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Abstract: Grape production worldwide is increasingly threatened by grapevine trunk diseases (GTDs).
No grapevine cultivar is known to be entirely resistant to GTDs, but susceptibility varies greatly.
To quantify these differences, four Hungarian grape germplasm collections containing 305 different
cultivars were surveyed to determine the ratios of GTDs based on symptom expression and the
proportion of plant loss within all GTD symptoms. The cultivars of monophyletic Vitis vinifera L.
origin were amongst the most sensitive ones, and their sensitivity was significantly (p < 0.01) higher
than that of the interspecific (hybrid) cultivars assessed, which are defined by the presence of Vitis
species other than V. vinifera (e.g., V. labrusca L., V. rupestris Scheele, and V. amurensis Rupr.) in their
pedigree. We conclude that the ancestral diversity of grapes confers a higher degree of resilience
against GTDs.

Keywords: interspecific cultivars; Vitis vinifera; Vitis amurensis; Vitis rupestris; Vitis labrusca; grape
germplasm collection; GTDs

1. Introduction

Grapevine trunk diseases (GTDs) are among the most important diseases of grapevines,
with estimated losses of 1.5 billion USD worldwide, while the average GTD incidences were
reported to be between 10% (Spain) and 22% (Italy) in European vineyards [1–4]. Moreover,
an increase in disease incidence has been recognized in several grape growing countries
such as Spain, Italy, and Canada [5–8]. GTD fungal pathogens colonize the woody part of
the plant, producing different toxins and enzymes, resulting leaf symptoms (tiger stripes),
stunted growth, reduced quantity and quality of grape, and dieback of the plant [2]. GTDs
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are complex diseases, including esca, eutypa dieback, black foot, Botryosphaeria, and Petri
diseases, and are affected by several biotic and abiotic factors [2,4,9–12]. More than 100 fun-
gal species have been recognized as GTD pathogens, characterized by different taxonomic
statuses, disease cycles, fungicide sensitivity, and host ranges [13]. Moreover, infections
do not usually manifest rapidly, and can linger on for years. Factors and circumstances
that turn the latent infection into an active one, giving rise to mild (e.g., foliar symptoms)
or serious symptoms (partial or whole plant dieback), are not fully understood. Wounds,
environmental stress (frost, drought, flood), and increased age of vineyards appear to
correlate with increased disease incidence of GTDs [4,14–17]. Chronic symptom expression
does not necessarily lead to significant yield or quality loss of the fruit or plant within
a few years [4,18]; conversely, apoplexy of the trunk leads to plant loss and results in
irreversible economic loss in the plantation. Replanting vineyards with young, healthy
vines is challenging and often unsuccessful.

Tolerant plant cultivars are widely used as they are one of the most effective means
of controlling plant diseases, providing economic and environmentally friendly plant
protection technology while reducing pesticide usage and dependency [19]. Disease-
resistant cultivars would also provide solutions when effective protection by chemical
pesticides is not available, as in the case of GTDs [20–22].

Due to the susceptibility of traditional European grape varieties to different pathogens,
an interspecific hybrid breeding program was started in France in the early forties of
the 19th century, by crossing Vitis vinifera varieties from France with American species,
which resulted in more resistant, high-quality hybrids that exhibited partial resistance
towards fungal pathogens [23]. The hybrid offspring were subsequently used in resistance
breeding programs in Hungary as ‘Seibel’ and ‘Seyve-Villard’ varieties [24]. However, with
the propagating plants, the phylloxera (Daktulosphaira vitifoliae Fitch) insect pest was also
introduced, which resulted in a dramatic loss of plants in European vineyards. It also has
become common practice to graft American rootstock, resistant to phylloxera, to preserve
susceptible cultivated European varieties, and grape breeding programs were initiated
to control phylloxera, powdery mildew (Erysiphe necator Schwein.), and downy mildew
(Plasmopara viticola (Berk. et Curt.) Berl. et De Toni) [23,25–28].

Vitis amurensis Rupr., native to China, has several beneficial properties, such as cold
resistance and resistance against several phytopathogens causing diseases, such as grape
crown gall (Allorhizobium vitis), white rot (Coniella diplodiella (Speg.) Petr. Et Syd.), downy
mildew, and anthracnose of grapes (Elsinoe ampelina Shear). Therefore, it is often used as
rootstock or in breeding interspecific hybrids [29–36]. The introduction of American and
Asian grape species into the breeding programs increases genetic diversity and compensates
for the bottleneck effect (when the size of a population is severely reduced), which has
developed historically as a consequence of the domestication of V. vinifera [37,38].

There are no V. vinifera cultivars known to be completely resistant to GTD pathogens;
however, considerable differences in sensitivity have been recognized during in planta
tests and in field surveys (Table 1). Differences were observed between the tolerance to
different GTD pathogenic fungi in one cultivar, which may be due to the various climate
conditions and/or grape-producing technologies. In the case of eutypa dieback, Dubos [39]
categorized Aligote, Grolleau, Merlot, Semillion, and Sylvaner cultivars as resistant, and
later Carter [40] reported possible resistance against Eutypa lata (Pers.) Tul. & C. Tul
in some French cultivars. Borgo et al. [41] and Murolo-Romanazzi [42] classified the
degree of GTD expression for six and 86 varieties, distinguishing between red and white
grape varieties. Sosnowski et al. [43] ranked 118 varieties based on plant death and foliar
symptoms. These and other studies have shown that, among internationally recognized
and cultivated varieties, Cabernet Sauvignon, Cabernet Franc, and Sauvignon Blanc are
particularly susceptible to GTDs, while Merlot is much more resilient.
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Table 1. The tolerance of V. vinifera cultivars to different grapevine trunk diseases. Adopted from
Songy et al. [17].

Cultivars 1
GTDs Inoculation Test/Disease

Incidence Survey 3 References
Tolerance Disease 2

White

Chardonnay
high BD, Eutypa Test [44]

medium BD Survey [43]
medium Esca Survey [41]

Pinot Gris
high BD, Eutypa Survey [43]

medium Esca Survey [10]

Riesling
high Eutypa Survey [43]

medium BD Test [45]
medium/low Esca Test [44]

Sauvignon Blanc

high BD Test [45]
medium Eutypa Test and Survey [43]

low BD Test and Survey [43]
low Esca Survey [42,46]

Semillon
high BD, Eutypa Test and Survey [43]
low Esca Survey [10]

Thompson seedless
high Esca Test [44,47]

medium/low Eutypa Test [44]
low BD, Eutypa Test [44,47]

Ugni Blanc

medium/high BD Survey [43]
low Eutypa Test [48]

low Esca, Eutypa Test [49]
Survey [41,43]

Welshriesling high BD, Eutypa Test and Survey [43]
Survey [41]

low Esca Survey [7]

Red

Cabernet Franc
medium/high Eutypa Test [44]

medium BD Test [44]
low Esca Test and Survey [43]

Cabernet Sauvignon

high BD Test [45]
low Eutypa Test [48]

low
Esca, Eutypa Survey [41,46,50]

BD Survey [43]

Grenache
high Esca, Eutypa Survey [43]
high Esca Test [47]
BD medium/high Survey [43]

Merlot
high Eutypa Test [44,48]

medium/high BD Test [44]
medium Esca Survey [42,50]

Pinot Noir
high Esca Survey [41]

Eutypa, Esca Test and Survey [43]
medium BD Test and Survey [43]

Sangiovese high BD, Esca, Eutypa Test and Survey [43]
medium Esca Survey [41]

Syrah

high Esca Survey [41]

low BD, Eutypa
Test [21,44]

Test and Survey [43]

Hybrid
(V. labrusca hybrid)

Concord
(Vitis labrusca hybrid) high BD, Esca, Eutypa Test [44]

1 Cultivar primer names from VIVC database [51]. 2 BD: Botryosphaeria dieback; Eutypa: Eutypa dieback. 3 Test:
Inoculation of cuttings; Survey: in field survey of disease incidence.

Both GTD chronic symptom expression and apoplexy combined with subsequent loss
of plants were monitored in four Hungarian grape germplasm collections containing a
total of 305 different cultivars. Disease incidence (DI) was calculated to compare (i) the
degree of GTD sensitivity of the most important international and national grape cultivars,
and (ii) the severity of GTD symptoms in cultivars with monophyletic V. vinifera origin
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and interspecific (hybrid) cultivars with various American or Asian Vitis species in their
pedigree. These data may provide important information for extended and future grape
breeding programs.

2. Results

Overall, we examined 5215 grape plants at the four grapevine germplasm collections
(locations) combined. These plants represented 305 different cultivars. Many of the cultivars
were present in more than one (up to four) location. Therefore, the number of samples
analyzed was higher (537) than the number of cultivars (Table 2). GTD symptoms were
categorized as new symptoms during the annual vegetative period (leaf stripes with white
or brown rot and dieback) (Figure 1a–d) or as dead and missing (removed) plants from
previous dieback events in past years (Figure 1e,f).
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white and red grapes among the most and the less sensitive cultivars within the genuine 
V. vinifera cultivars analyzed. The susceptibility of Furmint, one of the most important 
Hungarian white cultivars, was similar to that of Veltliner Gruen and Muscat Lunel, while 
another indigenous white cultivar, Juhfark, was less susceptible and more similar to that 
of Blauburger and Pinot Blanc. The indigenous table grape, Csaba Gyoengye, was less 
susceptible than Furmint, showing similar DI to those of Welschriesling, Cabernet Franc, 
and Muscat Ottonel. Blaufraenkish, a grapevine variety with regional importance was 
among the less susceptible cultivars, such as Pinot Blanc and Pinot Noir. 

Figure 1. GTDs symptoms: (a,d) leaf stripes; (b) partial dieback; (c) esca symptoms with white
rot and leaf stripe; (e) dead plant from previous dieback (indicated by arrow) and new (annual)
symptomatic plants (middle and right side); and (f) dead plant from previous vintage.

The disease incidence (DI%) was over 25% at each of the survey sites (Table 2); there-
fore, the conditions for a meaningful survey of GTD symptom expression were considered
adequate for further analysis. The average proportion of plant loss within the GTD symp-
toms and disease incidence (i.e., all symptoms) was similar in each germplasm collection.
Altogether, these results, with previous records of dieback symptoms of currently dead
and removed (dead) plants, validated the connection between missing plants and previ-
ous dieback.

The DI of the most important cultivars with only V. vinifera ancestors were compared
(Figure 2). Sauvignon Blanc and Cabernet Sauvignon were the most susceptible cultivars,
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while Merlot and Syrah were the less susceptible ones (Figure 2, Table 1). There were both
white and red grapes among the most and the less sensitive cultivars within the genuine
V. vinifera cultivars analyzed. The susceptibility of Furmint, one of the most important
Hungarian white cultivars, was similar to that of Veltliner Gruen and Muscat Lunel, while
another indigenous white cultivar, Juhfark, was less susceptible and more similar to that
of Blauburger and Pinot Blanc. The indigenous table grape, Csaba Gyoengye, was less
susceptible than Furmint, showing similar DI to those of Welschriesling, Cabernet Franc,
and Muscat Ottonel. Blaufraenkish, a grapevine variety with regional importance was
among the less susceptible cultivars, such as Pinot Blanc and Pinot Noir.
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Figure 2. Disease incidence (DI) of grapevine trunk diseases of the most important international and
national grape cultivars, surveyed in three or four Hungarian germplasm collections. The capital
letters between brackets indicate the berry skin color: (N): noir, (B): blanc, and (G): gris, as defined in
the VIVC database [51]. Small letters show significant differences based on the Mann–Whitney U-test
(p < 0.05).

The severity of the disease expression categories was defined as separate cultivars.
When a cultivar tends to not demonstrate GTD symptoms in situ, it is defined as unsus-
ceptible. When only annually developed (usually mild) GTD symptoms are displayed,
the cultivar is listed as resilient. Sensitive cultivars demonstrated the tendency to develop
dieback symptoms, eventually resulting in plant loss in parallel with other GTD symptoms
in other individuals, while exclusively plant loss of infected specimens was detected in
vulnerable cultivars that are highly sensitive. Most of the cultivars with only V. vinifera
ancestors in their pedigree were categorized as highly sensitive or sensitive to GTDs with
exclusive plant loss or high plant dieback concurrent with non-lethal symptoms (Figure 3).
The level of resistance to GTD pathogens was generally better or much better in the case
of interspecific hybrid Vitis cultivars, with a considerably higher ratio of unsusceptible or
resilient cultivars than that encountered among the monophyletic V. vinifera ones (Figure 3).
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Table 2. Disease incidence (DI) of grapevine trunk diseases (GTDs) (mean ± SE) and the proportion
of plant loss (mean ± SE) within GTD symptoms in different germplasm collections. Small letters
show significant differences based on the Mann–Whitney U-test (p < 0.05).

Location No. Samples *
GTDs

DI% (±SE) Proportion of Plant Loss (% ± SE)

Badacsonytomaj 90 44.58 (±2.62) c 74.63 (±3.14) a
Kecskemét 130 28.05 (±2.19) a 76.49 (±3.11) a

Pallag 166 37.05 (±2.16) b 73.78 (±3.10) a
Pécs 151 28.41 (±1.92) a 69.94 (±3.23) a

Total 537 33.70 (±1.13) 73.56 (±1.59)
* In the case of locations, the number of samples are equal to the number of cultivars.
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The tendency of cultivars with different origins for plant loss was compared using a
binomial test. The ratio of monophyletic V. vinifera cultivars was lower in the less sensitive
groups (unsusceptible and resilient) than expected based on all tested cultivars (Figure 4).
This indicates that monophyletic V. vinifera cultivars have a higher tendency to display
serious GTD symptoms, including plant loss, than the average of all examined cultivars
(overall samples). On the contrary, the ratio of cultivars without plant loss (less sensitive
groups) was significantly higher in the group of interspecific hybrids. Similarly, when
the hybrids with American (V. labrusca, V. riparia, or V. rupestris) or Asian (V. amurensis)
ancestors were split and compared separately, the ratio of the cultivars in both groups was
higher in the less susceptible categories compared to all the cultivars studied (Figure 4).

The susceptibility of cultivars with different species ancestry (i.e., exclusively V. vinifera
or interspecific hybrids) was compared regarding the cultivar specimen mortality (propor-
tion of plant loss) from GTDs as part of the GTD disease incidence (i.e., all symptoms). Plant
death as a consequence of GTD expression was more likely in cultivars with a monophyletic
V. vinifera origin than in the interspecific Vitis cultivars (Figure 5a). Separating the group of
the interspecific cultivars into cultivars with Asian and American origins, the proportion of
plant loss within the displayed GTD symptoms was meaningfully lower exclusively for
cultivars with V. amurensis ancestry than the ones with monophyletic V. vinifera cultivars
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(Figure 5b). Thus, the calculated difference was not significant for the group of cultivars
with V. labrusca, V. riparia, or V. rupestris (American species) in their pedigree.
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Figure 5. Proportion of plant loss within all recorded GTD symptoms (a) comparing the average of
these cultivars with that in exclusively V. vinifera (Vv) ancestors, and with that in all the interspecific
hybrids (I) and (b) the same comparison with Vv but now with hybrids with V. amurensis (Va) in their
pedigree or those with American (Ao) (V. labrusca, V. riparia or V. rupestris) ancestry, separately. Small
letters indicate significant differences between datasets based on the Mann–Whitney U-test (p < 0.01).
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3. Discussion

There are differences in sensitivity to GTDs displayed by V. vinifera cultivars; however,
no completely resistant cultivars have been identified. The physiological and genetic back-
ground of these differences in sensitivity or resistance against GTD-causing pathogens is
not understood [53,54]. In accordance with previous results, Sauvignon Blanc and Cabernet
Sauvignon showed the highest DI in the surveyed Hungarian germplasm collections, all
four with their own climate and soil characteristics, while Furmint, Chardonnay, and Caber-
net Franc were found less GTD susceptible [12,42,43,46,55]. Blaufraenkisch (also referred
to as Limberger), again confirmed by our current results, consistently had one of the lowest
DI [42,43,46,55], while Merlot and Pinot Noir were usually also found to be less susceptible
to most of GTDs in general [12,42,46,55,56].

Comparing the sensitivity of different grapevine cultivars to esca, significant differ-
ences were found between those with red and those with white berries, and their respective
xylem vessel diameters and densities [46]. The average vessel diameter of the white cul-
tivars was larger with higher densities, compared to the red grapevines. A similar trend
was observed for the overall disease incidence, where the mean disease incidence was
higher for white-berry cultivars than for red-berry cultivars. Foliar symptom symptoms
are hypothesized to result from fungal toxins translocated to the leaves from primary
infection sites [53,57,58]. Higher rates of leaf symptoms were explained by the larger vessel
diameters, as they provide space for more intensive xylem cavitation, which can assist
toxin translocation to the green plant parts [46]. Moreover, Pouzoulet et al. [59] stated that
esca pathogens may escape compartmentalization more efficiently when the vessels are
wider, and the more gel and tyloses in the vessels, the more substrate is provided for wood
pathogens [59].

No GTD symptom expression was detected in the Hungarian germplasm collections
of the Merlot cultivars, whose outstanding tolerance has been reported in several previous
studies in other countries [21,39,42,44,50,60,61]. The lignin content of Merlot was found to
be significantly higher than in Cabernet Sauvignon, a cultivar that is considerably more
susceptible to GTDs [41,43,46,50]. Other cultivars identified as less sensitive to GTD had
in general smaller vessel diameters and higher lignin content than the most sensitive
grapevine varieties [62,63]. The results of Rolshausen et al. [62] highlighted the potential
importance of lignin in the E. lata-grapevine interaction. The common defense response of
grapevines to infection is compartmentalization, where the plant attempts to contain the
invading agent by depositing suberin and lignin, which impedes the spread of pathogens
throughout the xylem. A higher lignin content was detected in the infected grape tissues,
which indicates that lignin deposition is initiated in response to fungal infection [62].

GTDs are complex diseases that result in serious economic losses by reduced grape
productivity and are characterized by remarkable differences in disease severity and man-
ifestation [2]. Infection with GTD fungal pathogens may result in latency, accidental or
repeated annual disease expression, and serious partial or whole plant dieback [64]. The
most serious disease symptom is plant loss, which can result in irreversible economic
damage. Previously, only foliar or chronic and dead cordon or apoplectic (partial and
whole plant) individual disease expressions were differentiated among the GTD symp-
toms [43,46,55]. This traditional categorization or subsequent merging of different symptom
manifestations and calculating disease incidence indicates only the susceptibility of a culti-
var and does not take into account the severity of the infection and the plant’s responses.
Cultivars that are able to survive infection for a longer period of time–specimens that are
more likely to express milder foliar symptoms and partial dieback rather than whole plant
apoplexy and death—are considered more resistant to the fungal GTD pathogens in our
present survey and analysis.

The survey and analysis of four Hungarian germplasm collections concluded that
interspecific hybrid cultivars, in particular the ones with Asian V. amurensis ancestry, are
generally less susceptible to GTDs, expressing no or milder symptoms, than monophyletic
cultivars with only V. vinifera ancestors. In these hybrid cultivars with some level of East
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Asian ancestry, infection by GTD fungal pathogens resulted in less plant loss, which is
the most serious and irreversible consequence of GTD infection. One of the possible
backgrounds of this lower sensitivity (or higher resistance) may concur with the xylem
vessel diameter, as V. amurensis had the smallest vessel diameter among the different grape
species [65,66]. By contrast, the vessel diameter of the American species V. labrusca was
reported to be rather large [65]. In a more recent study, there was no substantial difference
in xylem vessel diameter recorded between V. vinifera and the American interspecific hybrid
called Noiret with V. labrusca ancestry [63].

Since most of the GTD pathogens are wound-colonizing fungi, frost cracks in the
wood parts of the plant could facilitate the prevalence of the GTD disease complex in
grapevines [67,68]. Compared to V. vinifera and V. labrusca species, V. amurensis is extraordi-
narily cold resistant and can survive long and cold winters as a result of its relatively low
respiratory intensity, lower level of active metabolism, and longer dormancy period [32].
V. amurensis is cultivated as a cold-resistant grape in the colder regions of China [32,69–71].
Wang et al. [72] identified 17 genes possibly involved in this increased cold hardiness.
Accumulation of several amino acids (valine, isoleucine, and proline) was reported to
be higher in V. amurensis than in V. vinifera cultivars, the level of which was subject to
abiotic stress [73]. This property, together with the accumulation of other bioactive com-
pounds (polyphenols, tannins, and stilbene phytoalexin resveratrol), can protect plants
from long-term cold damage [32,74].

The induction of stilbene biosynthesis was correlated with basal immunity against
downy mildew and eutypa dieback [48,75]. American Vitis species are also employed
to breed more cold-hardy cultivars [76]. Increased stilbene biosynthesis has relevance in
increased resistance to different fungal diseases [77] and may have importance in GTD toler-
ance, as grapevine rootstock transformed with grapevine stilbene synthase gene expressed
from a pathogen-inducible promoter showed increased resistance against E. lata [48].

V. amurensis is not only cold-tolerant, but also resistant to white rot, grape anthracnose,
and grape bitter rot (Greeneria uvicola (Berk. & M.A. Curtis) Punith) fungal diseases, and has
a high resistance to downy mildew caused by the Oomycete P. viticola [29,31–33,74,78–80].
The resistance of grapevines against the bacterial trunk pathogen A. vitis was introgressed
from V. amurensis upon interspecific breeding [30]. Hybrids with V. amurensis ancestry
were unambiguously less sensitive to GTD pathogens in our survey, as illustrated by
the considerably higher ratio of resilient and tolerant hybrid cultivars to Botryosphaeria
dieback (BD) and esca diseases.

Pretorius and Høj [81] assumed that the product of a single gene or its pyramid
(stacking multiple genes into a single genotype to combine desirable traits) is effective
only against a narrowly related group of pathogens within the GTD complex. These
authors differentiated tolerance toward various GTD pathogens in numerous monophyletic
American Vitis cultivars and hybrids. The resistance loci Rda1 and Rda2 originating from
Vitis cinerea (Engelm.) Engelm. ex Millard B9, a native American grape, and the interspecific
Horizon cultivar, respectively, largely prevented the development of Phomopsis dieback
symptoms [82]. Concordantly, an interspecific cultivar with parental varieties Catawba and
V. labrusca showed reduced sensitivity to Neofusicoccum parvum (Pennycook & Samuels)
Crous, Slippers & A.J.L. Phillips in inoculation assays. On the other hand, the American
Vitis spp. were found to be more susceptible to Eutypa dieback than V. vinifera [44]. Co-
evolution of V. vinifera and E. lata in a natural habitat could have increased the resistance of
the plants prior to domestication [83].

One of the main goals of breeding programs nowadays is to pyramid extant, inde-
pendent biotic and abiotic resistance genes from different lineages of American or Asian
grapes and to attain additive accumulation of broad resistance against or tolerance to
phytopathogens into one parent that can be crossed with European V. vinifera [84]. The
domestication bottleneck effect, the result of thousands of years of vegetative propaga-
tion without meiosis and recombination, and the continuous incrossings of high-quality
cultivars resulted in low genetic diversity across domesticated V. vinifera grapes [37,38].
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Engaging American and Asian Vitis species in breeding has the potential to enhance biotic
and abiotic vine stress tolerance lost over the course of domestication [29–36,69–71], which
is relevant to GTD symptom expression and disease severity in grape cultivars.

4. Materials and Methods
4.1. Survey Sites and Cultivars

The survey was conducted in 2022, involving four Hungarian germplasm collections
(Figure 6) containing a high number of cultivars with worldwide, Central-European, or
Carpathian basin significance and valuable parental lines for further breeding. The climatic
and edaphic conditions differed considerably at the four locations (Table 3), despite their
geographical closeness (ranging from 60 to 330 km in distance). Pallag (University of Debre-
cen, Institutes for Agricultural Research and Educational Farm, Horticultural Experimental
Plant of Pallag) and Kecskemét (Hungarian University of Agriculture and Life Sciences,
Research Institute for Viticulture and Oenology) are in the eastern part of Hungary, which
has a continental climate with relatively low annual precipitation (500–700 mm) [85]. These
lowland sites in the Carpathian Basin were established on phylloxera immune sandy soils;
thus, the plants growing at these locations were not grafted (Pallag) or in part growing on
their own roots (Kecskemét) [86].
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Badacsonytomaj (Hungarian University of Agriculture and Life Sciences, Research
Institute for Viticulture and Oenology) and Pécs (University of Pécs, Research Institute for
Viticulture and Oenology) are in the occidental part of the country, where the influence of
westerly winds associated with a more moderate oceanic climate is more pronounced. Both
of these sites have mountain slope relief with terrace cultivation and a sub-Mediterranean
climate with annual precipitation between 600 and 800 mm [85,88]. The soil type in
Badacsonytomaj is volcanic erubase and eroded loess slope sediment, and the region is
heavily affected by the humidifying and moderating effects of the water body of the Lake
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Balaton [89]. The soil type in Pécs is Brown earth (Ramann’s brown forest soil) overlying
carbonate-rich red sandstone.

Table 3. Characteristics of germplasm collection locations.

Badacsonytomaj Kecskemét Pallag Pécs

Climate Submediterranean with
dry, warm summer Continental Continental Submediterranean with dry,

warm summer

Soil 1 Erubase
soil/Eutric Histosol Sand/Haplic Arenosoil Sand/

Haplic Arenosoil
Brown

earth/Chromic Cambisol

Relief
Mountain slope

(top-valley row direction,
terrace cultivation)

Lowland Lowland Mountain slope
(terrace cultivation)

Cultivation type Grafted Own rooted Own rooted Grafted
Relative climate sector 2 IIIc Ib Ia IIIb

Average temperature
fluctuation (◦C) 21–22 23–24.5 23–24 21–22

Annual precipitation (mm) 600–800 500–550 550–700 600–800
Annual sunshine duration (h) 1950–2050 2000–2150 1900–2050 2000–2100

1 Soil types according to official Hungarian [90]/WRB [91] and European Commission [92]. 2 Relative climate
sector as taken from [85].

The germplasm collections were considered to be free from the bacterial phytopathogens
A. vitis and Rhizobium radiobacter. Vineyard parts potentially affected by the Flavescence
dorée (Ca. Phytoplasma vitis) were consistently excluded from our survey. BD and esca
symptoms were predominant at the surveyed sites, but Eutypa-like symptoms [13] were
encountered in a few instances. The GTDs were visually diagnosed by the typical tiger-
strip foliar symptoms (Figure 1a,d), while white and/or brown rot was detected on cross
sections or debarked woody parts (Figure 1c) of the plants. The ensemble of BD, esca, and
Eutypa-like symptoms was counted as GTD symptoms. The new apoplectic symptoms
(dead young shoots with leaves, Figure 1b) were considered as annual GTD symptoms.
If there were no fresh sprouts in the vine specimen, the plant was considered as dead
(Figure 1e,f). All evaluated cultivars were surveyed in over 10-years-old plants, therefore
the chronic/milder (non-lethal) symptoms were evaluable [93,94].

Many of the surveyed cultivars had non-V. vinifera ancestry. The different Vitis spp. in
the pedigree of a cultivar were certified based on data from the Vitis International Variety
Catalogue (VIVC) [51]. The cultivars were grouped for further analysis based on their
ancestry from different Vitis spp. (Table 4). The parents of the interspecific cultivars are
listed in Table S1.

Table 4. Categories of cultivars with multiple Vitis species ancestry.

Ancestors in Parent or
Grandparent Level Categorization I. Categorization II.

Vitis vinifera Vitis vinifera (Vv) Vitis vinifera (Vv)
Occurrence of American species 1 Interspecific (I) American origin (Ao)

Occurrence of Vitis amurensis Interspecific (I) Vitis amurensis origin (Va)
1 V. labrusca, V. riparia or V. rupestris.

4.2. Data Analysis
4.2.1. Susceptibility Analysis

The disease incidence (DI%, the ratio of plants showing fresh leaf symptoms and
dieback and whole plant apoplexy in previous years) was evaluated in the cultivars of
the surveyed germplasm collections. Since the overall disease incidence was over 25% at
every site and the spatial distribution of the symptom-expressing plants was homogenous
in all vineyards, similar probabilities of infection were assumed for each cultivar. Given
these conditions, the same cultivars in the different surveyed sites could be considered as
replicates in the statistical analysis.
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4.2.2. Sensitivity Categories and Analysis

The cultivars were categorized based on a new method to determine the GTD disease
expression severity (i.e., the severity of visible symptoms). Four categories were estab-
lished to differentiate between: (1) no symptom expression, (2) exclusively new (annual)
symptoms, (3) both new symptoms and previous dieback resulting in plant loss, and
(4) exclusively previous dieback events all resulting in plant loss.

Four GTD sensitivity groups were created to categorize the studied cultivars based
on the type (annual foliar symptoms and dieback or apoplexy) and the frequency of the
different symptoms. Highly sensitive (HS), where all symptomatic plants of the cultivar are
dead; sensitive (S), where both dead plants (resulting from apoplexy of the trunk) and fresh
GTD leaves and dieback symptoms are detected. The cultivar was considered resilient (R)
if only foliar symptoms were present, while neither apoplexy nor annual GTD leaf and
dieback symptoms were detected in unsusceptible (U) cultivars (Table 5).

Table 5. Categorization of cultivars according to the observed sensitivity toward grapevine trunk
diseases (GTD).

Sensitivity Categories GTD Symptoms

Two Groups Four Groups Apoplexy (Dead Plant) Leaf Symptoms and
Fresh Dieback

More sensitive
Highly sensitive

(HS) Exclusively -

Sensitive (S) Present Present

Less sensitive
Resilient (R) - Exclusively

Unsusceptible (U) - -

To reveal the potential differences in pathogen sensitivity among the different ancestry
groups, the four original groups were re-appreciated, where the two more sensitive (HS
and S) and the two less sensitive (R and U) categories were merged. The ratio of the lineage
groups within each of these two redefined sensitivity categories was compared to the
theoretically expected distributions with the binominal test.

The tendency of the GTD to kill the host plant was determined in parallel by calculating
the proportion of individual plant losses within the disease incidence of the lineage groups
and comparing the lineage groups in pairs. Monophyletic European V. vinifera (Vv) cultivars
against the (1) interspecific (I) ones and (2) hybrids with American (V. rupestris, V. riparia,
V. labrusca–Ao) and Asian (V. amurensis–Va) species co-origin.

4.3. Statistical Analysis and Software Background

The datasets did not fulfill the assumptions of parametric tests (i.e., normality and
homogeneity of variances), which were analyzed with Q-Q plots and Levene’s test. During
the analysis, the nonparametric Kruskal–Wallis test was used for comparison, which was
backed up with the Mann–Whitney U-test for pairwise comparison with Statsoft Statistica
ver.10 software.

The ratio of the sensitivity groups in different ancestral groups was compared with the
binominal test executed using the online calculator of Stat Trek [95]. The Sankey diagram
was generated by the Sankeymatic online diagram builder (https://sankeymatic.com,
accessed on 18 January 2023).

5. Conclusions

Regarding the order in V. vinifera cultivar susceptibility based on disease incidence,
earlier data from the literature in other grape-producing countries were confirmed, and the
main cultivars of the Carpathian Basin were inserted in this ranking, where Juhfark proved
to be more tolerant and Furmint more susceptible. Merlot did not show GTD symptoms in
any of the Hungarian germplasm collections.

https://sankeymatic.com
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The interspecific Vitis cultivars had a lower tendency for plant loss following infection
with GTD fungal pathogens. Hybrid varieties with Asian V. amurensis ancestry have out-
standing tolerance in our experimental set of more than 300 cultivars. Engaging American
and Asian Vitis species in breeding programs to enhance tolerance and resistance to GTDs
has great potential.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants12122328/s1. Table S1: Parents of the surveyed interspecific
Vitis cultivars.
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