueous MeOH and filtered before use for analysis of the TPC, TFC, and DPPH scavenging
activity. Extraction assays were performed in triplicate.
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The TPC in the F. distichus extracts was analyzed spectrophotometrically at 750 nm
(Shimadzu UV 1800 spectrophotometer, Shimadzu, Kyoto, Japan) according to [35] using the
Folin-Ciocalteu reagent. TPC was expressed as mg phloroglucinol equivalent (PhE) per g DW.

The TFC was measured by a spectrophotometric assay [34,36], with some modifica-
tions [37]. The absorbance of the tested solutions was recorded at 415 nm on a UV-Vis
spectrophotometer, Shimadzu UV 1800 (Shimadzu, Kyoto, Japan). TFC was expressed as
mg quercetin equivalent (QE) per g DW.

The DPPH scavenging activity was analyzed according to W. Brand-Williams et al. [38],
with some modifications [37]. The absorbance of the resulted solutions was measured at
517 nm with the UV-Vis spectrophotometer Shimadzu UV 1800 (Shimadzu, Kyoto, Japan).

The percent DPPH scavenged by each different samples was calculated according to
Equation (1):

DPPH scavenging activity (%) =
Acontrol − Asample

Acontrol
× 100 (1)

where Acontrol stands for the absorbance of the control, and Asample is the absorbance of the
sample solution reaction at 30 min.

The percentage of remaining DPPH-radicals was plotted against the sample/standard
concentration to obtain the IC50 value, which represents the concentration of the extract
or reference antioxidant (mg/mL) required to scavenge 50% of the DPPH-radicals in the
reaction mixture. Its reciprocal, the antiradical power (ARP, ARP = 1/IC50), was also
calculated for each of the sample extracts [39].

All measurements were performed in triplicate.

2.5. Element Analysis

The samples of F. distichus were extracted by the method [35]. The PerkinElmer®

Optima™ 8000 inductively coupled plasma optic emission spectrophotometer (ICP-OES)
(PerkinElmer, Inc., Shelton, CT, USA) was used for the analysis of elements as described
previously [37]. Instrumental parameters were as described by É. Flores et al. [40]. The
concentration of the elements (mg/kg) was calculated according to Equation (2):

X =
Ccalib ×V × 1000

m
(2)

where Ccalib—element concentration from the calibration, mg/L; V—volumetric flask, L;
m—sample weight, g.

For the evaluation of the accuracy of the method, a reference sample of Cu was added
to the F. distichus sample as described in [41]. The mean recovery value of Cu was 94–104%.

2.6. Metal Pollution Index

The metal pollution index (MPI) [42] represents the contribution of all the elements
detected and calculated according to Equation (3):

MPI = (M1 ×M2 × . . .×Mn)
1/n (3)

where Mn is the concentration of the metal n in the sample in mg/kg.

2.7. Assessments of Human Health Risk

The nutritional recommendations [43,44] were used for the evaluation of the nutri-
mental importance of essential elements. The health risk associated with the toxic elements
accumulated by F. distichus samples was assessed using risk estimators [43–47].
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The risk to human health from the elements contained in F. distichus samples was
assessed using the targeted hazard quotient (THQ) and hazard index (HI) proposed by
USEPA (2020). The indexes were calculated following Equations (4)–(6) below [48,49].

Estimated Daily Intake (EDI) =
Ci× CR× EF× ED

BW × AT
(4)

Target Hazard Quotient (THQ) =
EDI
R f D

(5)

Hazard Index (HI) =
n=k

∑
k=1

THQ (6)

where Ci is the mean concentration of each element in the sample (mg/kg); CR is the
consumption rate (0.0052 kg); EF is the exposure frequency (250 days); ED is the average
exposure duration (70 years); BW is the average body weight (70 kg) and AT is the average
lifetime (72.59 years) [50]. There is no fixed consumption rate for seaweed in Russia. As
a result, the consumption rate has been considered in different studies [49]. RfD is the
recommended oral reference dose.

2.8. Statistical Analysis

The statistical analysis was conducted using STATGRAPHICS Centurion XV (StatPoint
Technologies Inc., Warrenton, VA, USA). Data and error bars in the figures are expressed as
mean± standard deviation (SD). Differences between means were analyzed by the ANOVA
test, followed by the post hoc Tukey’s test. The difference was considered significant at a
level of p < 0.05. Pearson’s correlation coefficients were used to establish the relationship
between the content of representative compounds and antioxidant capacity. Multiple
regression and multivariate data analysis using the partial least squares coefficient method
was carried out.

3. Results and Discussion
3.1. Carbohydrates Composition

Literature data on the study of the carbohydrate composition of F. distichus are very
insufficient, and mainly fucoidan has been studied. However, the content of fucoidan in
samples collected in different seas of the Arctic was compared for the first time.

The content of fucoidan in the tested samples of F. distichus varied from 86.9 ± 3 mg/g DW
from the Disco Bay of the BfS to 180.6 ± 0.8 mg/g DW in the Zelenetskaya Bay of the
BS (St. 6) (Figure 2). The content of fucoidan in F. distichus samples from the WS and the
NS was 116.1 ± 3.6 and 119.8 ± 3.7 mg/g DW, respectively, and there is not a statistically
significant difference between the standard deviations of the two samples at the 95.0%
confidence level. For Teriberskaya Bay in BS, values varied from 150.5 ± 2.6 (St. 4) to
124.3 ± 1.0 mg/g DW (St. 5). The accumulation of fucoidan is not affected by water
temperature or salinity. The level of fucoidan from F. distichus collected in autumn in
Zelenetskaya Bay was slightly lower and reached 146.7 ± 22.4 mg/g DW. It is interesting
to note that T.N. Zvyagintseva et al. (2003), having analyzed samples of some Far Eastern
brown algae, also found some noticeable differences for samples obtained in different
geographical locations [51].

The levels of fucose and xylose in F. distichus from different locations determined by
HPLC-RID after acid hydrolysis are presented in Table 2.

The content of the main monosaccharides, determined by HPLC after acid hydrolysis,
fucose, in the samples ranged from 43.5 mg/g in BfS (St. 1) to 90.3 mg/g in BS (St. 6).
Previously, it was found that fucose is dominant in these seaweed species. Its content
varied from 59.4–62 mol.% [11,52,53] to 76.7–87 mol.% [54,55]. Xylose (4.5–10 mol.%) was a
minor sugar. The content of galactose, mannose, and glucose was less than 7 mol.% or a
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trace [17]. In this study, samples from the Barents Sea were most rich in fucose and xylose
(Table 2). The typical chromatogram is presented in Figure 3.
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(Pezhostrov Island), and BS (Barents Sea)–St. 4 (Korabelnaya Bay), St. 5 (Zavalishina Bay), and St. 6
(Zelenetskaya bay) (error bars for SD at n = 3). The station locations (St. 1–St. 6) are presented in
Figure 1.

Table 2. The level of fucose and xylose in samples of F. distichus (mean ± SD, n = 3).

Sea, Station Fucose, mg/g DW Xylose, mg/g DW Fucose/Xylose Ratio

BfS, St. 1 43.5 ± 1.5 5.4 ± 0.3 8.05 ± 0.57
NS, St. 2 58.1 ± 1.8 8.9 ± 0.8 6.53 ± 0.41
WS, St. 3 59.9 ± 1.8 9.8 ± 0.6 6.12 ± 0.31
BS, St. 4 75.2 ± 1.3 13.6 ± 1.0 5.57 ± 0.35
BS, St. 5 62.1 ± 0.5 14.2 ± 0.4 4.38 ± 0.13
BS, St. 6 90.3 ± 0.4 17.5 ± 0.4 5.16 ± 0.10

Baffin Sea (BfS), Norwegian Sea (NS), White Sea (WS), and Barents Sea (BS).
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A strong correlation between accumulation of fucose and xylose (Pearson’s correlation
coefficients r = 0.926, p < 0.05) and their ratio (r = −0.682 and r = −0.887, p < 0.05 for fucose
and xylose, respectively) was established. No correlation was observed between xylose
and fucose contents and water salinity, while a slight negative correlation between water
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temperature and fucose and xylose content (Pearson’s correlation coefficients r = −0.378
and r = −0.465, p < 0.05, respectively for fucose and xylose) was found. The fucose/xylose
ratio in fucoidan from the samples collected in the BfS differed significantly from the rest of
the samples and was 1.45 times higher on average.

Crude fucoidan from F. distichus harvested in the Kiel Fjord (Germany) contained
about 61.9−76.7 mol.% fucose, and the fucose to xylose ratio was 6.13−7.83 [20,54]. Fu-
coidan extracted from F. distichus from the western coast of Iturup Island (the Okhotsk Sea)
collected in summer was composed of 59.4 mol.% fucose and 5.7 mol.% xylose, and the ratio
of fucose to xylose was 10.42 [52]. While purified fucoidan contained 87.1 mol.% fucose
and an increased ratio of fucose to xylose of 24.19 [56], T.N. Zvyagintseva et al., (2003)
have found some notable differences for the F. distichus collected in different spots of the
southern Okhotsk Sea (fucose proportion 56–80%) [51]. Previously, A.V. Skriptsova et al.,
(2012) showed that the fraction of fucose changes insignificantly during the transition to
the generative phase. Based on the obtained data and literature, it can be assumed that the
predominant unit of fucoidan synthesized by F. distichus is fucose [57].

Mannitol content in the tested samples ranged from 86.9 to 116.2 mg/g DW (Figure 2).
Mannitol levels were statistically higher in samples from the BfS (St. 1) and BS (St. 6) than
in samples from the WS (St. 3) (103.0 ± 1.8 mg/g DW and 116.2 ± 4.6 mg/g DW compared
to 86.9 ± 1.8 mg/g DW, p < 0.05). A positive correlation between the content of mannitol in
algae and the water salinity was found (Pearson’s correlation coefficients, r = 0.41, p < 0.05).

Hexatomic alcohol D-mannitol is one of the primary products of photosynthesis and
a reserve substance in brown algae. Its content is varied by different seaweeds, seasons,
and growing conditions. Mannitol has various technical and medical applications, and
its isolation from algae is cheaper than chemical synthesis [58]. The richest sources of D-
mannitol are representatives of the genus Laminaria, and they can accumulate up to 20–30%
of the dry weight of biomass. The content of mannitol in the biomass of the focus algae
from Kamchatka was about 7.7% DW [59]. F. distichus from the Zelenetskaya Bay of the
Barents Sea accumulates mannitol up to 12.75% DW [32]. The positive correlation between
the water salinity and the mannitol content in F. vesiculosus has been demonstrated [60]. It
supports its osmoregulatory functions in brown seaweeds.

The content of alginic acid in the tested samples of F. distichus varied from 113.2± 1.1 mg/g DW
from the Zelenetskaya Bay of the Barents Sea (St. 6) to 255.1 ± 2.4 mg/g DW in the Disco
Bay of the Baffin Sea (St. 1) (Figure 2). For Teriberskaya Bay in the Barents Sea, the values
varied from 119.7 ± 1.4 (St. 4) to 159.8 ± 1.8 mg/g DW (St. 5). No correlation was found
between temperature, salinity, and the content of alginic acid. The level of alginic acid
from F. distichus collected in autumn in Zelenetskaya Bay was slightly lower and reached
235.8±24.0 mg/g DW [32]. According to reference [28], the content of alginic acid found in
Fucus collected from Avacha Bay in Kamchatka was 173 mg/g DW.

Several therapeutic activities, such as anticoagulants, antitumor agents, and others,
have been demonstrated for alginate in vivo [61]. Due to their lack of toxicity and adap-
tation to demands, alginate polymers have significant potential for the development of
pharmaceutical, biomedical, and food formulations. Some alginate-containing gastrointesti-
nal formulations and protectors (e.g., Gaviscon) have been reported in the literature [62].

3.2. Polyphenols and Flavonoids Content

The TPC in F. distichus collected in different Arctic regions varied in a wide diapason
of concentrations, from 24.0 to 135.3 mg of phloroglucinol equivalent per 1 g of DW. The
TFC was on average 6.2 times lower than the TPC (Figure 4).

The highest accumulation of TPC and TFC was observed in samples of F. distichus from
the White Sea and was increased in the following ranking order: BSmean < BfS < NS < WS.

Brown algae synthesize phlorotannins, polyphenolic compounds that include phloroglu-
cinol units in their structure [63]. The extract from algae of the order Fucales was the most
distinct in phlorotannin content compared to the order [14]. According to the previous pub-
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lication, the antioxidant activity of fucoidan from the brown alga was associated with the
impurity of phenolic compounds [64].
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3.3. DPPH Radical Scavenging Activity

The DPPH radical scavenging activity of F. distichus was expressed as antiradical
power (ARP), which represents the reciprocal of IC50 (ARP = 1/ IC50). All the investigated
samples of F. distichus exhibited medium or low activity in the DPPH assay. The ARPs
ranged from 1.3–1.4 in BS to 2.2 in WS (Figure 3). The sample from BS (St. 5) had the lowest
polyphenol content (24.4 mg/g DW) and the lowest ARP of 1.2 mL/mg. In contrast, the
sample from WS showed strong DPPH radical scavenging activity with an ARP value of 2.2
(Figure 3). A similar scavenging activity pattern was observed for the flavonoid assay. The
sample with the highest flavonoid content of 18.4 mg/g DW (WS, St. 3) showed a stronger
antioxidant capacity than the other samples. In our study, a weak negative correlation
was found between the content of fucose or xylose and their antiradical activity (Pearson’s
correlation coefficients r = −0.482 and r = −0.359, p < 0.05, respectively for fucose and
xylose). This finding may indicate a negative effect of fucoidan content on the radical
scavenging activity of F. distichus extracts. Although several studies have reported that
fucoidan has radical scavenging activity [65], crude fucoidan was used in the above studies.
Therefore, other compounds usually observed in crude fucoidans (e.g., minor phenolics,
ascorbic acid, fucoxanthin, proteins, etc.) may have an impact on the radical scavenging
activity. In a previous study, only very weak antioxidant activity was found for relatively
pure sulfate-rich polysaccharide fractions containing few polyphenols. T.I. Imbs et al.
(2015) concluded that the structural features required for the antioxidant activity of sulfated
polysaccharides from Fucus algae from the Okhotsk Sea are polyphenols co-extracted with
sulfated polysaccharides [64]. The content of phenolic compounds, including phlorotannins
and flavonoids, largely determined the radical-scavenging activity of samples (Pearson’s
correlation coefficients r = 0.895 and r = 0.870, p < 0.05, for TPC and TFC, respectively).

Our results are in line with previous publications. The direct correlation between
DPPH scavenging activity and TPC in algal extracts has been discussed by several au-
thors [11,39,64]. Flavonoids contribute to the ARP too. Extreme conditions, such as salinity,
dryness, air exposure, UV radiation, etc., influence on littoral algae during high and low
tides. Algae synthesize a variety of chemical antioxidants, including polyphenols, in re-
sponse to environmental stresses. Scientific publications confirm that compounds with
antioxidant activity are produced by all classes of sea algae [66]. Besides dominating
structure-forming polysaccharides, seaweeds of Fucus spp. are rich in polyphenols [39].
These marine polyphenols are highly hydroxylated, and their ARP can be up to 100 times
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stronger than that of polyphenols synthesized by terrestrial plants [67]. We found that
temperature and salinity affect the antiradical activity of F. distichus from the Arctic region
(Pearson’s correlation coefficients r = 0.636 and r = 0.605, p < 0.05, respectively for tem-
perature and salinity). F. spiralis from the Portuguese coast was previously found to have
high TPC levels (0.049 ± 0.005 mmol gallic acid equivalent (EGA)/g DW) [68] compared
to F. spiralis collected in Denmark (0.044 ± 0.001 mmol EGA/g dry body weight) and
much higher than in Scotland (0.014 ± 0.000 mmol EGA/g DW) [69,70]. These differences
are related to geographic location and climatic differences. Higher temperatures and sun
exposure in Portugal than in Scotland and Denmark caused seaweed to produce more
antioxidant compounds to protect them [68].

3.4. Element Contents

The measured concentrations, range (minimum and maximum concentrations) for
elements in each sample of F. distichus, and LOQ are provided in Table 3. The concentration
of elements varied in the seaweed collected in different regions. Al and Fe levels in F. dis-
tichus from WS (St. 3) and BS (St. 6) were significantly higher than in other samples. This
may be related to the dependence on photosynthetic activity, which proceeds continuously
during the arctic summer [71]. The concentration of Ca averaged 14,774 mg/kg DW and
reached a maximum of 25,476 mg/kg DW in the samples BS (St. 5). The Mg concentration
was slightly lower and averaged about 9304 mg/kg DW. Samples from WS showed the
highest concentrations of Ba, Co, Mn, and Fe. The majority of F. distichus samples from
various Arctic regions did not show any detectable levels of Pb, Cd, Cr, or Ni, with some
concentrations falling below the LOQ. Elements in seaweeds from the seas of the Arctic
region can be sequenced in descending order by mean values: Ca > Mg > Sr > Fe > Al >
Mn > Rb > Zn > As total > Ba > Ni > Co > Cu > Pb, Cr, Cd (< LOQ). Similar results were
previously reported in the literature for the same elements in other fucales from the Arctic
region [37,72].

F. distichus from the WS showed higher metal concentrations when compared to
seaweeds collected in the NS and the BS (Table 3). Average concentrations of Cu, Cd, and Pb
in fucus from BS from April 2010–2012, 2014, and 2018 were varied, such as 4–18 µg/g DW,
0.35–0.98, and 0.2–1.3 [27]. A comparison of seaweeds collected by us in the Arctic with
F. distichus from the WS collected near the village of Rabocheostrovsk [73] showed that
F. distichus had similar concentrations of Cu, Fe, and Zn but lower concentrations of Cd, Cr,
Ni, and Pb. The increased concentration of Mn in algae samples from the WS is associated
with a higher volume of river runoff into it [74]. The biogeochemical feature of the WS
consists of increased background concentrations of Mn and low Cd, which are associated
with the level of terigen runoff. It is assumed that the deficiency of bioavailable forms
of Zn in the coastal strip of the WS, NS, and BfS is a consequence of increased biomass
of macrophytes in the littoral. The levels of Fe and Mn are influenced by how close an
area is to sources of terrigenous runoff. The concentration of Fe in the algae of the BfS is
significantly lower than in the algae of the WS, which is associated with their adaptation to
the supply of this metal from hydrothermal sources and the glacier, respectively.

The total concentration of As in the samples varied slightly and averaged 32.4± 15.4 mg/kg DW
(Table 3). The As total contents of seaweed species belonging to Phaeophyta range from
1.89–245.19 mg/kg DW. The overwhelming majority of species of Rhodophyta, Phaeo-
phyta, and Chlorophyta have As total contents of <30, 100 and 20 mg/kg DW, respectively.
The species belonging to Phaeophyta and containing extremely high As total contents
(over 100 mg/kg DW) are Laminaria ochroleuca, Cystoseira barbata, Sargassum piluliferum,
Hizikia fusiforme, F. vesiculosis, Laminaria digitate, and Melanosiphen intestinalis [75].
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Table 3. The concentrations of tested elements (mg/kg DW) in samples of Arctic F. distichus (mean ± SD, n = 3).

Element LOQ Mean ± sd Range
(min–max) St. 1 St. 2 St. 3 St. 4 St. 5 St. 6

Al 1.6 68.9 ± 37.5 33.3–126.2 58.7 ± 4.8 38.0 ± 2.8 103.4 ± 4.0 33.3 ± 1.2 53.7 ± 4.3 126.2 ± 18.9
As 6.3 32.4 ± 15.4 19.2–58.5 19.2 ± 3.3 27.2 ± 1.7 21.6 ± 0.7 58.5 ± 0.7 43.4 ± 2.9 24.7 ± 0.9
Ba 0.016 13.0 ±7.7 7.3–28.0 10.4 ± 0.2 7.3 ± 1.6 28.0 ± 0.2 14.0 ± 0.6 10.4 ± 0.2 7.9 ± 0.2
Ca 1.9 14,774 ± 5565 9490–25,476 15,029 ± 177 13,816 ± 509 12,037 ± 268 12,795 ± 255 25,476 ± 580 9490 ± 17
Cd 0.23 <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ
Co 0.12 1.8 ± 2.3 0.6–6.5 0.96 ± 0.02 0.71 ± 0.06 6.46 ± 0.02 1.03 ± 0.05 1.31 ± 0.01 0.62 ± 0.01
Cr 0.13 <LOQ < LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ
Cu 0.37 1.7 ± 1.1 0.6–3.2 3.23 ± 0.12 1.46 ± 0.09 2.86 ± 0.18 1.11 ± 0.24 0.97 ± 0.04 0.60 ± 0.01
Fe 0.098 214 ± 190 74–562 73.8 ± 10.7 112 ± 21 562 ± 15 97.1 ± 6.6 132 ± 19 310 ± 10
Mg 1.7 9304 ± 700 8400–10,222 10222 ± 124 9510 ± 31 9904 ± 171 9056 ± 20 8731 ± 67 8400 ± 28
Mn 0.058 45.8 ± 27.8 15.3–90.1 59.7 ± 1.7 15.3 ± 1.4 90.1 ± 4.4 32.7 ± 0.6 54.3 ± 0.3 22.8 ± 0.2
Ni 0.3 10.2 ± 1.1 <LOQ–10.9 <LOQ <LOQ <LOQ 9.5 ± 0.09 10.9 ± 0.04 <LOQ
Pb 4.6 <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ
Rb 0.55 36.4 ± 12.8 22.5–54.1 54.1 ± 1.5 35.8 ± 0.7 49.8 ± 1.2 28.9 ± 0.9 22.5 ± 0.6 27.3 ± 3.0
Sr 0.026 875 ± 130 704–1051 828 ± 35 833 ± 21 1009 ± 30 1051 ± 32 828 ± 8 704 ± 9
Zn 0.17 33.8 ± 8.1 26.9–44.6 27.3 ± 1.0 27.7 ± 1.7 33.1 ± 0.5 42.9 ± 0.9 44.6 ±0.3 26.9 ±1.0

LOQ—limit of quantification; St. 1–St. 6—the sampling stations.
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Some compounds found in algae that are useful to humans also have one or more
metal-binding sites. The polysaccharides in the cell walls of brown algae may have a high
capacity to absorb and hold metals from the surrounding seawater [76]. Algal polysaccha-
rides generally bind heavy metals to variable degrees. According to estimates of binding
affinities, alginates (brown algae) are more likely to bind heavy metals than carrageenans
(red algae) or agar (red algae) [77]. In this study, we also found a weak positive correlation
between a total concentration of metals and a level of alginic acid (Pearson’s correlation coef-
ficients r = 0.296, p < 0.05), but at the same time, we observed a negative correlation between
the concentration of metals and the level of fucoidan and mannitol (Pearson’s correlation
coefficients r = −0.493 and r = −0.440, p < 0.05 for fucoidan and mannitol, respectively).

3.5. Metal Pollution Index

The cumulative accumulation of metals (MPI) by F. distichus collected in different
regions of the Arctic is shown in Figure 5.
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Figure 5. Cumulative accumulation of metals by F. distichus collected at different regions of the Arctic.
St. 1 (Disko Bay) from BfS (Baffin Sea), St. 2 (Ringvassøya Island) from NS (Norwegian Sea), St. 3
(Pezhostrov Island) from WS (White Sea), and St. 4 (Korabelnaya Bay), St. 5 (Zavalishina Bay), and
St. 6 (Zelenetskaya bay) from BS (Barents Sea). The station locations (St. 1–St. 6) are presented in
Figure 1.

The overall mean MPI for all samples was 55.3 (range 39–77). Seaweeds from NS have
the lowest MPI of 38.7. F. distichus from WS showed the highest MPI of 77.2. The MPI values
in F. distichus have increased in the following order: NS < BfS < BSmean < WS (Figure 4). A
strong Pearson correlation was found for the MPI value versus salinity (r = −0.772, p < 0.05)
and temperature (r = 0.689, p < 0.05).

Various metal guidelines can be used to categorize the ecological quality of European
coastal waters. According to Norwegian Pollution Control Authority guidelines for the
blue mussel Mytilus edulis (SFT TA-1467/1997), different ecological classes: Unpolluted
(Class I) to Very Highly Polluted (Class V) were proposed depending on metals amount [78].
Maximum metal pollutants in food were defined by the European Community Commis-
sion [79]. Previously, F. distichus was mentioned as a monitoring tool for seawater metal
contamination [74]. Based on the data we collected on the contamination of F. distichus and
the guidelines mentioned earlier, we can conclude that the seawater in the Arctic Region’s
seas (BfS, NS, WS, and BS) in the summer of 2019 belonged to “Class I–Unpolluted” for all
studied metals.

3.6. Human Health Risk

The mean and maximum concentration, the daily dose, and a comparison with the
risk estimations for a 70 kg man [44–47] and with nutritional requirements [43,44,80] are
presented in Table 4 for every element detected in F. distichus.
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Table 4. Element concentrations, their daily dose for F. distichus from different Arctic regions, and
comparison with daily dose risk estimators for a 70-kg man and with nutritional requirements.

Element
Sampling Site with a

Maximum
Concentration

Mean–Max
Concentration

(mg/kg)

Single Dose for
3.3 g Consumption

(mg/Day)

Daily Dose for
12.5 g Consumption

(mg/Day)

Daily Dose from
Risk Estimators

Daily
Nutritional

Requirements

Al BS, St. 6 68.9–126.2 0.23–0.42 0.86–1.58 70 1 10 5

As (total) BS, St. 4 32.4–58.5 0.11–0.19 0.41–0.73 0.15 1

(inorganic) 5.0 6

Ba WS, St. 3 13.0–28.0 0.04–0.09 0.16–0.35 200 0.75 5

Ca BS, St. 5 14,774–25,476 49–84 185–318 2500 2 1000 3

Co WS, St. 3 1.8–6.5 0.006–0.021 0.023–0.081 30 5 10 5

Cu BfS, St. 1 1.7–3.2 0.006–0.011 0.021–0.040 5 2,5 0.9 4/1.0 5

Fe WS, St. 3 214–562 0.71–1.86 2.68–7.03 45 5 10 3,5

Mg BfS, St. 1 9304–10,222 31–34 116–128 800 5 400 5

Mn WS, St. 3 45.8–90.1 0.15–0.30 0.57–1.13 11 5 2.7 3/2.0 5

Ni BS, St. 5 3.6–11.0 0.012–0.036 0.045–0.14 20 5 0.2 5

Rb BfS, St. 1 36.4–56.1 0.12–0.18 0.45–0.68 200 2.2 5

Sr BS, St. 4 875–1051 2.89–3.47 10.9–13.1 11 5 1.9 5

Zn BS, St. 5 33.8–44.6 0.11–0.15 0.42–0.56 25 2/40 5 12 3,5

1 PTWI: Provisional tolerable weekly intake; 2 UL: Tolerable upper intake level; 3 PRI: Population reference intake;
4 AI: Adequate intake; 5 [43]; 6 [80].

In recent years, the consumption of seaweed has increased in Western nations. Sea-
weed is a splendid source of nutrition due to its high levels of protein, fatty acids, vitamins,
and minerals. As a result, it’s becoming more popular to include seaweed in daily diets [61].
Approximately 35 million tons of seaweed were produced worldwide in 2019 [50]. Regu-
lations for contaminant levels in seaweed vary across different regions of the world. The
regulatory limits for selected heavy metals in seaweed food products are implemented
in some countries. For example, upper limits for Pb, Cd, Sn, Hg, As, and I in seaweed
for human consumption are approved in France. [76]. The limits for Pb, As, Cd, and
Hg are established for algae in Russia [80]. The potential toxicity of Arctic F. distichus
to consumers was evaluated in the present study by comparison of all tested elements
with (a) the Provisional Tolerable Weekly and Monthly Intakes (PTWI and PTWM, respec-
tively) recommended by the Joint FAO/WHO Expert Committee on Food Additives [45–47]
and (b) the tolerable upper intake level (UL) recommended by the European Food Safety
Authority [44].

After analyzing the information provided in Table 4, we have compared the intake
and corresponding UL for the tested elements according to EFSA (2006). We noted that
daily consumption of 3.3–12.5 g of F. distichus from BS (St. 5) with the highest Ca level
(25.5 g/kg DW) corresponds to a daily intake of 0.18–0.32 g of this metal. This amount is
equivalent to around 7.2–12.8% of the recommended daily intake for Ca, which is 2.5 g.
Daily consumption of F. distichus (3.3–12.5 g) with the highest Cu (3.23 mg/kg DW) from
BfS (St. 1) provides 0.04 mg of this metal. This level is 0.8% of the tolerated daily dose (5 mg)
of Cu. The consumption of F. distichus from BS (St. 5) with the highest Zn (44.6 mg/kg DW)
at the above-mentioned dose provides a daily intake of 0.42–0.56 mg of this element that is
equal to 3.5–4.7% of the tolerable daily dose (12 mg) for Zn. The regular consumption of
F. distichus from BS (St. 6) with the highest Al concentration (126.2 mg/kg DW) provides
an intake of 0.86–1.58 mg of this metal, which is equal to about 2.2% of the tolerable daily
dose (70 mg) for Al [81].

The regular consumption of F. distichus (3.3–12.5 g) from BS (St. 4) provides daily
consumption of 0.86–1.58 mg of total As which is equal to 17–31.6% of the tolerable daily
dose for total As (5 mg/day). In this study, As was analyzed as total As in F. distichus
samples. Exposure to inorganic arsenic can have negative health effects, including an
increased risk of developing diabetes [82], cardiovascular disease [83], and various types of
cancer. The International Agency for Research on Cancer has classified inorganic arsenic
as a human carcinogen (Group 1) [84]. It’s important to note that in marine species, As is
mostly present in organic form, specifically as sugars. The trivalent (AsIII) and pentavalent
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(AsV) inorganic forms are toxic, but their organic derivatives (arsenopentine, arsenosugar,
arsenocholine, arsenolipids, methyl arsenate, and dimethyl arsenate) have low toxicity [85].
The toxicity of arsenolipids has not been proven. Organic arsenic compounds such as
arsenobetaine are classified as Group 3 (substances not classified as carcinogenic) according
to the classification of the International Agency for Research on Cancer [84].

The human health risk caused by elements detected in F. distichus from the seas of the
Arctic region was calculated for children and adults based on their daily consumption of
seaweed. The targeted hazard quotient (THQ) and hazard index (HI) recommended by
USEPA (2020) were used. The sum of all THQs of all elements equals HI. The calculated HI
values are shown in Figure 6.
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Generally, if the THQ value is below 1, there is no predicted health risk associated
with some elements [86,87]. However, if the THQ is equal to or greater than 1, there may
be a potential health risk that needs to be addressed through preventative or cautionary
measures, as mentioned in reference [88]. In the present study, THQ for all elements in
F. distichus samples was less than one. It indicates no potential health risk for humans. The
HI values were also below one. The mean HI for all algae samples was calculated as 0.11
for adults and 0.022 for children. Thus, all studied samples of Arctic F. distichus are safe
for daily consumption as they do not pose a carcinogenic risk to the health of adults or
children (Figure 5).

It is important to note that F. distichus, found in the Arctic region’s seas (Baffin Sea,
Norwegian Sea, White Sea, and Barents Sea), does not accumulate toxic elements in haz-
ardous concentrations. Additionally, these algae can be used as a source of nutritional
elements to meet humans’ daily nutritional needs.

4. Conclusions

In this study, the biochemical variability, antiradical properties, and health risks of
Arctic Fucus distichus L. collected from the Baffin, Norwegian, White, and Barents Seas
were studied. F. distichus from the seas of the Arctic is a rich source of carbohydrates.
The accumulation of main carbohydrates (fucoidan, mannitol, and alginic acid) varied
from 335 mg/g DW in NS (St. 2) to 445 mg/g DW in BS (St. 1). The highest level of the
sum of polyphenols and flavonoids was found in samples of F. distichus from WS and
was increased in the following order: BS < BfS < NS < WS. The DPPH radical scavenging
activity of seaweed was correlated with its phenolic content. It is noteworthy that all the
Arctic F. distichus samples tested did not contain detectable levels of toxic elements such as
Cd, Cr, Pb, and Ni, or their concentrations were below the limit of quantification (LOQ).
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According to calculated THQ and HI values, samples of Arctic F. distichus are safe for daily
consumption as they do not pose a carcinogenic risk to the health of adults or children.
The results of this study support the rationale for using Arctic F. distichus as a valuable
source of polysaccharides, polyphenols, and flavonoids. We believe that our data will help
to effectively use the potential of F. distichus and expand the use of this alga as a promising
and safe raw material for the food and pharmaceutical industries.
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