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Abstract: Asclepias subulata plant extract has previously demonstrated antiproliferative activity and
antimutagenicity against heterocyclic aromatic amines (HAAs) commonly found in cooked meat.
The objective of this work was to evaluate the in vitro ability of an ethanolic extract from the medic-
inal plant Asclepias subulata extract (ASE), non-heated and heated (180 ◦C), to inhibit the activity
of CYP1A1 and CYP1A2, which are largely responsible for HAAs bioactivation. Ethoxyresorufin
and methoxyresorufin O-dealkylation assays were performed in rat liver microsomes exposed to
ASE (0.002–960 µg/mL). ASE exerted an inhibitory effect in a dose-dependent manner. The half
inhibitory concentration (IC50) for unheated ASE was 353.6 µg/mL and 75.9 µg/mL for heated ASE
in EROD assay. An IC40 value of 288.4 ± 5.8 µg/mL was calculated for non-heated ASE in MROD
assay. However, after heat treatment, the IC50 value was 232.1 ± 7.4 µg/mL. Molecular docking
of corotoxigenin-3-O-glucopyranoside, one of the main components of ASE, with CYP1A1/2 struc-
ture, was performed. Results show that the interaction of corotoxigenin-3-O-glucopyranoside with
CYP1A1/2s’ α-helices, which are related with the active site and the heme cofactor, may explain the
plant extract’s inhibitory properties. Results showed that ASE inhibits CYP1A enzymatic subfamily
and may potentially act as a chemopreventive agent by inhibiting bioactivation of promutagenic
dietary HAAs.

Keywords: CYP inhibition; heterocyclic amines; chemoprotection; medicinal plant; antimutagens;
xenobiotics

1. Introduction

Colorectal cancer (CRC) is one of the most frequent types of cancer in modern society,
and responsible for 881,000 deaths worldwide in 2018 [1]. Several research data have evi-
denced the association of red meat consumption with CRC [2]. This relationship has been
linked to several promutagenic heterocyclic aromatic amines (HAAs) formed when meat is
exposed to high cooking temperatures [2–4]. After ingestion, HAAs can be bioactivated by
the isoforms CYP1A1 and CYP1A2 of the cytochrome P450 system (phase I). These enzymes
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perform a N-hydroxylation of the HAAs exocyclic amine group, which can be further ester-
ified by the phase II enzymes acetyltransferases (NAT’s) or sulfotransferases (SULT’s) [5].
The metabolic products of these reactions can spontaneously suffer heterolytic cleavage and
be converted to electrophilic nitrenium ions, with the potential to form covalent adducts
with DNA inducing genetic mutations that may lead to cancer initiation [6].

Several phytochemicals in dietary components and medicinal plants have proven
their anticarcinogenic properties [7–9]. Some of the mechanisms involved are free radical
scavenging, regulation of tumor suppressor and cell proliferation gene expression, induc-
tion of apoptosis, as well as modulation of xenobiotic metabolizing enzymes (XMEs) [10].
The last is a novel approach in chemoprevention; extracts from medicinal plants have
proved chemopreventive potential through XMEs inhibition, such as Hyptis verticillata and
Heliopsis longipes, which reduced the activity of CYP1A1 and CYP1A2 isoforms responsible
for mutagens bioactivation [11–13].

An extract from the medicinal plant Asclepias subulata (ASE), demonstrated by in vitro
tests, has anticarcinogenic properties in several cancerous cell lines, including colorectal
cancer cells [14]. Asclepias subulata is a native Sonoran desert plant from the family Apocy-
naceae that has been used in traditional medicine to treat skin problems, headaches, heart
pain, flu, stomach problems and cancer [15]. Recently, the antimutagenic activity of ASE
was also determined against HAAs on the Salmonella typhimurium reversion assay (Ames
test) [16]. According to the scale defined by Negi et al. [17] for antimutagenic potential,
ASE exerted a strong antimutagenic activity, since it was higher than 40% inhibition of
mutagenicity of heterocyclic amines. Both bioactivities of ASE were associated with its
main cardenolide components: calotropin and corotoxigenin-3-O-glucopyranoside [16,18].

Inhibition of CYP1A1 and CYP1A2 enzymes seems to be one of the main antimutagenic
mechanisms reported [19]. Therefore, it is important to evaluate if the antimutagenic activity
found in ASE [16] can be attributed to this mechanism. Additionally, no reports were found
on how heating may affect the inhibition of XMEs by medicinal plant extracts. Furthermore,
several studies have focused on the evaluation of the potential of raw plant extracts to
inhibit the catalytic activity of several XMEs, without considering if their bioactivity can be
lost or promoted after heat treatment.

Usually, dietary components and medicinal plants are subjected to high temperatures
during food cooking or infusion and tea preparation. In addition, if they are intended
to be used as marinates in a food matrix subjected to high temperatures, such as meat,
the inhibition potential may be lost. Therefore, the aim of this study was to evaluate
in vitro the effect of an Asclepias subulata extract (non-heated and heated) to modulate
the activities of cytochrome P450 CYP1A1 and CYP1A2 isoforms responsible for HAAs
bioactivation. In silico experiments with the main plant extract components and CYP1A1/2
structures were also performed to support activity inhibition as the mechanism behind
ASE antimutagenic effect.

2. Materials and Methods
2.1. Plant Material

Aerial parts of Asclepias subulata were collected in the city of Hermosillo (29◦8′43.25′′ N,
110◦57′10.15′′ W), Sonora, México. The plant was authenticated by Professor Jesus Sánchez
Escalante in the Herbarium of the University of Sonora (voucher specimen no. 17403).
Then, the aerial parts were air-dried at room temperature (30 ◦C), powdered, and stored in
a plastic bag for further extraction.

2.2. Ethanolic Extract of Asclepias subulata

The ethanolic extract of Asclepias subulata was obtained following the method of
Jiménez-Estrada et al. [20]. Plant powder (100 g) was macerated in ethanol (1 L) for
10 days at room temperature. The extract was filtered (Whatman paper No. 1), and the
solvent was removed under reduced pressure in a rotary evaporator (IKA, RV 10 digital,
USA) at 45 ◦C. The obtained extract was placed in a Pyrex test tube and heated in an
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oil bath at 180 ◦C for 3 min, with the purpose of simulating the heating conditions used
during meat cooking. Cardenolide content was previously calculated and reported in
non-heated (corotoxigenin-3-O-glucopyranoside: 53.1 µg/mg, calotropin: 27.6 µg/mg) and
heated (corotoxigenin-3-O-glucopyranoside: 52.3 µg/mg, calotropin: 7.7 µg/mg) ASE [16].
Then, the Asclepias subulata extracts (ASEs) (non-heated and heated) were re-suspended in
dimethyl sulfoxide for inhibition assays.

2.3. Animals

Five male Wistar rats (200–250 g) were provided by the bioterium of the Biomedical
Research Institute of the National Autonomous University of Mexico. Animal handling
followed the protocols dictated by the Internal Committee for the Care and Use of Lab-
oratory Animals (CICUAL) (ID: 250). Animals were kept on a 12 h light/dark cycle for
5 days (induction period), fed with rodent food and water ad libitum. During induction,
each rat was intraperitoneally (i.p.) injected with phenobarbital (30 mg/kg) for 3 days,
with an additional dose of 60 mg/kg on the fourth day. Additionally, β-naphthoflavone
was injected (i.p.) at 80 mg/kg on day 3 [21]. On day 5, rats were sacrificed by cervical
dislocation and livers surgically removed for microsomes preparation.

2.4. Preparation of Rat Liver Microsomes

Microsomal fraction was obtained according to Maron and Ames [22]. Rat livers were
homogenized with KCl (0.15 M) and centrifuged at 9000× g for 10 min (4 ◦C) to obtain the
S9 fraction (supernatant). Then, the S9 fraction was centrifuged at 105,000× g for 60 min
(4 ◦C) and the supernatant was discarded. The pellet was resuspended in a phosphate
buffer (32.5 mM KH2PO4, 67.5 mM K2HPO4, pH 7.4), and centrifuged again with the
same conditions. Subsequently, the resulting pellet (microsomes) was resuspended in a
buffer with 1 mM dithiothreitol, 1 mM EDTA and 20% glycerol and stored at −80 ◦C for
further analysis. Protein content of the microsomal fraction was evaluated by the Bradford
method [23] to adjust the concentration of the protein required for the enzymatic assays.

2.5. CYP1A1 and CYP1A2 Activities

The ability of the Asclepias subulata extract (non-heated and heated) to inhibit
CYP1A1 and CYP1A2 activities were determined by the ethoxyresorufin and methoxyre-
sorufin O-dealkylation assays, respectively [24]. Incubation mixture was prepared
in a 96-well microplate by adding buffer (50 mM Tris-HCl, 25 mM MgCl2, pH 7.6),
substrate (7-ethoxyresorufin, CYP1A1 isoform; 7-methoxyresorufin, CYP1A2 isoform),
microsomal protein (80 µg/well, for 1A1 isoform; 150 µg/well, 1A2 isoform), and ASEs
(0.002–880 µg/mL). An incubation mixture with the vehicle DMSO (without ASE) was
evaluated as a control (100% of CYP1A1/CYP1A2 activities). The microplate was incu-
bated at 37 ◦C for 3 min. Then, the reaction was initiated by adding 2.5 mM NADPH.
Fluorescence measurements were performed every 20 s for 40 min at an excitation and
emission wavelengths of 530 and 585 nm, respectively. CYP1A1/A2 activities were cal-
culated with a standard curve of resorufin (5–500 pmol/mL), and results were expressed
as a percentage of activity of control.

2.6. Molecular Docking

A molecular docking was performed to verify the interaction between CYP1A1
and CYP1A2 isoforms with ASE’s cardenolides (calotropin, and corotoxigenin-3-O-
glucopyranoside). The three-dimensional structures of CYP1A1 (PDB: 4I8V) and
CYP1A2 (PBD: 2HI4) were obtained from the RCSB Protein Data Bank [25,26]. The
Autodock Vina tool was used to calculate the lowest affinity energy (kcal/mol) of the
interaction between the proteins and cardenolides using the software USCF Chimera,
alpha version 1.16 (University of California, San Francisco, CA, USA). Once the best
adjustment (lower energy) was reached, BIOVIA Discovery Studio Visualizer software
(v20.1.0.19295 Dassault Systèmes: San Diego, CA, USA) was used to depict the residues



Plants 2023, 12, 2354 4 of 13

and type of interactions. Previously, a validation process with the co-crystalized sub-
strate α-naphthoflavone was performed. The modelling was validated by comparing
the binding site of α-naphthoflavone with the crystallographic structure of each iso-
form. Once the coordinates of the box were obtained, the same conditions were used to
dock cardenolides.

2.7. Statistical Analysis

To calculate the half inhibitory concentration (IC50), data were fitted in a 4-parameter
logistic (4PL) non-linear regression model. IC50 of each extract were calculated with the
equation Y = Bottom + (Top − Bottom)/(1 + (IC50/X)ˆHillSlope) with a confidence interval
of 95%. A one way analysis of variance (ANOVA) and Tukey’s comparison test were
performed to evaluate the differences in the IC50 data. An IC40 value was calculated when
the 50% inhibition was not reached at the concentrations evaluated. Data are expressed
as means ± standard deviation. All calculations were obtained with the results of three
independent experiments (GraphPad Prism 9.1, La Jolla, CA, USA).

3. Results and Discussion
3.1. Inhibition of CYP1A1 by ASE (Non-Heated and Heated)

The ability of Asclepias subulata extracts (ASEs) (non-heated and heated) to inhibit
the ethoxyresorufin-O-deethylation (EROD) activity in rat liver microsomes is shown in
Figure 1. ASE affects the capacity of CYP1A1 to form resorufin from its ethylated substrate
in a dose-dependent manner. Inhibitions were observed between 10 and 800 µg/mL and
0.2–960 µg/mL for non-heated and heated ASE, respectively. The concentration required
to inhibit half of the CYP1A1 isoform (IC50) activity was 353.6 µg/mL for non-heated
ASE. However, after being subjected to heat treatment (180 ◦C), the IC50 was reduced by
79%, demonstrating an increase in the inhibitory activity of ASE (Table 1). This behavior
may be attributed to the formation of heat-induced by-products, which may have a higher
inhibition ability, or the degradation of molecules that may interfere with the inhibitory
effect of ASE. In a previous study, we reported a significant and important decrease in
calotropin content from 27.6± 2.4 to 7.7± 1.7 µg/mg in ASE after heat treating the extract at
the same conditions used in this work [16]. It has been reported that steroids or triterpenes,
similarly to cardenolides, are usually stable at high temperatures [27]; nevertheless, 72%
of calotropin was degraded after heat treatment. No reports of thermal-degradation
products of calotropin were found; however, heat may cause a degradation of calotropin
into the main two moieties that conform its structure: the steroid carbon-backbone and
lactone [28]. These two components may be responsible for the increase in the inhibitory
activity of heated-ASE, although no reports were found regarding the inhibitory ability of
these components.

It has been well-established that CYP1A1 and CYP1A2 play a major role in the bioac-
tivation of HAAs; thus, the inhibition of these isoforms may reduce the mutations induced
by HAAs in Salmonella typhimurium strains used in the Ames test. Hence, these results may
partially explain the antimutagenic effect of ASE previously reported against the heterocyclic
amines 2-amino-1-methyl-6-phenylimiazo [4,5-b]pyridine (PhIP), 2-amino-3,8-dimethylimidazo
[4,5-f]quinoxaline (MeIQx) and 2-amino-3,4-dimethylimidazo [4,5-f]quinoline (MeIQ) [16].
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Table 1. IC50 values of Asclepias subulata extracts (non-heated and heated) on EROD and MROD
activity inhibition.

IC50 (µg/mL)

Asclepias subulata Extract EROD MROD

Non-heated 353.6 ± 4.51 a 288.4 1 ± 5.81
Heated 2 75.92 ± 3.97 b 232.1 ± 7.43

Values are expressed as means ± standard deviation. 1 Value expressed as IC40. 2 Heated at 180 ◦C for 3 min.
EROD: ethoxyresorufin-O-deethylation assay. MROD: methoxyresorufin-O-demethylation assay. a,b Different
letters in columns represent significant differences p < 0.05.
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Figure 1. Inhibition of ethoxyresorufin O-deethylation activity (EROD) by Asclepias subulata extract
(non-heated and heated) on rat liver microsomes. Results are expressed as averages ± standard
deviation (n = 3), ASE: Asclepias subulata extract. The dotted line represents 50% inhibition. A total of
100% activity of control (incubation mixture without ASE): 217.24 pmol/mg protein/min. ASE was
evaluated at 2.5–880 µg/mL (non-heated) and 0.02–960 µg/mL (heated).

Other authors have also suggested that the antimutagenic effect of some phytochemi-
cals is related to the reduction in EROD activity. For example, Jeng et al. [29] explained that
the antimutagenic activity of ethanol bee glue extracts against the heterocyclic amine IQ and
benzo[α]pyrene assessed with the Ames test was associated with the inhibition of CYP1A1.
Similarly, Alvarez-Gonzalez et al. [30] associated the 85% reduction in EROD activity with
the antimutagenicity of grapefruit juice against benzo[α]pyrene. To our knowledge, this
is the first report of the ability of the medicinal plant Asclepias subulata to inhibit CYP1A1.
Nonetheless, Hyptis verticillata (Lamiaceae), also a medicinal plant, had lower IC50 values
than ASEs of 7.6 and 1.9 µg/mL for CYP1A1 and CYP1A2, respectively [11]. Further,
Rodeiro et al. [12] reported a lower IC50 of 21.1 µg/mL of the medicinal plant Heliopsis
longipes (Asteraceae) extract to inhibit both CYP1A1/2. Moreover, isolated quassinoids
such as quassin and neoquassin, triterpene lactones similar to ASE’s cardenolides, have
demonstrated significant inhibition against CYP1A1 isoform [31]. The IC50 values reported
were 3.57 and 4.65 µg/mL for quassin and neoquassin, respectively.

3.2. Inhibition of CYP1A2 by ASE (Non-Heated and Heated)

Figure 2 shows the inhibition of methoxyresorufin O-demethylation activity by non-
heated and heated ASE. The extracts exerted an inhibitory effect from 200 to 880 µg/mL
and 0.02–880 µg/mL for non-heated and heated ASE, respectively. Without heat treatment,
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ASE was not able to reach the concentration for 50% inhibition; therefore, an IC40 value was
calculated (Table 1). Similarly to EROD, the ability of non-heated ASE to inhibit CYP1A2
in MROD increased after heat treatment, and the IC50 was reached. These results support
the importance of evaluating the biological activities of phytochemical extracts not only in
their raw form, but also after being subjected to cooking temperatures. Probably, the ability
of many raw extracts that have been reported as poor or strong xenobiotic inhibitors may
have been under or overestimated since they were not tested after a heat treatment. These
findings support more in deep studies of ASE as a possible chemopreventive additive,
perhaps as a meat marinated ingredient used before and during the cooking process.
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tracts, non-heated and heated, on rat liver microsomes. Results are expressed as averages ± standard
deviation (n = 3), ASE: Asclepias subulata extract. A total of 100% activity of control (incubation mixture
without ASE): 9.11 pmol/mg protein/min. ASE was evaluated at 160–880 µg/mL (non-heated) and
0.02–880 µg/mL (heated).

It is important to point out that in a previous cytotoxic assay, heated ASE was evaluated
at a concentration as high as 200 µg/mL without exerting toxicity in a non-cancerous cell
line [16]. IC50 of heated ASE for EROD was below this concentration; however, for MROD
inhibition, the concentration needed was slightly above the highest non-toxic concentration
tested. Moreover, although there are no extensive data in the literature on the toxicity
related to cardenolide molecules which, as has been mentioned, are the main compounds
in ASE, calotropin’s LD50 is 9800 µg/kg administrated by intraperitoneal route in mice [32]
and 103 µg/kg by intravenous via for cats (PubChem CID: 16142) [33]. No LD50 values
for corotoxigenin-3-O-glucopyranoside were found. However, for its aglycon, LD50 is
1074 µg/kg by intravenous via for cats (PubChem CID: 12302397) [34]. The concentrations
of cardenolides used in this work were below their average toxic lethal values reported.

Kim et al. [35] reported inhibition of CYP1A2 activity by ursolic and oleanolic acids,
and triterpenes with structural similarities to cardenolides in ASE (Figure 3). The half
inhibition exhibited by these triterpene compounds was 161 and 65.5 µg/mL for ursolic
and oleanolic acids, respectively. Shields et al. [31] also reported the modulation of CYP1A2
activity by the quassinoids quassin and neoquassin with IC50 values of 22.3 µg/mL and
33.3 µg/mL, respectively.

Similar behavior was observed by Shields et al. [31] with quassinoids and by Delgado-
Roche et al. [36] with a hydroethanolic extract of the seagrass Thalassia testudinum (Hy-
drocharitaceae). These authors associated this behavior with the difference between amino
acid residues within each active site. They reported that CYP1A2 active site is more re-
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stricted than CYP1A1, due to the presence of Thr223, which forms a hydrogen bond with
Asp320 between the F and I helices. In CYP1A1, the active site is more accessible since
Asp320 is replaced by Asn221; therefore, the hydrogen bond cannot be formed, allowing
the interaction with the inhibitor. The results showed that ASE can inhibit the activity of
the isoforms CYP1A1/2 responsible for HAA’s bioactivation in the presence of its natural
substrate. However, further studies on the evaluation with HAAs are needed to confirm
the inhibition capacity of ASE’s.
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3.3. Molecular Docking

Since calotropin was degraded significantly by heat treatment (27.6 to 7.7 µg/mg) [16]
and, in preliminary experiments, this cardenolide was not able to exert an inhibitory effect
against CYP1A1/2′ activities, molecular docking was performed only for corotoxigenin-3-
O-glucopyranoside to explain the interaction of ASE with both CYP isoforms. Additionally,
docking of oleanolic and ursolic acids (Figure 3C,D, respectively) were conducted, since
these compounds, which have a similar structure to cardenolides, as was mentioned,
also exerted an inhibitory effect against CYP1A2 isoform [35]. Establishing if these two
acids have a similar interaction with at least CYP1A2 isoform than corotoxigenin-3-O-
glucopyranoside (the heat-resistant cardenolide) may help to provide evidence that this
cardenolide was responsible for the inhibitory effect shown by ASE. As was mentioned
in the Materials and Methods section, before performing the molecular modelling with
the potential CYP inhibitors (corotoxigenin-3-O-glucopyranoside, ursolic acid, oleanolic
acid), validation with the co-crystalized ligand (α-naphthoflavone) for both isoforms, were
performed. This modeling was conducted to validate the conditions and coordinates of the
box where the interaction between the substrate with both enzymes was attained. Further,
it was performed to corroborate the interacting amino acid residues within the active site,
according to published structures of these isoforms [25,26].

Figures 4 and 5 demonstrate that the orientation and interaction of α-naphthoflavone
with the active site within both CYP1A1 and CYP1A2, which occurred accordingly to
published data.
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Figure 6A shows the modelling of the interaction between corotoxigenin-3-O-glucopyra
noside and CYP1A1. The most energetically favorable binding was −9.5 kcal/mol, which
was reached when the interaction with the L helix occurred. This helix is located behind the
active site. The interactions between the cardenolide and CYP1A1 were by hydrogen bond
(green) with Arg464, and a conventional C-H bond (blue) with Glu460. This interaction
site is very important, since the L helix is part of the binding region of the heme group,
which is an important group that provides structure to the active site of this enzyme and
interacts with the substrate [37]. Corotoxigenin-3-O-glucopyranoside can also interact with
the enzyme’s F helix, however, with a lower affinity of −7.9 kcal/mol.
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On the other hand, for CYP1A2 (Figure 6B), the binding energy with the cardenolide
was lower (−7.8 kcal/mol) than with CYP1A1, and the interaction was made in the F helix
of this isoform that conforms the parallel surface to the active site [25]. CYP1A2 interacting
residues were Glu228, Asn247, Thr229, Asn234 and Pro235, which mainly interacted
through hydrogen bonds with the –OH groups of the sugar moiety of corotoxigenin-3-O-
glucopyranoside. The F helix has an important role in CYP1A2 since it has been associated
with substrate access and egress and the regioselectivity of the active site [25].

Although oleanolic and ursolic acids’ inhibition ability against CYP1A1 has not been
reported, the molecular docking of these acids with this isoform was also conducted to
evaluate if they showed a similar interaction as the cardenolide. Figure 7 shows that, instead
of interacting with CYP1A1′s L helix as corotoxigenin-3-O-glucopyranoside had, these acids
interacted at the F helix of this isoform, with a lower binding energy of −7.8 kcal/mol and
−7.5 kcal/mol, respectively, in comparison to the binding energy between the cardenolide
with CYP1A’s L helix of −9.5 kcal/mol. However, the binding energy with the F helix
was similar between these compounds. Therefore, if oleanolic and ursolic acids can inhibit
CYP1A1, perhaps their ability may differ from the inhibitory effect shown by ASE.

As it can be corroborated in Figure 8, oleanolic and ursolic acids had a similar interac-
tion behavior with CYP1A2 as the cardenolide, since these acids mainly interacted with F
helix through hydrogen bonds between their –OH and -COOH groups and the hydrophilic
residues of CYP1A2′s F helix. The binding energies of oleanolic and ursolic acids with
CYP1A2 were −7.7 kcal/mol and −8.2 kcal/mol, respectively, which were very similar to
the binding energy of the cardenolide with this enzyme (−7.8 kcal/mol). These results may
provide evidence to corroborate the inhibition of CYP1A2 activity by ASE.
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From the results in studies we had made on the cancer protective effects of the extract,
we had established that it possesses different biological activities, including inhibition
of both cancer cell proliferation (LS-180 colorectal cancer cells) and the mutagenicity of
heterocyclic amines formed by meat cooking (PhIP, MeIQ, and MeIQx). The inhibitory
effect on CYP activity reported here may partially explain the abovementioned properties,
although additional antigenotoxic mechanisms could be involved. Further studies with



Plants 2023, 12, 2354 11 of 13

isolated corotoxigenin-3-O-glucopyranoside are needed to corroborate the cardenolide’s
potential effect in the ASE’s inhibitory activity and establish the inhibition mechanism.

4. Conclusions

We can conclude that ASE has the ability to inhibit the activities of CYP1A1 and
CYP1A2 in vitro, with a higher effect on CYP1A1. Heating the extract improved the
inhibitory ability of ASE for both isoforms. The higher potential of heated ASE may occur
as a result of the degradation of molecules that interfere with the inhibitory activity of
non-heated ASE, or by the generation of stronger inhibitory structures within heated ASE.

Therefore, ASE shows potential to be considered as a chemopreventive agent against
dietary carcinogens which are produced during a cooking process, such as heterocyclic
aromatic amines. The use of animal models to test the antigenotoxic and anticarcinogenic
in vivo effects of the extract are needed to confirm the results obtained. Additionally, it will
be convenient to address the role of the thermal degradation by-products of calotropin on
the increased ability of heated ASE to inhibit CYP1A1 and CYP1A2, and if the concentra-
tions of ASE used in this study can be effective in vivo without exerting a toxic effect.
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