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Abstract: Ammi visnaga is a biennial or annual herbaceous plant belonging to the family Apiaceae.
For the first time, silver nanoparticles were synthesized using an extract of this plant. Biofilms
are a rich source of many pathogenic organisms and, thus, can be the genesis of various disease
outbreaks. In addition, the treatment of cancer is still a critical drawback for mankind. The primary
purpose of this research work was to comparatively analyze antibiofilms against Staphylococcus aureus,
photocatalytic activity against Eosin Y, and in vitro anticancer activity against the HeLa cell line of
silver nanoparticles and Ammi visnaga plant extract. The systematic characterization of synthesized
nanoparticles was carried out using UV–Visible spectroscopy (UV-Vis), scanning electron microscopy
(SEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), dynamic light
scattering (DLS), zeta potential, and X-ray diffraction microscopy (XRD). The initial characterization
was performed with UV-Vis spectroscopy, where a peak appeared at 435 nm, which indicated the SPR
band of the silver nanoparticles. AFM and SEM were performed to determine the morphology and
shape of the nanoparticles, while EDX confirmed the presence of Ag in the spectra. The crystalline
character of the silver nanoparticles was concluded with XRD. The synthesized nanoparticles were
then subjected to biological activities. The antibacterial activity was evaluated by determining the
inhibition of the initial biofilm formation with Staphylococcus aureus using a crystal violet assay. The
response of the AgNPs against cellular growth and biofilm formation was found to be dose dependent.
Green-synthesized nanoparticles showed 99% inhibition against biofilm and bacteria, performed
excellent anticancer assay with an IC50 concentration of 17.1 ± 0.6 µg/mL and 100% inhibition, and
photodegradation of the toxic organic dye Eosin Y up to 50%. Moreover, the effect of the pH and
dosage of the photocatalyst was also measured to optimize the reaction conditions and maximum
photocatalytic potential. Therefore, synthesized silver nanoparticles can be used in the treatment of
wastewater contaminated with toxic dyes, pathogenic biofilms, and the treatment of cancer cell lines.

Keywords: silver nanoparticles; Ammi visnaga; antibiofilm; anticancer; Eosin Y; water treatment

1. Introduction

Cancer is one of the primary causes of death in the whole world [1], while bacteria-
related diseases stand in second place [2,3]. Some genres of cancer are reputed to endure
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mutation. This alteration in cancer cells results in the spread of cancer to other organs,
sometimes empowering the cancer to recur. Current medications that are known to con-
trol/hinder the growth of cancer cells also produce serious side effects in patients, resulting
in a reduction in the quality of life [4,5]. Over the years, this outcome has continued,
as unfortunately no drug has been discovered that can provide maximum results with
minimal side effects [6–8].

In humans, Staphylococcus aureus is habitually resident in the skin and nasopharynx. It
can originate in different infections, including in soft tissue, internal organs, and endovas-
cular sites. Food contaminated with Staphylococcus aureus can result in food poisoning.
Biofilms are found to be highly resistant to traditional authentic treatments, functioning
as reservoirs for various classes of pathogenic microorganisms; this results in making
microorganisms residing in these biofilms more impervious to treatment. Bacterial biofilms
are commonly preserved inside a self-made extracellular polymeric substance (EPS) that
contains lipids, deoxyribonucleic acid (DNA), and exopolysaccharide [9,10]. At this stage,
the EPS matrix hinders the penetration of traditional antibiotics against particular bacteria,
making it up to 1000-fold resistant to several classes of antibiotic drugs by neutralizing
them using their extracellular polysaccharides [10,11]. Therefore, a broad spectrum of
antibiotics are found to be ineffective in destroying biofilm cells and stationary phase cells,
which rely on nominal nutrition to survive [12]. Thus, there is an urgent need to design
extensive antibiotic drugs, which might be either synergetic or additive [13].

Over the years, silver nanoparticles have become well known for their superior antibac-
terial activity against a vast class of bacteria, including Pseudomonas aeruginosa, Escherichia
coli, and Staphylococcus aureus [14–21]. However, the mechanism of its bioactivity is still
poorly understood. Some reports have revealed that the mode of action of silver nanoparti-
cles is the same as that of silver ions [22]; however, the proposed mechanism of its action
can be outlined as AgNP deposits on bacterial cell walls that deactivate the essential en-
zymes present inside the cells [23], followed by the production of reactive oxygen products,
including hydroxyl radicals, hydrogen peroxide, and superoxide anion [13,24].

The purpose of this study was to synthesize plant-mediated silver nanoparticles stable
enough to work as strong antibacterial agents against a vast class of bacteria. Furthermore,
in terms of curing cancer, they must be less cytotoxic, possessing suitable anticancer
activity so that we can stand a chance of designing anticancer medicines. As all metallic
nanoparticles are found to be cytotoxic, there is still the possibility of mediating them
with different drug derivatives that are not cytotoxic and not as active towards cancer
cell lines; hence, delivering those drug derivatives with silver nanoparticles could be a
potential avenue. In addition, the synthesized silver nanoparticles could work as catalysts
in water-treatment applications [25,26]. Overall, the multifaceted application of synthesized
silver nanoparticles via a green route could be utilized in several varied applications.

Rationales for the Activities Performed

The rationales for the three activities performed in the present research work are
as follows:

• Cytotoxicity assay: The rationale for performing the cytotoxicity assay was to evaluate
the potential of the green-synthesized silver nanoparticles (AgNPs) as an anticancer
agent. The assay was performed on two different cell lines, MCF-7 and MDA-MB-231,
to determine the toxicity of AgNPs towards breast cancer cells. The results of the assay
were compared with the standard drug Idarubicin to assess the efficacy of AgNPs as a
potential anticancer agent.

• Photocatalytic activity against Eosin Y: The rationale for performing the photocatalytic
activity against Eosin Y was to evaluate the potential of AgNPs as a photocatalyst for
the degradation of the Eosin Y dye. Eosin Y is a widely used water-soluble dye in
the textile and paper industries, and its metabolites are carcinogenic to both human
and aquatic ecosystems if disposed of untreated. The degradation of Eosin Y was
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performed in the presence of NaBH4 to better evaluate the role and the competence of
green-synthesized AgNPs.

• Antibiofilm activity: The rationale for performing the antibiofilm activity was to eval-
uate the potential of AgNPs as an antibiofilm agent. Biofilm formation is responsible
for about 65% of all microbial and 80% of acute infections. Microbial cells in biofilms
possess 10–1000 times more antibiotic resistance in contrast with planktonic cells.
Therefore, hindering the biofilms at the early stage of attachment may result in being
a key factor in finding promising antibiofilm agents. The effect of AgNPs on the
inhibition of initial biofilm formation by Staphylococcus aureus was determined by
crystal violet assay.

2. Experimental Section
2.1. Ammi visnaga Plant

Ammi visnaga is a biennial or annual herbaceous plant and belongs to the family
Apiaceae. It is a herb, and its leaves are approximately 20 cm in length, and oval triangular in
shape. Its stem is usually erect, cylindrical, furrowed, highly branched, and entirely covered
with leaves. The flowering on this plant occurs around June and provides tetracyclic,
pentamerous, white flowers having a radial symmetry. The inferior ovary is comprised
of two united carpels and its root is fattened, resembling that of carrot root. The fruit
is a compacted oval-shaped structure, possessing two mericarps and is approximately
3 mm in length. Ammi visnaga is also known as bisnaga, toothpick plant, khella, toothpick
ammi, and Bishop’s weed. This plant grows in the entire world and is indigenous to
Western Asia (Cyprus, Syria, Turkey, Iran, Lebanon, Iraq, and Israel), Northern Africa
(Morocco, Tunisia, Algeria, and Libya), Southeastern Europe (Greece, Albania, and Italy),
Southwestern Europe (France, Spain, and Portugal), and the Caucasus region (Armenia,
Georgia, and Azerbaijan) (Figure 1).
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2.2. Important Chemical Constituents Reported from Ammi visnaga

To better evaluate the role of chemical constituents in the synthesis and stabiliza-
tion of nanoparticles, a review of the literature was carried out. Some of the important
reported chemical constituents were Khellin, visnagin, khellinol, ammiol, khellol [27],
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visnadine [27,28], samidin [28], dihydrosamidin [29], bornyl acetate, croweacin, 2,2-dime-
thylbutanoic acid, isobutyl isobutyrate, thymol, linalool [30], (E)-ß-ocimene,
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(Evolution 300-USA) UV–Visible spectrophotometer for UV–Visible spectroscopy, 5500 
Atomic Force Microscope (Agilent Technologies-USA) for atomic force microscopy, 
Bruker D8 venture X-ray powder diffractometer for XRD analysis, Nano ZS zeta sizer sys-
tem (Malvern instruments-UK) and Apreo 2 C LoV ac (Thermo Fisher Scientific-USA) for 
scanning electron microscopy and energy dispersive spectroscopy.  

2.4. Synthesis of Silver Nanoparticles 
The glassware selected for the experiment was washed and dried carefully. Chilled 

distilled water was used to prepare a stock solution of 1 mM silver nitrate to avoid the 
decomposition of salt. A conical flask carrying 50 mL of 1 mM AgNO3 solution was kept 
on a hot plate with constant magnetic stirring; then, Ammi visnaga extract was poured 
dropwise into the flask. The stirring continued for 2 h at room temperature until a color 
change from light yellow to blackish brown was observed. Then, the sample was removed 
from stirring and placed in complete darkness for 24 h for complete reduction of Ag+1 ions 
to Ag0. After this, the solution was parted through centrifugation for 15 min at 6000 RPM, 
washed with ethanol to remove any remaining impurities, and kept in the refrigerator at 
4 °C for further characterization and applications (Scheme 1). 
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Silver nitrate (AgNO3, 99.8%), Eosin Y (C20H6Br4Na2O5), and ethanol (C2H5OH,
99%) were bought from Sigma-Aldrich and were subjected to the experiment without
any additional purification. All molar solutions were prepared using double distilled
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water to avoid any possible contamination. Instruments used for the characterization
included (Evolution 300-USA) UV–Visible spectrophotometer for UV–Visible spectroscopy,
5500 Atomic Force Microscope (Agilent Technologies, Santa Clara, California, USA) for
atomic force microscopy, Bruker D8 venture X-ray powder diffractometer for XRD analysis,
Nano ZS zeta sizer system (Malvern instruments-UK) and Apreo 2 C LoV ac (Thermo
Fisher Scientific, Waltham, MA, USA) for scanning electron microscopy and energy
dispersive spectroscopy.

2.4. Synthesis of Silver Nanoparticles

The glassware selected for the experiment was washed and dried carefully. Chilled
distilled water was used to prepare a stock solution of 1 mM silver nitrate to avoid the
decomposition of salt. A conical flask carrying 50 mL of 1 mM AgNO3 solution was kept
on a hot plate with constant magnetic stirring; then, Ammi visnaga extract was poured
dropwise into the flask. The stirring continued for 2 h at room temperature until a color
change from light yellow to blackish brown was observed. Then, the sample was removed
from stirring and placed in complete darkness for 24 h for complete reduction of Ag+1 ions
to Ag0. After this, the solution was parted through centrifugation for 15 min at 6000 RPM,
washed with ethanol to remove any remaining impurities, and kept in the refrigerator at
4 ◦C for further characterization and applications (Scheme 1).
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Scheme 1. Schematic illustration of reaction mechanism steps.

2.5. Methodology for Antibiofilm Activity
2.5.1. Bacterial Strain and Medium

Staphylococcus aureus (ATCC 6538) is a strong biofilm-forming strain [4]. Brain heart
infusion (BHI) broth was used to prepare frozen cultures, which were reinforced with a
10% (vol/vol) solution of glycerol and kept at −80 ◦C for likewise experiments. These
frozen cultures were defrosted before the experiment plan, spread on Mannitol Salt Agar
(MSA) plates by a sterile wire loop, and processed for incubation at 37 ◦C for a day. From



Plants 2023, 12, 2337 11 of 28

these subcultures, cells were taken from one colony of the preceding culture and sustained
weekly on mannitol salt agar plates.

2.5.2. Crystal Violet Assay for Antibiofilm Activity

Antibiofilm activity of AgNPs was performed in sterile flat-bottom 96-well polystyrene
microtiter plates as described by [36]. Inoculation of bacterial cells was carried out in brain–
heart infusion (BHI) broth provided with 0.25% solution of glucose (BHIg) and cultivated at
37 ◦C for 18–24 h. These fully grown cells were diluted 1:1000 into fresh BHIg and 100 µL of
its quantity was introduced to the wells accommodating different concentrations of AgNPs
with BHIg to achieve a total volume of 200 µL per well. Wells, having BHIg with bacterial
cells, were selected as the positive control, and only BHIg-containing wells were selected
as the negative control. Incubation of the plates was performed at 37 ◦C for 24 h. After
incubation, the planktonic cell growth was calculated by evaluating the OD at 600 nm with
a Multiskan™ GO spectrophotometer (Thermo Fisher Scientific, USA) before dispensing
the medium. The plate was then washed multiple times with double-distilled water and
retained in a hot air oven at 60 ◦C for an hour. Staining of the wells was completed with
200 µL of 0.1% crystal violet solution for 15–20 min. Each well was then washed again
with distilled water and well-dried before adding 200 µL of glacial acetic acid (30% v/v)
to solubilize the biofilm stain. Finally, the measurement of biofilm production was taken
corresponding to the OD at 595 nm. Measurements were taken in replicas of three, and the
assay was rerun three times. The percent inhibition of either planktonic cells growth or
biofilm was assessed using this formula [36]

% Inhibition = 100 − [
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2.6. Anticancer Activity Protocol

Cytotoxic assay and anticancer activity of prepared silver nanoparticles were per-
formed in 96-well flat-bottomed microplates employing the standard MTT (3-[4, 5-dimeth-
ylthiazole-2-yl]-2, 5-diphenyl-tetrazolium bromide) colorimetric assay. To proceed with the
experiment, HeLa cells (cervical cancer) were cultivated in Minimum Essential Medium
Eagle, provided with 5% of fetal bovine serum (FBS), 100 IU/mL of penicillin, and
100 µg/mL of streptomycin in 75 cm2 flasks, and put in 5% CO2 incubator at 37 ◦C.
Exponentially developing cells were cultured, counted on a hemocytometer, and diluted
with a certain medium. A selective concentration of cell culture (6 × 104 cells/mL) was
prepared and established (100 µL/well) into 96-well plates. The medium was withdrawn
after a night of incubation, and a fresh medium of 200 µL was added with distinct concen-
trations of compounds (1–30 µM). After 2 days, the addition of 200 µL MTT (0.5 mg/mL)
was accomplished and carried out for incubation for an additional 4 hrs. In due course,
100 µL of DMSO was also instilled to each well. The rate of MTT reduction against formazan
in the cells was calculated with the help of a microplate reader (Spectra Max Plus, Molecular
Devices, SAN Jose, CA, USA) by evaluating the absorbance at 570 nm. The concentration
effect of 50% growth inhibition (IC50) was considered to calculate the cytotoxicity. The
formula given below was used to calculate the percent inhibition:

% inhibition = 100 − ((mean of O.D of test compound −mean of O.D of negative control)/(mean of O.D of

positive control −mean of O.D of negative control) × 100).

The results (% inhibition) were processed using the SoftMax Pro 6.2 GxP software
(Molecular Device, UK).

2.7. Photocatalytic Activity against Eosin Y

The photocatalytic evaluation for the dye (pure Eosin Y) was purchased from Sigma-
Aldrich. The as-synthesized silver nanoparticles were evaluated for their catalytic potential.
In a customary experiment, a 50 µL solution of pure dye was mixed with 1.5 mL of de-
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ionized water and its UV-Vis spectra were recorded. Then, a 0.2 mL solution of NaBH4
(0.2 M) was added to the same glass cuvette to observe the catalytic action of NaBH4. After
the addition of NaBH4, only a minute fall in the UV-Vis spectrum was noted which was
an indication of the lower catalytic capability of NaBH4. We waited for half an hour but
there was no more alteration in the spectra. Finally, the solution of AgNPs (400 µL of
62.5 µM) was prepared and added into a glass cuvette carrying dye and NaBH4 solution.
This mixture was then stirred for a few hours to better permit the adsorption of dye
molecules on the surface of nanoparticles. After the addition of AgNPs, the characteristic
absorbance peak of Eosin Y started to fall indicating that nanoparticles have started the
catalytic activity. Different time intervals spectra were obtained until there was no more
observance of the spectrum fall. Two factors, pH and dosage of photocatalyst, were
examined which resulted in an increase in both pH and dosage of photocatalyst causing an
increase in catalytic activity. The whole experiment was performed at room temperature
and stirring continued throughout the whole demonstration. The degradation rate was
calculated with the help of the following formula:

Degradation rate (%) = (Co − Ct/Co) × 100 (1)

where Co is the initial absorbance value while Ct is the final absorbance value taken before
and after the experiment. The chemical kinetics of the reaction can be acquired by the
given formula:

−Ln(C/Co) = kt (2)

where k is the rate constant; Co is the initial dye concentration; and C is the final concentra-
tion of dye at given time t.

3. Results
3.1. UV-Vis Spectroscopy

UV-Vis spectroscopy is the most prominent and indispensable technique in the charac-
terization of nanoparticles. Figure 2 displayed the UV-Vis spectra of pure plant crude. The
characteristic absorbance peak of Ammi visnaga was observed at 538 nm.
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As soon as the synthesis reaction of AgNPs started with mixing the salt with the plant
extract, the color of the solution turned light yellow and ultimately dark brown. At this
moment, the solution was subjected to UV-Vis spectroscopy. The absorbance was set from
0 to 2 and a characteristic peak of Ag at 435 nm was observed (Figure 3).
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Figure 3. UV-vis spectral readings taken from the start of the synthesis reaction of AgNPs until
completion.

3.2. FTIR Analysis of Prepared AgNPs

The FTIR study was carried out to evaluate the role of important chemical constituents
responsible for the synthesis and stabilization of nanoparticles. FTIR is basically a clear
identification of phenolic, phenolic acids, and alkaloidal functional groups that work as
capping with AgNPs resulting in the formation of nano silver. Spectrum recorded gave
multiple peaks directing the complexity of biological matter [37].

The FTIR analysis display various stretches of different bands at 3459.42, broad (hy-
droxyl group, OH, H-bonded), 2332.37 (OH-stretched), 1710.14 (carboxylic acid),
1609.14 (primary amides), 1547.55 (alcohols), 1354.09 (ethers C-O), 1296.71–1210.97 (esters),
1175.99–1128.70, 1052.42, 997.51, 890.90–806.66, 725.97, and 698.71–610.08 cm−1 (halogen
functionalities, series of bands indicating the presence of fluorine, two or more bands are
indicating C-Cl and C-Br stretch). Chemical constituents reported from Ammi visnaga can
be illustrated by the presence of these functional groups (Figure 4).
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Figure 4. FTIR spectrum of prepared silver nanoparticles.

3.3. Dynamic Light Scattering and Zeta Potential

To ascertain the surface charge and particle size, DLS and zeta potential were per-
formed [38]. While zeta potential is also known as electrokinetic potential, it can be utilized
for the elucidation of colloid stability. Zeta potential values of ±30 mV, ±20–30 mV,
±10–20 mV, and ±0–10 mV can be narrated as highly stable, moderately stable, stable,
and highly unstable, respectively. DLS spectra in Figure 5 showed that the average size
of nanoparticles observed is 58.77 nm while the zeta potential image given in Figure 6
illustrated that a surface charge of −31.9 mV can be hinted as nanoparticles present in
solution are highly stable. Moreover, the observed standard deviation value in DLS was
22.16 (d.nm), while in the case of the zeta potential the recognized standard deviation
was 7.76 mV.
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Figure 6. Zeta potential image depicting the surface charge of silver nanoparticles.

3.4. Atomic Force Microscopy

The atomic force microscopy is utilized for its capability to harvest the images of high
resolution (typically ~0.2 nm to 1 nm). Some quantity of sample solution was taken and
subjected for analysis. The topographical 3D images of the prepared silver nanoparticles
are given below. It can be ascertained that the calculated size of AgNPs from AFM analysis
after determining the height profile, evaluating the dimensions of AgNPs, and comparing
statistical analysis is approximately 6.018 nm (Figure 7).
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Figure 7. AFM images of synthesized silver nanoparticles.

3.5. Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy

SEM along with EDS was performed to determine the surface morphology along with
biological components of synthesized silver nanoparticles. Scanning electron microscopy is
a marvelous tool in order to determine the hidden complexity and details of nanoparticles
which are beyond the reach of light microscopy [39]. Meanwhile, EDS was performed to
verify the presence of silver and other chemical constituents. The dried sample (slightly
heated on a hotplate) was carefully ground to avoid the visibility of cluster formation. The
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SEM and EDS images observed are given in Figure 8. It can be observed in the pictures that
some of the nanoparticles formed clusters that can be attributed to the fact that “AgNPs tend
to have a high surface energy, leading to a tendency to aggregate or cluster together. This
presence of clusters in SEM images could be attributed to these interparticle interactions,
where neighboring nanoparticles come into contact and form aggregates”. Some well
dispersed nanoparticles can also be observed through the surface of the cell and are round.
Moreover, the presence of Ag peaks can also be examined from the EDS images.
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3.6. X-ray Diffraction

Powder XRD was performed to demonstrate the crystalline nature, shape, and lattice
parameters of silver nanoparticles. Figure 9 illustrates the diffraction pattern acquired
from nanoparticles. Peaks were observed at 2θ values of 31.707, 45.676, 54.419, 67.081, and
76.327 degrees corresponding to (111), (200), (142), (220), and (311) planes of silver. Results
obtained were then matched with the standard powder diffraction card of JCPDS, silver
file No. 04-0783 [40]. Some minor peaks appearing cannot be comprehended which might
be a result of reagents that were left unreacted throughout the reaction.

Plants 2023, 12, x FOR PEER REVIEW 16 of 28 
 

 

3.6. X-ray Diffraction

 
Figure 9. XRD spectra denoting the crystalline nature of silver nanoparticles. 

 
Powder XRD was performed to demonstrate the crystalline nature, shape, and lattice 

parameters of silver nanoparticles. Figure 9 illustrates the diffraction pattern acquired 
from nanoparticles. Peaks were observed at 2θ values of 31.707, 45.676, 54.419, 67.081, and 
76.327 degrees corresponding to (111), (200), (142), (220), and (311) planes of silver. Results 
obtained were then matched with the standard powder diffraction card of JCPDS, silver 
file No. 04-0783 [40]. Some minor peaks appearing cannot be comprehended which might 
be a result of reagents that were left unreacted throughout the reaction. 

3.7. Antibiofilm Activity 
3.7.1. Planktonic Cells and Biofilm Inhibition 

A scientific report by the National Institutes of Health suggests that biofilm for-
mation is responsible for about 65% of all microbial and 80% of acute infections [41]. Mi-
crobial cells in the biofilms possess 10–1000 times more antibiotic resistance in contrast 
with the planktonic cells [42]. It is well known that during the preliminary stage of disease 
evolvement, planktonic cells always tend to become attached to the substratum or the 
surface available for colonization. This results in the shaping and formulation of biofilms. 
Therefore, hindering the biofilms at this early level of attachment may result in being a 
key factor in finding promising antibiofilm agents [24]. The effect of AgNPs on the inhi-
bition of initial biofilm formation by Staphylococcus aureus was determined by crystal vio-
let assay. The response of AgNPs against cellular growth and biofilm formation is dose 
dependent. At higher concentrations, both the antibacterial and antibiofilm activities are 
high and decrease gradually at lower concentrations. 

The effect of AgNPs on cellular growth and biofilm is shown in Figure 10 below. 

10 20 30 40 50 60 70 80
0

1000

2000

3000

4000

5000

In
te

ns
ity

2 theta

(111)

(200)

(142)

(220)
(311)

Figure 9. XRD spectra denoting the crystalline nature of silver nanoparticles.

3.7. Antibiofilm Activity
3.7.1. Planktonic Cells and Biofilm Inhibition

A scientific report by the National Institutes of Health suggests that biofilm formation
is responsible for about 65% of all microbial and 80% of acute infections [41]. Microbial
cells in the biofilms possess 10–1000 times more antibiotic resistance in contrast with
the planktonic cells [42]. It is well known that during the preliminary stage of disease
evolvement, planktonic cells always tend to become attached to the substratum or the
surface available for colonization. This results in the shaping and formulation of biofilms.
Therefore, hindering the biofilms at this early level of attachment may result in being a key
factor in finding promising antibiofilm agents [24]. The effect of AgNPs on the inhibition of
initial biofilm formation by Staphylococcus aureus was determined by crystal violet assay.
The response of AgNPs against cellular growth and biofilm formation is dose dependent.
At higher concentrations, both the antibacterial and antibiofilm activities are high and
decrease gradually at lower concentrations.

The effect of AgNPs on cellular growth and biofilm is shown in Figure 10 below.
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3.7.2. Light Microscopy

Light microscopic analysis of the biofilms formed in the presence and absence of
AgNPs confirmed the inhibition of biofilm formation at different concentrations. Visible
reductions in biofilms in the treated and untreated wells were observed after crystal
violet staining and the images were taken with digital cameras. Results are shown in
Figure 11 below.
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3.8. In Vitro Anticancer Activity

The synthesized silver nanoparticles were also evaluated for anticancer activity against
the HeLa cell line with Idarubicin being used as a standard. In comparison with the stan-
dard, the synthesized nanoparticle was found to be weakly active towards the HeLa cell line
(IC50 = 17.1 ± 0.6 µM) while the parent plant extract was inactive towards cancer cell cyto-
toxicity. Cytotoxicity of these compounds was also evaluated towards the BJ cell line and the
synthesized nanoparticle was found to be weakly active (IC50 = 17.91 ± 1.0 µM) while the
plant extract showed as inactive towards the normal cell line as compared to standard
(IC50 = 0.1 ± 0.02 µM). The IC50 (half maximal inhibitory concentration) is a quantitative
measure used in pharmacology and biochemistry to assess the potency or effectiveness of a
compound in inhibiting a specific biological or biochemical function.

3.9. Catalytic Activity

Tetrabromofluorescein water soluble dye Eosin Y is widely used in the textile and
paper industries [43,44], is a red fluorescent dye, and its metabolites are very carcinogenic
to both human and aquatic ecosystems if disposed of untreated [45]. The degradation of
Eosin Y was performed in the presence of steep NaBH4 to better evaluate the role and the
competence of green-synthesized AgNPs. The typical peak of Eosin Y dye was observed at
514 nm in UV-vis spectroscopy [46,47] and can be seen in Figure 12A. After the addition
of NaBH4, only a minute fall in the peak was noticed which was unaltered for 30 min
(Figure 12B). In between, we continued running the UV-vis spectra to ascertain if any other
change in the peak happened, but it was the same. So, to proceed with the degradation
trend, a dosage of photocatalyst was added. It was noted that as soon as the solution of the
photocatalyst was added to the dye solution and irradiation was started, a characteristic
fall in the absorbance value was observed hinting that the photocatalyst has started the
degradation. Spectra were run after every 2 min and there was no more activity after
20 min (Figure 12C). The rate constant calculated for the degradation was 0.0526 min−1.
The activity was performed at room temperature at pH 7.0. Moreover, blank tests with
no catalyst were also performed which performed zero considerable degradation, hint-
ing that there is no such way to treat Eosin Y in the absence of the catalyst. The per-
centage degradation calculated was 95% which indicates the high efficacy of the pho-
tocatalyst in the degradation process. This suggests that AgNPs may be a promising
candidate for the degradation of Eosin Y in various applications, such as wastewater
treatment or environmental remediation. It is important to note that the effectiveness
of the degradation process may depend on various factors such as the concentration of
the photocatalyst, the reaction time, and the pH of the solution. Moreover, the photo-
catalytic degradation mechanism occurs through the means of an advanced oxidation
process taking place on the catalyst’s surface. Upon light irradiation, the valence band’s
electrons become excited to the conduction band, resulting in the formation of an electron-
hole pair. These holes of the valence band led to the splitting of H2O molecules into
H+. The reported results are consistent and align well with the previously published
studies [26,48,49].
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Figure 12. (A) UV–Visible spectra of pure Eosin Y dye; (B) UV–Visible spectra of Eosin Y dye after
treatment with NaBH4; (C) Time-dependent spectra of Eosin Y after treatment with photocatalyst
(AgNPs) at pH 7.0.

3.9.1. Effect of pH

One of the leading factors that influences the dye degradation reaction is the pH of
the solution [50–53]. The effect of four different pH values, 3, 7, and 11 at a constant value
of the photocatalyst was evaluated for the degradation of Eosin Y. The fascinating part
was that the degradation potential kept increasing with increasing pH values. This effect,
moving from acidic to basic pH values, was also reported in these studies [50,54,55]. The
effect of increasing pH on dye’s color removal is well described in Figure 13.

3.9.2. Effect of Photocatalyst Dosage

The effect of different photocatalyst dosages (100 µL, 200 µL, 300 µL, and 400 µL) was
also analyzed to find out the idea quantity for maximum catalytic potential. It was observed
that the maximum quantity (400 µL) of photocatalyst resulted in maximum results. It can
be explained by way of the availability of maximum surface area to interact with dye
molecules and surface saturation of the catalyst with dye molecules. The same results are
also published in these studies [47]. Figure 14 depicts the effect of different dosages of
photocatalyst on the degradation of Eosin Y at room temperature.
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3.9.3. Reusability of the Photocatalyst

The green-synthesized AgNPs are always favored for the photocatalytic potential
of organic dyes as they were much more stable throughout the study. The reusability
of the photocatalyst is schematically provided in Figure 15 To recycle the photocatalyst,
it was centrifuged from the dye solution, washed with ethanol to extricate any possible
contamination, and subjected to further treatments. The fabricated AgNPs nanocatalyst,
even after five treatments, displayed peculiar potential. The trend can be explained by
demonstrating that after five treatments, the catalytic potential dropped systematically to
97, 94, 89, 85, and 81%, respectively.
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3.9.4. Effect of Different Types of Scavengers on Catalytic Performance

Quenching studies were also performed to find out the contribution of reactive inter-
mediates in the photocatalytic potential. Two different types of scavenger’s methanol (OH
radical scavenger) and ammonium oxalate (H+ scavenger) were used for the experiment.
Figure 16 illustrates that the addition of oxalate led to a reasonable loss in degradation re-
sulting in the hindrance of degradation up to 31% (64% degradation occurred). Meanwhile,
on the other hand, methanol significantly decreased the degradation by up to 51% (44%
degradation occurred).
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Figure 16. Systematic effect of different scavengers on photocatalytic activity.

3.9.5. Mechanism Leading to the Degradation of Products

Upon light irradiation, photocatalytic degradation happens by means of an advanced
oxidation process taking place on the catalyst’s surface [56]. The mechanism further
continues by the formation of an electron-hole pair caused by the excitation of the valence
band’s electrons to the conduction band with the help of irradiation of the photocatalyst by
light. These holes of the valence band result in the splitting of the H2O molecules into H+

and OH-. The already shifted electrons of the conduction band, after reacting with oxygen
molecules, produce superoxide (O−2). This superoxide along with the hydroxyl radical acts
as reactive oxygen species (ROS) controlling the degradation mechanism. The hindering
effect in the degradation by these ROS is already provided in Section 3.9.4. The integral
safe products formed by the degradation of Eosin Y are CO2 and H2O patterned either by
the decomposition of the dye molecules initiated by the OH radical or by the splitting of
the C-H and C=C bonds of the dye [57,58].

The photodegradation process usually initiates with oxidation, by which the whole
polycyclic aromatic ring of the dye molecule breakdowns into relatively smaller non-
toxic compounds, i.e., carbon dioxide, nitrate, bromide, water, and sulfide. Meanwhile,
sometimes the synthesis of organic acids such as oxalic acid and acetic acid is also accom-
panied [59,60]. Figure 17 depicts the schematic illustration of the degradation route.
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4. Conclusions

In conclusion, this study demonstrates the potential of green-synthesized AgNPs in
anticancer, antibiofilm, and wastewater treatment. The antibiofilm activity of AgNPs was
evaluated against Staphylococcus aureus, and the results showed that the response of AgNPs
against cellular growth and biofilm formation is dose dependent. At higher concentrations,
both the antibacterial and antibiofilm activities are high and decrease gradually at lower
concentrations. The high efficacy of the photocatalyst was demonstrated through the
significant degradation of the dye, with a calculated degradation rate of 0.0526 min−1 and
a percentage degradation of 95%. The study also highlights the importance of various
factors such as the concentration of photocatalyst, the reaction time, and the pH of the
solution in determining the effectiveness of the degradation process. Furthermore, the
study provides valuable insights into the chemical constituents of Ammi visnaga, which
can be used to synthesize AgNPs. The characterization techniques used in this study,
including UV-Vis spectroscopy, FTIR, DLS, and zeta potential, provide a comprehensive
understanding of the properties of the synthesized AgNPs. Overall, the results of this study
suggest that green-synthesized AgNPs have great potential for use in various applications,
such as wastewater treatment and environmental remediation. Further research is needed
to explore these nanoparticles’ full potential and optimize their use in different settings.
The findings of this study contribute to the growing body of knowledge on the use of
green-synthesized nanoparticles for environmental applications and provide a promising
avenue for future research in this field.
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