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Abstract: Barley (Hordeum vulgare L.) is one of the most produced cereal crops in the world. It has
traditionally been used for the production of animal feed and for malting, as well as for human
consumption. However, its production is highly affected by biotic stress factors, particularly the
fungal pathogen Blumeria graminis (DC.) f. sp. hordei (Bgh), which causes powdery mildew (PM).
In this study, a collection of 406 barley accessions from the USA, Kazakhstan, Europe, and Africa
were assessed for resistance to PM over a 3-year period in southeastern Kazakhstan. The collection
was grown in the field in 2020, 2021, and 2022 and was genotyped using the 9K SNP Illumina
chip. A genome-wide association study (GWAS) was conducted to identify the quantitative trait loci
(QTLs) associated with PM resistance. As a result, seven QTLs for PM resistance were detected on
chromosomes 4H, 5H, and 7H (FDR p-values < 0.05). Genetic positions of two QTLs were similar to
those of PM resistance QTLs previously reported in the scientific literature, suggesting that the five
remaining QTLs are novel putative genetic factors for the studied trait. Haplotype analysis for seven
QTLs revealed three haplotypes which were associated with total PM resistance and one haplotype
associated with the high PM severity in the barley collection. Identified QTLs and haplotypes
associated with the PM resistance of barley may be used for further analysis, trait pyramiding, and
marker-assisted selection.

Keywords: Hordeum vulgare L.; Blumeria graminis (DC.) f. sp. hordei; disease resistance; genome-wide
association study; haplotypes; marker-assisted selection

1. Introduction

Barley (Hordeum vulgare L.) is one of the top cereal crops in the world [1], including
in Kazakhstan [2]. However, in Kazakhstan, barley grain yield remains relatively low
compared to leading barley-producing countries. In the 2022/2023 season, for example,
barley grain yield in Kazakhstan was 1.5 t/ha, compared with 2.8 t/ha in Russia [3]. The
difference can be explained by a number of factors, including poor tolerance/resistance
of local cultivars to abiotic and biotic environmental factors. This includes a lack of genes
providing durable resistance to fungal diseases. One of the most widespread fungal diseases
affecting cereals is powdery mildew (PM). In barley, PM is caused by the obligate pathogen
Blumeria graminis (DC.) f. sp. hordei (Bgh) [4]. The disease is prevalent in temperate regions
of the Northern Hemisphere, including Kazakhstan [4]. Yield losses of 10–15% caused
by PM in barley are common worldwide, but losses can reach 40% in temperate climate
zones [5,6]. A relatively long vegetation period and a cool and humid climate are favorable
for Bgh development. This is why PM is the most prevalent barley disease in Europe [7].
However, in recent years, fungal disease epidemics in barley have also been observed in
southern and southeastern Kazakhstan [8], and expansive movement to other regions of
the country has also reported [9].
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PM and other fungal infections in barley fields have traditionally been controlled
by fungicides and by the cultivation of resistant plants. Chemical protection provides
conditions for the selection of fungicide-resistant strains [10]; however, the cultivation of
resistant barley cultivars is the most economically and environmentally friendly method.
Cultivating disease-resistant barley cultivars is the most effective strategy for controlling
airborne diseases, such as PM [11]. Modern genetic resistance of barley to PM includes the
durable race-specific resistance gene mlo, which has played a key role in plant resistance
to PM in recent decades [12,13]. In barley, the gene mlo is located in the middle of the
long arm of chromosome 4H, with more than 40 mlo-alleles identified [14,15]. However,
despite the effectiveness of mlo, it does have several drawbacks. The gene produces a
pleiotropic effect, so that necrotic areas on the leaf occur spontaneously; this leads to a
reduction in photosynthesis, and therefore, to decreased kernel size and lower yields [13].
In addition, barley plants with the mlo resistance allele are susceptible to spot diseases,
such as spot blotch [16] and Ramularia leaf spot [17]. The other important PM resistance
gene that exhibits race-specific resistance to Bgh in barley is Mla, located on chromosome
1H [18]. Unfortunately, Mla also has drawbacks. Some Mla alleles require additional genes
to express full resistance, such as Rar1-dependent Mla10 [19].

Several other important PM resistance genes in barley have been described. These
are MlGa, Mlk, Mlnn, and Mlra on chromosome 1H [20], MlLa and MlMor on chromosome
2H [7,21,22], Mlg and MlBo on chromosome 4H [7,23], Mlj on chromosome 5H [24], Mlh on
chromosome 6H [7], mlt and Mlf on chromosome 7H [24], and many others. However, all
these genes are race-specific, non-universal, and non-durable, and can therefore be easily
overcome by new races of Bgh [25].

Despite a large number of identified PM resistance genes and alleles, new virulent
Bgh pathotypes continue to be identified around the world. Despite the effectiveness of
mlo in the last 50 years, mlo-virulent Bgh isolates have been reported in Europe, Japan,
Australia, and China [14,26,27]. In Kazakhstan in 2015 and 2016, 107 isolates of Bgh were
collected from seven populations of cultivated barley throughout the country and studied
for virulence [28]. All isolates were virulent for Mla8 and avirulent for Mla9, Mla1 + Mla2,
Mla6 + Mla14, Mla13 + MlRu3, Mla7 + MlNo3, Mla10 + MlDu2, Mla13 + MlRu3, and Mlo5
resistance genes [28]. Among 46 cultivars of Kazakhstani spring and winter barley which
were evaluated for PM resistance in southeastern Kazakhstan in 2021–2022, 17 spring and
11 winter cultivars were found to be of the resistant (R) reaction type, while the remaining
cultivars were moderately resistant (MR) or moderately susceptible (MS) [29]. These results
mean that, in this host–pathogen race, we need to search for new resistance loci to pyramid
them against PM and other barley diseases, while considering other agronomic traits.

Previously, restriction fragment length polymorphism (RFLP) [30], cleaved amplified
polymorphic sequences (CAPS) [31], and simple sequence repeat (SSR) [32] markers were
described for the selection of PM-resistant barley genotypes. However, in the past 15 years,
genetic mapping of new quantitative trait loci (QTL) has developed rapidly. The traditional
approach to genetic mapping of QTL is based on searching for associations between geno-
type and phenotype data from segregating populations resulting in bi-parental crosses.
However, this process is time-consuming due to the development of bi-parental popula-
tions, and the genetic diversity of the resulting population is limited to parental genetic
background. Currently, the most common and powerful method of QTL identification is
the genome-wide association study (GWAS) based on linkage disequilibrium (LD) [33].
GWAS considers ancestral recombination events to identify significant associations between
genotypic and phenotypic variations. Today, this method, along with traditional linkage
mapping with bi-parental populations, is routinely used for the identification of QTLs in
crops, including barley. During the last decade alone, GWAS in barley has been success-
fully used for the identification of QTLs for abiotic stress tolerance [34–36], adaptation
traits [37–39], yield-related traits [40,41], grain components and quality traits [42–44], and
resistance to diseases [45–48]. Novel PM resistance QTLs have been identified using GWAS
in wheat [49,50], oat [51], rye [52], and, of course, barley [53–56]. However, in Kazakhstan,
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no GWAS of barley resistance to local Bgh pathotypes has yet been attempted. Therefore,
the main goal of this research was to assess the resistance to PM of a diverse spring barley
collection in southeastern Kazakhstan and to identify novel—and possibly unique—QTLs
for local Bgh pathotypes.

2. Results
2.1. PM Resistance and Its Correlation with Agronomic Traits in the Studied Barley Collection

PM resistance was assessed in the Kazakh Research Institute of Agriculture and Plant
Growing (KRIAPG) fields over three years (2020, 2021, and 2022). The weather conditions
in 2021 were unfavorable for proper pathogen development (Figure 1), and no signs of
PM were recorded. However, a phenotypic evaluation of PM in the barley collection in
both 2020 and 2022 demonstrated the prevalence of resistant accessions with 0 points on
the PM severity scale. In total, 351 and 397 accessions were resistant to PM in 2020 and
2022, respectively. The remaining accessions were evenly distributed among other PM
resistance levels (Figure S1A,B). The Pearson correlation coefficient was used to evaluate
the PM correlation with the three studied yield components: NKS, TKW, and YM2. The
results of the correlation suggested that PM severity was negatively correlated with NKS
under the conditions of 2020 (Figure S1C). However, none of the other correlation results,
including mean values for the two years, suggested that PM severity negatively affected
the yield components (Figure S1).
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Figure 1. The weather conditions in the Kazakh Research Institute of Agriculture and Plant Growing
(KRIAPG) fields over three years. Average temperature (◦C) and precipitation (mm) during barley
growth stages are indicated.

2.2. Populaton Structure, QTLs for Powdery Mildew PM Resistance, and Linkage Disequilibrium
(LD) among Them

The population structure of the studied barley collection was previously described
using 1648 SNPs and three methods: principal component analysis (PCA), neighbor-joining
(NJ) tree, and Bayesian clustering [57]. Analysis results are presented in Figure S2. The
PCA and NJ tree revealed the formation of the US cluster apart from the accessions from
Kazakhstan, Europe, and Africa (Figure S2A,B). Accessions from Europe and Kazakhstan
were clustered together on the PCA plot (Figure S2A), while, in the NJ tree, accessions from
Europe were together with African ones (Figure S2B). The results of the STRUCTURE anal-
ysis revealed that K = 5 (number of subpopulations), implying the significant population
structure in the studied barley collection (Figure S2C).

An MLMM model with K- and Q-matrices was successfully used for GWAS, demon-
strating a good correlation between expected and observed p-values and outbreaks of
significant associations (Figure 2A,B). In total, seven MTAs were detected on chromosomes
4H (3 MTAs), 5H (3 MTAs), and 7H (1 MTA) (Figure 2C,D, Table 1). Five MTAs were
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identified in 2020, and two MTAs were found in 2022. p-values of significant MTAs ranged
from 2.6 × 10−5 (Qhv_PM-5H.3) to 6.2 × 10−10 (Qhv_PM-5H.2) with phenotypic variance
explained (PVE-value) from 0.0% (Qhv_PM-4H.2, Qhv_PM-4H.3, and Qhv_PM-5H.2) to
85.3% (Qhv_PM-4H.1) (Table 1). Minor alleles of four MTAs negatively increased PM
resistance, while minor alleles of the other three MTAs with positive effects increased PM
severity in barley plants.
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Table 1. Genome-wide association study (GWAS) results for two years of the experiment.

QTL Marker Chr. Position
(bp) MAF

2020 2022

Candidate Loci
p-Value

FDR
p-

Value
PVE
(%) Alleles Effect p-Value

FDR
p-

Value
PVE
(%) Alleles Effect

Qhv_PM-4H.1 12_20274 4H 3,623,098 0.139 1.2 × 10−8 0.000010 85.3 G/C −6.3
Bgh-qtl-4H-
11_10319

[56]

Qhv_PM-4H.2 11_10509 4H 496,024,940 0.066 7.5 × 10−6 0.003696 0.0 C/A −4.4

Qhv_PM-4H.3 11_10914 4H 511,791,369 0.178 8.9 × 10−6 0.003696 0.0 C/G −4.1

Qhv_PM-5H.1 12_30980 5H 2,540,132 0.071 2.4 × 10−8 0.00004 20.6 C/A 5.4 Qrbg_5H_1 [53]

Qhv_PM-5H.2 11_11240 5H 354,892,901 0.101 6.2 × 10−10 0.000001 0.0 A/T 5.0

Qhv_PM-5H.3 12_10769 5H 646,543,760 0.051 2.6 × 10−5 0.02137 12.8 A/G 4.2

Qhv_PM-7H.1 12_31513 7H 475,182,581 0.112 2.2 × 10−5 0.007203 0.4 A/G −4.9

Chr.—chromosome; MAF—minor allele frequency; FDR—false discovery rate; PVE—phenotypic variation explained.

A comparative analysis of QTLs for PM resistance from the literature enabled the
identification of candidate loci for two QTLs (Qhv_PM-4H.1 and Qhv_PM-5H.1) (Table 1).

LD analysis showed poor genetic linkage (R2 < 0.2, p < 0.0001) in QTL (SNP) pairs
Qhv_PM-4H.1/Qhv_PM-4H.2 and Qhv_PM-4H.2/Qhv_PM-4H.3 on chromosome 4H, but
moderate linkage (R2 = 0.52, p < 0.0001) between QTLs Qhv_PM-4H.1 and Qhv_PM-4H.3
on the same chromosome (Figure 3). However, the distance between these SNPs was large
(508,168,271 bp, Table 1), and therefore, they were considered unlinked. On chromosome
5H, all three QTLs (SNPs) were unlinked (R2 < 0.1, p < 0.05) (Figure 3). On chromosome
7H, there was only one QTL (Table 1). LD among QTLs (SNPs) on different chromosomes
was not considered.
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2.3. Effect of Haplotypes

In order to find favorable combinations of alleles, haplotypes were formed based on
the significant markers. Alleles in haplotypes were evaluated according to their effect from
GWAS. Alleles with a negative effect on PM severity received −1 point, neutral alleles
received 0 points, and alleles increasing PM severity received +1 point. The total effect of
haplotype on PM severity was calculated as a sum of alleles’ points. Haplotypes with the
same effects were grouped together. In total, 31 haplotypes distributed among six groups
were found in the studied barley collection (Figure 4A).

The boxplot in Figure 4B illustrates PM severity in six haplotype groups measured in
2020 and 2022, and mean values. The lowest disease severity was observed in haplotypes
from groups “−3” and “−2” with several outbreaks up to 10 PM severity points. In groups
“−1” and “0”, PM severity was close to 0, but outbreaks were up to 45 and 60 PM severity
points, respectively. At the same time, in groups “−1” and “0”, mean PM severity was
higher, at 2.42 and 2.22 points, respectively. In the group “+1”, PM severity was 7.86 in
2020, with a mean value of 4.29. Accessions from the group “+2” with the highest predicted
positive effect on disease severity demonstrated average PM severity points of 30.00 and
38.75 in 2020 and 2022, respectively, with a mean value for the two years of 34.38. Detailed
information on haplotype and PM severity for each accession is provided in Table S1.
The best PM resistance (0 points in both years of observations) was found for haplotypes
“CAGCAAA”, “CCGCAAG”, and “CAGCAGG”. The highest PM severity was observed
for the haplotype “GCCAAGA” (35–60 points).
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3. Discussion
3.1. PM Resistance in the Field and Its Relations with Yield Components

Environmental conditions greatly influenced the identification of QTLs for PM resis-
tance, as the collection was unaffected by the disease in 2021. In that year, the temperature
during the period from tillering to heading, when PM development would typically occur,
was 2 ◦C higher than in 2020, and 4 ◦C higher than in 2022 (Figure 1). The amount of
precipitation during the same period in 2021 was only 14.3 mm, which was dramatically
lower than in 2020 (161.1 mm) and in 2022 (141.2 mm) (Figure 1). Together, higher tem-
perature and lower precipitation in 2021 affected the development of Bgh and led to the
absence of PM infection in the field. The considerable influence of weather conditions on
PM development in the field is generally well-known [58], and this was further confirmed
by our observations. As for 2020 and 2022, PM infection peaked at the end of booting and
at the beginning of the heading stages. Most of the barley collection was resistant to PM in
both years, although a broad spectrum of plant reactions was demonstrated (Figure S1A,B).
Since most of the barley cultivars commercially grown in Kazakhstan are susceptible to
PM [28], evolutionary changes of Bgh may result in the emergence and distribution of new
pathotypes within the pathogen population. The present study provides new molecular
tools for marker-assisted selection (MAS) of PM-resistant germplasm.

One of the most difficult main challenges facing breeders is developing cultivars that
combine high yields with resistance to abiotic and biotic environmental factors. Relation-
ships between PM severity and barley grain yields are controversial. Some studies have
reported a negative effect of PM severity on yield components [59]. Another study de-
scribed how the QTL decreasing yield in barley is linked to the PM resistance gene Mlo [60].
In our study, increased PM severity was associated with decreased NKS (Figure S1C) and
increased TKW (Figure S1C,D). NKS reduction due to severe PM infection has been widely
reported and is associated with a shortfall in photosynthesis post-anthesis because of dam-
aged leaf surfaces [59]. At the same time, a reduction in gain number may increase their



Plants 2023, 12, 2375 7 of 12

weight [61]. Thus, our experiment confirms the negative impact of PM severity on NKS
with increasing TKW.

3.2. QTLs for PM Resistance

This study detected seven QTLs for PM resistance on three barley chromosomes, in-
cluding three QTLs on chromosome 4H, three on chromosome 5H, and one on chromosome
7H (Table 1). QTLs identified on the same chromosome had been checked for LD (Figure 3).
Results showed a low level of linkage among QTLs on chromosomes 4H and 5H: R2 < 0.2,
p < 0.0001; and R2 < 0.1, p < 0.05, respectively (Figure 3). The only exception was QTL
pair Qhv_PM-4H.1/Qhv_PM-4H.3 (R2 = 0.52, p < 0.0001) (Figure 3). Genetic positions of
all QTLs were compared with known PM resistance genes and loci from the literature.
The first QTL Qhv_PM-4H.1 was located 1.5 Mbp away from another barley PM resistance
QTL Bgh-qtl-4H-11_10319, which has been previously described in the literature [56]. The
remaining two QTLs identified on chromosome 4H were Qhv_PM-4H.2 and Qhv_PM-4H.3.
A search of the literature showed that there are no PM resistance loci near these QTLs.
Among PM-resistant genes, the most effective one is mlo, which was previously mapped on
the long arm of chromosome 4H [30] and confers complete and broad-spectrum resistance
against Bgh. However, this gene is located in the interval 589,324,720–589,327,859 bp [62],
which is 77 Mbp away from the nearest QTL identified on chromosome 4H in the current
study (Table 1). On chromosome 5H, QTL Qhv_PM-5H.1 was identified as 2.5 Mbp away
from PM resistance QTL Qrbg_5H_1 [53] (Table 1). The other two QTLs, Qhv_PM-5H.2 and
Qhv_PM-5H.3, were located distantly from known PM resistance genes and QTLs. The only
genetic factor described for PM resistance on this chromosome is Mlj [24]. However, no
physical position was reported for that gene; therefore, it is uncertain if the two other iden-
tified QTLs on chromosome 5H, Qhv_PM-5H.2 and Qhv_PM-5H.3, are associated with Mlj.
The comparative assessment of Qhv_PM-7H.1 on chromosome 7H (Table 1) suggests that it
is 75 Mbp away from a gene encoding for MLO-like protein [62]. Thus, QTLs Qhv_PM-4H.1
and Qhv_PM-5H.1 demonstrated high significance and PVE, and a strong effect on PM
severity, along with similar candidate loci found in the literature (Table 1). These findings
suggest that these genomic regions play an important role in broad PM resistance in barley.
As for the remaining five QTLs, based on the available data, to the best of our knowledge,
no corresponding QTLs or genes have been described; hence, these QTLs can be considered
as putatively novel factors for PM resistance.

3.3. Promising Haplotypes for PM Resistance

Among the seven QTLs identified in this study, the minor alleles of four QTLs demon-
strated a negative effect on PM severity in GWAS, and the minor alleles of three QTLs
demonstrated a positive effect (Table 1). Depending on the allele status of the seven QTLs,
31 haplotypes were found in the studied barley collection (Figure 4A). According to GWAS
results, in 21 of these, alleles with a negative effect on PM severity prevailed (haplotype
groups “−3”, “−2”, and “−1”); five haplotypes had a neutral effect (group “0”), and the
remaining five haplotypes had a positive effect on PM severity (haplotype groups “+1” and
“+2”) (Table 1, Figure 4A). The growth of PM severity from haplotype group “−3” to group
“+2” (Figure 4B) suggests the effectiveness of QTLs identified in the current study and
provides information about promising accessions for the breeding of PM-resistant barley
cultivars. For example, all accessions with haplotypes “CAGCAAA”, “CCGCAAG”, and
“CAGCAGG” from group “−3” demonstrated 0 PM severity (Table S1) and, therefore, total
resistance to Bgh. All three haplotypes had effective allele “C” of the QTL Qhv_PM-4H.1.
This QTL possessed the largest PVE and produced the largest negative effect on PM severity
(Table 1). At the same time, accessions with the haplotype “GCCAAGA” from group “+2”
were susceptible to Bgh, and the severity of PM was high (Table S1). This haplotype carried
alleles “A” and “G” of QTLs Qhv_PM-5H.1 and Qhv_PM-5H.3, respectively, with moderate
PVE and a positive effect on PM severity (Table 1). Generally, haplotype analysis confirmed
GWAS results and allowed us to find promising haplotypes for the breeding and MAS of
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PM-resistant barley. QTLs, especially Qhv_PM-4H.1, Qhv_PM-5H.1, and Qhv_PM-5H.3,
could be used for further analysis and trait pyramiding.

4. Materials and Methods
4.1. Barley Germplasm Panel and SNP Genotyping

A germplasm collection of 406 two-rowed spring barley accessions from the USA
(n = 264), Kazakhstan (n = 95), Europe (n = 37), and Africa (n = 10) was used (Table S2) [57].
This collection was previously used for GWAS of barley grain quality traits [57]. Accessions
from the USA and Kazakhstan were also used for GWAS of yield-related traits [63]. The
American part of the collection and the SNP-genotyping data were obtained from the US
Barley Coordinated Agricultural Project (CAP) [64,65]. The National Bioresource Project of
Japan provided seed material and genotyping data of European and African accessions.
Barley accessions from Kazakhstan were genotyped using the Illumina GoldenGate 9K
SNP chip of the TraitGenetics company (TraitGenetics GmbH, Gatersleben, Germany). The
results of SNP genotyping of accessions from Kazakhstan, USA, Europe, and Africa were
merged and filtered by the minor allele frequency (MAF) > 0.05 and SNP with missing
data < 0.1. Markers not meeting these requirements were removed from the analysis. In
total, 1648 SNPs met all criteria and were selected for population structure analysis and
GWAS. The SNP positions according to the Illumina iSelect2013 (cM) and Barley 50k iSelect
SNP Array (bp) [66] map sets were obtained from the Triticeae toolbox database [67].

4.2. Field Trials and PM Resistance Evaluation

Field trials were conducted in three successive years (2020, 2021, and 2022) in the
fields of the KRIAPG (43◦14′03” N and 76◦42′00” E, altitude 786 m). Barley accessions
were sown using a nearest-neighbor randomized complete block design (nn-RCBD) with
randomly assigned barley accessions. Each accession was grown in individual 1 m2 plots
(15 cm spaces between neighboring plots) in two replications under rainfed conditions.
The experimental design remained unchanged throughout the three-year period. Because
PM is widespread in southeastern Kazakhstan, field trials relied on natural inoculation.
The disease assessment was conducted twice: first, at the early booting stage (41–45 on
the Zadoks scale); and second, during ear emergence (51–59 on the Zadoks scale) [68]. PM
severity was assessed using a rating scale from 0 to 100 depending on the percentage of
leaf and stem area infected, so that 0 represented the absence of infection and 100 indicated
high susceptibility. The highest PM severity of each accession from the two replications of
the two assessments per year was chosen for the GWAS. The data from 2021 were removed
from the analysis due to a serious drought and the consequent absence of PM symptoms in
the barley collection for that year.

In order to study relationships of PM severity with important yield-related traits,
barley collection was assessed in terms of the number of kernels per spike (NKS, pcs),
thousand kernel weight (TKW, g), and grain yield per m2 (YM2, g/m2). Pearson correlation
testing was performed using the “corrplot” package for R [69]. IBM SPSS Statistics 2022 [70]
was used for haplotypes boxplot construction.

4.3. Genome-Wide Association Study (GWAS), Linkage Disequilibrium (LD), Population
Structure, and Haplotype Analysis

The GWAS was performed using the GAPIT v3 package [71] for R 4.0.2 and multi-locus
mixed linear model (MLMM) [72]. For the assessment of the effect of population structure
on GWAS results, the kinship matrix (K-matrix) was calculated in GAPIT with the Van
Raden method. Population structure of the current barley collection was previously de-
scribed using principal component analysis (PCA), neighbor-joining (NJ) tree, and Bayesian
clustering in STRUCTURE [57]. The ancestry coefficient data (Q-matrix) were obtained
from STRUCTURE. p-value < 3.14 × 10−5 (Bonferroni correction) and false discovery rate
(FDR) < 0.05 were chosen as thresholds for significant associations. Linkage disequilibrium
(LD) of marker pairs was calculated and plotted using TASSEL v5.2.84 [73]. For the haplo-
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type analysis, the studied barley collection was divided into groups according to the sum
of alleles of significant marker–trait associations (MTAs). Each allele in the haplotype was
designated as −1 if its effect on the trait was negative, 0 if it was a non-effective allele, and
+1 if the allele had a positive effect.

5. Conclusions

In the present study, a barley collection, including 406 accessions from the USA,
Kazakhstan, Europe, and Africa, was screened for PM resistance under the field conditions
of southeastern Kazakhstan over a three-year period. Phenotypic analysis showed sufficient
variation in the PM resistance level over two years, and a negative effect of PM severity on
the yield-related trait NKS. GWAS identified seven QTLs associated with PM resistance.
Five of these QTLs are putatively new PM resistance factors. The remaining two QTLs had
candidate QTLs from the literature, high significance and PVE, and strong effects on PM
severity. Seven identified QTLs may be used for further analysis, trait pyramiding, and
MAS. Additional haplotype analysis revealed three haplotypes with allele combinations
demonstrating stable and complete resistance to PM and one haplotype associated with
high PM severity. A germplasm with these haplotypes may be used as a donor for the
breeding of PM-resistant barley cultivars.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants12122375/s1, Figure S1: Phenotypic diversity of PM re-
sistance in studied barley collection in (A) 2020 and (B) 2022. Pearson correlation coefficients €
between PM severity and yield-related traits in (C) 2020, (D) 2022, a€ (E) mean values. Figure S2:
Population structure in studied barley collection. (A) Principal component analysis (PCA) plot,
(B) neighbor-joining (NJ) tree, and (C) Bayesian clustering of the 406 barley accessions for K from 2 to
5. Table S1: Haplotypes and PM severity scores for each accession of studied barley collection. Table
S2: The list of barley accessions used in the study.
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