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Abstract: Stripe rust, which is caused by Puccinia striiformis f. sp. tritici, is one of the most devas-
tating foliar diseases of common wheat worldwide. Breeding new wheat varieties with durable
resistance is the most effective way of controlling the disease. Tetraploid Thinopyrum elongatum
(2n = 4x = 28, EEEE) carries a variety of genes conferring resistance to multiple diseases, including
stripe rust, Fusarium head blight, and powdery mildew, which makes it a valuable tertiary genetic
resource for enhancing wheat cultivar improvement. Here, a novel wheat–tetraploid Th. elongatum
6E (6D) disomic substitution line (K17-1065-4) was characterized using genomic in situ hybridization
and fluorescence in situ hybridization chromosome painting analyses. The evaluation of disease
responses revealed that K17-1065-4 is highly resistant to stripe rust at the adult stage. By analyzing
the whole-genome sequence of diploid Th. elongatum, we detected 3382 specific SSR sequences on
chromosome 6E. Sixty SSR markers were developed, and thirty-three of them can accurately trace
chromosome 6E of tetraploid Th. elongatum, which were linked to the disease resistance gene(s) in the
wheat genetic background. The molecular marker analysis indicated that 10 markers may be used to
distinguish Th. elongatum from other wheat-related species. Thus, K17-1065-4 carrying the stripe rust
resistance gene(s) is a novel germplasm useful for breeding disease-resistant wheat cultivars. The
molecular markers developed in this study may facilitate the mapping of the stripe rust resistance
gene on chromosome 6E of tetraploid Th. elongatum.

Keywords: chromosomal substitution; molecular markers; stripe rust; tetraploid Thinopyrum elongatum

1. Introduction

Thinopyrum elongatum (Host) D. R. Dewey is a wild relative of wheat and possesses
many desirable traits useful for improving wheat, including resistance to various dis-
eases (e.g., stripe rust, Fusarium head blight, and powdery mildew) and salt stresses
and tolerance to drought [1–3]. The three ploidy levels of this species are as follows:
diploid (2n = 2x = 14, EE), tetraploid (2n = 4x = 28, EEEE), and decaploid (2n = 10x = 70,
EEEEEEStStStSt) [4]. Research on Th. elongatum began in the former Soviet Union and
was followed by studies involving hybridizations between Th. elongatum and wheat in
various countries. These studies resulted in many wheat–Th. elongatum lines, including ad-
dition [5,6], substitution [7–10], translocation [11,12], and introgression lines [13,14], which
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successfully introduced disease resistance genes carried by Th. elongatum into common
wheat, such as Yr69, Pm51, Fhb7, Lr19, Lr24, Lr29, Sr24, Sr25, Sr26, and Sr43 [15]. Although
most of these lines are the progeny of crosses between wheat and diploid Th. elongatum
or decaploid Th. ponticum, there are a few reports describing crosses involving tetraploid
Th. elongatum [16]. To date, some of the major materials produced for breeding transfer
of resistance genes in tetraploid Th. elongatum are still partially diploid and additional
lines [17,18]; none of these materials can be used directly in wheat breeding. Therefore, it
is urgent to develop wheat–tetraploid Th. elongatum resistance lines without genetic drag
and with more stablility, as well as to transfer the resistance genes carried by tetraploid Th.
elongatum into common wheat.

Stripe rust caused by Puccinia striiformis f. sp. tritici is one of the major biotic factors
limiting grain production in most cool and humid wheat-growing regions [11]. Over 80%
of the wheat cultivated worldwide is affected by stripe rust, leading to annual yield losses
of 5.47 million tons [19]. Compared with methods involving the application of pesticides,
the breeding of disease-resistant varieties is considered to be a more cost-effective and
environmentally friendly method for controlling stripe rust [20]. The genetic resistance
to stripe rust in wheat has been classified as all-stage resistance (ASR) and adult plant
resistance (APR) [21]. APR is usually controlled by multiple genes, each with a minor
or partial effect, and most well-characterized APR genes are effective against multiple
races (i.e., nonspecific) and confer relatively durable resistance [22]. To date, 28 of the
84 officially named stripe rust resistance genes are APR genes, of which three originated
from the progenitors and wild relatives of wheat, including T. dicoccoides, T. durum, and
Secale cereale [23–25]. In addition, many temporarily named Yr genes and quantitative trait
loci (QTLs) mediating APR from the relatives of wheat have been identified, including
YrM1225 from Aegilops ventricosa [26–28]. Some of these resistance genes, such as Yr36 from
T. dicoccoides, which confers durable resistance to multiple Pst isolates, have been important
for increasing wheat production [29,30]. However, the rapid diversification of Pst races has
resulted in the emergence of new virulent Pst races that can overcome the effects of most
of the stripe rust resistance genes [31]. More specifically, the partial or complete resistance
provided by Yr1, Yr2, Yr3, Yr4, Yr6, Yr7, Yr9, Yr10, Yr17, Yr22, Yr23, Yr26, and Yr27 has been
lost in most regions of the globe [32,33]. Therefore, exploring new germplasm resources and
exploiting their disease resistance genes are critical for genetically improving wheat.

In a previous study, Li et al. [34] developed 50 wheat–tetraploid Th. elongatum deriva-
tive lines by crossing the T. durum–tetraploid Th. elongatum partial amphidiploid line
8801 with Sichuan wheat cultivars. More than 70% of these lines were highly resistant to
stripe rust, unlike the parental wheat cultivars. We subsequently further developed and
characterized the wheat–tetraploid Th. elongatum 1E (1D), 3E (3D), and 4E (4D) disomic
substitution lines, which revealed the successful transfer of salt tolerance genes and genes
for ASR to stripe rust and powdery mildew from tetraploid Th. elongatum into common
wheat [16,35,36]. In this study, a novel wheat–tetraploid Th. elongatum disomic substitution
line (K17-1065-4) highly resistant to stripe rust at the adult stage was generated from a cross
involving 8801, SM482, and SM921 and self-crossing to F5. We also developed and validated
new specific PCR-based molecular markers on the basis of the whole-genome sequence
of diploid Th. elongatum to efficiently trace the tetraploid Th. elongatum chromosome 6E
during the breeding of disease-resistant wheat lines and identify tetraploid Th. elongatum
chromosomes along with the chromosomes of other wheat-related species.

2. Results
2.1. Chromosomal Composition of K17-1065-4

The GISH and FISH analyses were performed to clarify the chromosomal composition
of the wheat–Th. elongatum line K17-1065-4. The GISH analysis involving tetraploid
Th. elongatum genomic DNA as the probe and CS DNA as the blocker detected 40 wheat
chromosomes and 2 E chromosomes in K17-1065-4 (Figure 1a). The FISH analysis of these
42 chromosomes was completed using Oligo-pSc119.2 (green) and Oligo-pTa535 (red), with
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the CS FISH karyotype and the tetraploid Th. elongatum E genome FISH karyotype serving
as references [37,38]. The results suggested a pair of 6D chromosomes was replaced by a
pair of 6E chromosomes in line K17-1065-4 (Figure 1b). Furthermore, a FISH chromosome
painting analysis of the pair of E chromosomes in K17-1065-4 was performed using the
E-genome-specific probes Chr1-Chr7. There was a strong signal for probe Chr6 (red) on the
E chromosomes (Figure 1c,d). These results were consistent with the previously reported
FISH karyotype of the tetraploid Th. elongatum 6E chromosomes [37]. Thus, K17-1065-4 is a
wheat–tetraploid Th. elongatum 6E (6D) chromosomal substitution line.
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Figure 1. Identification of the wheat–tetraploid Th. elongatum substitution line K17-1065-4 using
the GISH and FISH techniques. The probes were (a,c,e) tetraploid Th. elongatum genomic DNA;
(b,f) Oligo-pSc119.2 (green) and Oligo-pTa535 (red); (d) Chr6 (red). Arrows indicate chromosomes
6E. Scale bar: 10 lm.

To verify the cytological stability of K17-1065-4, 40 randomly selected seeds from the
K17-1065-4 selfed progeny were characterized via GISH and FISH analyses. The results
showed that all seeds carried two 6E chromosomes, but no 6D chromosomes (Figure 1e,f).

2.2. Response to Stripe Rust

At the seedling stage, K17-1065-4 and its parents SM482 and SM921 were inoculated
with P. striiformis f. sp. tritici race CYR-34 to evaluate stripe rust resistance. A wheat line
SY95-71 was used as the susceptible control. The results indicated that SM482, SM921,
and K17-1065-4 plants were susceptible to CYR-34 (IT = 8), whereas 8801 was immune to
CYR-34 (IT = 0) (Figure 2a).

At the adult stage, SY95-71, SM482, SM921, 8801, and K17-1065-4 were inoculated
with a mixture of P. striiformis f. sp. tritici races. Both SM482 and SM921 were susceptible to
stripe rust (IT = 8), whereas 8801 and K17-1065-4 were highly resistant to stripe rust (IT = 1)
(Figure 2b).
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2.3. Agronomic Trait Evaluation

K17-1065-4, SM482, SM921, and 8801 plants were assessed for agronomic traits in a re-
search field at Sichuan Agricultural University. The tiller number, plant height, and spike length
of K17-1065-4 were similar to those of SM482 and SM921, but were significantly lower than
those of 8801 (Table 1; Figure 3). The grain number per spike of K17-1065-4 was significantly
higher than that of all parents, and its 1000-grain weight was lower than that of SM921, not
significantly different from that of SM482, and significantly higher than that of 8801.

Table 1. The agronomic traits of K17-1065-4 and its parental lines Z.

Line Growth
Season

Tiller
Number

Plant Height
(cm)

Spike Length
(cm)

Spikelet per
Spike

Grains per
Spike

1000-Grain
Weight (g)

8801
2020–2021 8.8 ± 3.2 a 136.5 ± 5.4 a 16.4 ± 2.9 a 16.4 ± 3.0 b 17.0 ± 3.0 d 22.3 ± 0.8 c
2021–2022 6.0 ± 0.7 a 121.5 ± 1.4 a 16.6 ± 1.1 a 20.6 ± 1.1 c 18.8 ± 1.3 c 20.6 ± 0.3 c

SM482
2020–2021 5.8 ± 1.1 b 79.9 ± 3.9 b 11.64 ± 0.7 b 22.4 ± 1.3 a 59.4 ± 4.3 c 27.5 ± 0.9 b
2021–2022 5.0 ± 1.9 a 70.8 ± 2.7 d 13.8 ± 1.1 bc 23.0 ± 0.7 b 64.0 ± 3.2 b 27.4 ± 0.4 b

SM921
2020–2021 3.6 ± 0.9 b 82.0 ± 4.8 b 10.5 ± 0.9 b 21.4 ± 1.7 a 68.6 ± 6.6 b 34.1 ± 0.7 a
2021–2022 6.0 ± 1.6 a 74.0 ± 2.5 c 15.1 ± 0.6 b 23.8 ± 1.1 ab 66.6 ± 3.6 b 33.6 ± 0.9 a

K17-1065-4
2020–2021 4.2 ± 1.3 b 79.1 ± 4.3 b 9.9 ± 1.6 b 21.2 ± 1.6 a 75.4 ± 3.4 a 26.9 ± 0.6 b
2021–2022 5.6 ± 1.7 a 78.3 ± 1.8 b 13.7 ± 1.2 c 25.0 ± 1.0 a 75.6 ± 1.5 a 26.9 ± 0.1 b

Z Data in the columns indicate means ± standard errors. Different lowercase letters following the means indicate
significant differences at the p < 0.05 levels.
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Figure 3. Plant morphology of wheat line K17-1065-4 and its parents. (a) Adult plants; (b) spikes;
(c) spikelets; (d) grains. 1, 8801; 2, SM482; 3, SM921; 4, K17-1065-4.

2.4. Development and Validation of Specific Molecular Markers

A total of 83,685 SSR sequences were obtained by analyzing the 6E genomic sequence
of diploid Th. elongatum. Primers were designed for all SSR sequences using Primer3
(https://primer3.ut.ee/) (accessed on 7 June 2022). The mock e-PCR amplification of the
whole genomes of CS and diploid Th. elongatum indicated 20,738 pairs of primers could
exclusively amplify the target fragments on the diploid Th. elongatum 6E chromosome. The
SSR sequences corresponding to these markers were used to screen the other chromosomes
(1E–5E and 7E) of diploid Th. elongatum, which revealed 8708 sequences with mismatches.
Furthermore, these sequences were compared with the whole-genome sequence of CS; the
sequences with ≥10% homology were discarded. Finally, 3382 unique SSR sequences were
obtained, which were specific to the 6E chromosome of diploid Th. elongatum.

We randomly selected 60 specific SSR sequences located at different positions on
chromosome 6E to be used as SSR markers (Table S2). The primer pairs for 33 SSR markers,
including Chr6E-10, Chr6E-24, Chr6E-27, and Chr6E-48, amplified specific fragments in
diploid Th. elongatum, tetraploid Th. elongatum, 8801, and K17-1065-4, but not in CS,
SM482, SM921, and six wheat–tetraploid Th. elongatum substitution lines (1E–5E and 7E)
(Figure 4a–d). Therefore, these SSR markers were considered to be specific to chromosome
6E of tetraploid Th. elongatum. The success rate for the PCR-based marker development
was 53.3%.

To evaluate the specificity and stability of these 33 markers, they were used for the
PCR amplification involving 15 wheat relatives (Table S3). Ten amplified fragments were
exclusive to diploid Th. elongatum and tetraploid Th. elongatum (Figure 5a). Additionally, the
primer pairs for three markers amplified specific fragments only for diploid Th. elongatum,
tetraploid Th. elongatum, and Th. ponticum (Figure 5b), while the primer pairs for another
three markers amplified specific fragments only for diploid Th. elongatum, tetraploid Th.
elongatum, Th. ponticum, and Th. bessarabicum (Figure 5c). The PCR analysis of other wheat
relatives showed that 13, 2, 1, 2, and 7 markers amplified specific fragments from Psa.
athericum, Tri. caespitosum, Pse. libanotica, Ag. Cristatum, and Th. bessarabicum, respectively
(Figure 5d,e).

https://primer3.ut.ee/
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Figure 5. Stability and specificity markers. (a) Chr6E-36; (b) Chr6E-48; (c) Chr6E-42; (d) Chr6E-2;
(e) Chr6E-37; M, marker (500 bp); 1, T. monococcum; 2, Ae. speltoides; 3, Ae. tauschii; 4, Th. elongatum;
5, tetraploid Th. elongatum; 6, Th. ponticum; 7, Th. bessarabicum; 8, H. bogdanii; 9, Ag. cristatum; 10, S.
cereale; 11, D. villosum; 12, Psathyrostachys huashanica; 13, Pseudoroegneria libanotica; 14, Th. caespitosum;
15, Psa. athericum. Arrows show the diagnostic amplification products of tetraploid Th. elongatum 6E
chromosome.
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2.5. Utility of Specific Markers for Breeding

To evaluate whether the 33 specific markers developed for the tetraploid Th. elongatum
chromosome 6E were applicable for breeding, 154 F2 individuals obtained from the cross
between K17-1065-4 and SM482 were selected for a molecular marker analysis, GISH
analysis, and an assessment of stripe rust resistance. The PCR amplification results for
the tetraploid Th. elongatum 6E-specific SSR markers revealed specific bands for 115 of the
154 plants (Figure 6). The GISH results indicated that these 115 plants contained one or
two 6E chromosomes; the GISH signals were undetectable for the other 39 plants (Figure 7).
Moreover, these 115 plants were highly resistant to stripe rust at the adult stage, whereas
the other 39 plants were highly susceptible to stripe rust (Figure 8). Accordingly, these
specific SSR markers may be useful for tracking stripe rust resistance genes linked to
chromosome 6E of tetraploid Th. elongatum, making them potentially capable of wheat
genetic improvement and breeding.
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3. Discussion

Th. elongatum is a tertiary genetic resource that has many excellent agronomic traits
useful for wheat crop improvement. Over the last several decades, several wheat–Th.
elongatum lines have been produced via distant hybridizations. Ma et al. [39] assessed the
stripe rust resistance of wheat–Th. elongatum substitution lines and mapped the dominantly
inherited stripe rust resistance gene YrE to chromosome 3E. Jauhar [5] crossed diploid
Th. elongatum with durum wheat Langdon to obtain one 1E addition line and two 1E
substitution lines, which differed regarding Fusarium head blight infection rates. Another
gene (Yr69) mediating stripe rust resistance was identified in the wheat–Th. ponticum
line CH7086 on the basis of stripe rust resistance and allele analyses [40]. Dai et al. [41]
developed a wheat–rye–Thinopyrum tricentric hybrid by crossing 8801 with triticale T182,
while also introducing the genes responsible for the resistance to Fusarium head blight,
leaf rust, and stem rust into common wheat. In a recent study, two wheat–Th. ponticum
substitution lines (ES-11 and ES-12) and a new translocation line were identified and
characterized, and the stripe rust and stem rust resistance genes carried by Th. ponticum
were successfully introduced into common wheat [42,43]. We previously reported that the
wheat–tetraploid Th. elongatum 1E (1D) substitution line is highly resistant to stripe rust,
the tetraploid Th. elongatum 3E chromosome carries salt tolerance genes, and the 4E (4D)
disomic substitution line is resistant to stripe rust and powdery mildew at the seedling and
adult stages [16,35,36]. Until now, there has been no report on the tetraploid Th. elongatum
homologous group 6 heterochromosome lines. Therefore, we developed and characterized
a novel wheat–tetraploid Th. elongatum 6E (6D) disomic substitution line K17-1065-4, which
is highly resistant to stripe rust at the adult stage. In addition, the grain number per spike of
K17-1065-4 was significantly higher than that of the parents, indicating that K17-1065-4 also
carries genes associated with increased grain production. Therefore, K17-1065-4 represents
a new excellent genetic resource for breeding disease-resistant wheat lines.

Several APR genes from the progenitors and wild relatives of wheat have been ex-
ploited, including Yr36, Yr56, and Yr83 as well as a number of tentatively named genes
and QTLs. Uauy et al. [44] first identified Yr36 in Triticum turgidum ssp. dicoccoides plants
exhibiting high-temperature adult plant resistance, with no detrimental effects on wheat
yield. Subsequently, Yr36 was effectively used by wheat breeders to produce wheat line
Shumai 1701 [30]. Bansal and Bariana [45] identified the APR gene Yr56 in durum wheat
and determined it was located on chromosome 2AS bin 2AS5-0.87-1.00. Another APR
gene (Yr83) was characterized by an in situ hybridization and molecular marker analysis
of 10 6R chromosome deletion lines as well as 5 wheat-rye 6R chromosome translocation
lines; the gene was mapped to the deletion bin of FL 0.73–1.00 of 6RL [24]. In addition,
Zhang et al. [28] performed a bulked segregant RNA-seq analysis and mapped the APR
gene YrZ15-1370 from Triticum boeoticum to chromosome 6AL. More specifically, it was
located within a 4.3 cM genetic interval flanked by KASP-1370-3 and KASP-1370-5, which
corresponded to a 1.8 Mb physical region. The seeds of the Ae. ventricosa near-isogenic line
AvSYr17NIL were treated with EMS and the resulting F2 plants were analyzed; a novel
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recessive APR gene (YrM1225) was characterized and localized within a 7.5 cM interval on
the short arm of chromosome 2A [27]. However, these genes or QTLs have not been ade-
quately exploited by wheat breeders worldwide, and none of them are from Th. elongatum.
In the present study, we developed the wheat–tetraploid Th. elongatum 6E (6D) substitution
line K17-1065-4, which is highly resistant to multiple Pst races currently prevalent in China
at the adult stage. A stripe rust resistance gene was localized on chromosome 6 of Th.
ponticum [7], but the two genes were completely different in origin, genome, and response
to Pst races, showing that they are two different stripe rust resistance genes. To the best
of our knowledge, this is the first study to reveal the resistance to stripe rust mediated
by chromosome group 6 of tetraploid Th. elongatum. Our results show that the stripe
rust resistance of K17-1065-4 is conferred by a novel gene from tetraploid Th. elongatum.
Moreover, this line may be a valuable resource for increasing the stripe rust resistance of
wheat worldwide.

Molecular markers are important for the efficient detection of alien chromosomes
or chromosomal fragments in wheat. Diverse and stable molecular markers provide an
important foundation for breeding involving crosses between wheat varieties and wheat
relatives. A number of molecular markers have been developed for Th. elongatum on the
basis of RAPD, SSR, SCAR, AFLP, RGAP, GBS, and other techniques [35]. Two RAPD
markers for CS and an ISSR marker for Th. elongatum were successfully transformed
into SCAR markers for diploid Th. elongatum. Of these markers, two can specifically
detect the E genome of Th. elongatum, whereas one is useful for tracking chromosomes 2E
and 3E of Th. elongatum [46]. Chen et al. [1] developed 89 stable and specific molecular
markers for Th. elongatum using SLAF-seq data. Additionally, many Th. elongatum SNP
markers were obtained following a transcriptome sequencing analysis [47]. Furthermore,
Th. ponticum-specific molecular markers were developed using SLAF-seq technology and
used to construct a physical map of the 4Ag chromosome [48]. Li et al. [16] developed 132
markers for tetraploid Th. elongatum 1E by applying GBS technology. Another 74 markers
were developed to accurately track stripe rust resistance genes on chromosome 4E of
tetraploid Th. elongatum [35]. Although various Th. elongatum-specific molecular markers
have been reported, most of these markers have not been precisely mapped to chromosomes
or they are distributed in the terminal regions of chromosomes due to the previous lack
of a Th. elongatum reference genome, which severely limits the localization and cloning of
Th. elongatum genes associated with improved traits. In the current study, 33 SSR markers
specific to tetraploid Th. elongatum chromosome 6E were developed according to the
whole-genome sequence of diploid Th. elongatum. Validation of these specific markers in 15
wheat relatives showed that 10 of them accurately screened for the E genome carried by
diploid and tetraploid Th. elongatum (Table S3). Only 11 pairs of markers amplified specific
fragments in Th. ponticum, indicating that the genomes of Th. ponticum differed significantly
from those of diploid and tetraploid Th. elongatum (Table S3), which is consistent with
previous findings [16]. Only very few markers amplified specific fragments in the H, P, R, V,
Ns, and St genomes, which indicated that the E genome of Th. elongatum and these genomes
are genetically distant from one another. These specific markers are evenly distributed
on chromosome 6E, making them potentially useful for identifying associated stripe rust
resistance genes, and could also be employed by wheat breeding to help fine-map and
clone the stripe rust resistance genes on chromosome 6E of tetraploid Th. elongatum.

4. Materials and Methods
4.1. Plant Materials

Line 8801 (2n = 6x = 42, AABBEE), which was derived from a cross between tetraploid
Th. elongatum and T. durum, is highly resistant to wheat stripe rust, Fusarium head blight,
and powdery mildew (kindly donated by Dr. George Fedak, Eastern Cereal and Oilseed
Research Center, Ottawa, Canada). T. durum is highly susceptible to wheat stripe rust,
which suggests that 8801’s stripe rust resistance is derived from the tetraploid Th. elongatum
(Figure S1). The tetraploid Th. elongatum (2n = 4x = 28, EEEE, PI 531750) is a homozygous
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tetraploid formed by natural doubling [18,49,50]. The wheat cultivar Shumai 482 (SM482)
and Shumai 921 (SM921) are susceptible to stripe rust. Wheat line SY95-71 was used as a
stripe rust susceptible control. The wheat–tetraploid Th. elongatum disomic substitution line
K17-1065-4 was obtained from the 8801/SM482//SM921 F5 progeny. The following seven
wheat–tetraploid Th. elongatum disomic substitution lines derived from a cross between 8801
and a Sichuan wheat variety (some data not published) were used for developing molecular
markers: 1E (1D), 2E (2A), 3E (3D), 4E (4D), 5E (5D), 6E (6D), and 7E (7D) substitution lines.
An F2 population (154 individuals) from the cross between K17-1065-4 and SM482 was
used to evaluate the utility of the molecular markers. Finally, the molecular markers were
validated using the following 15 wheat relatives (Table S1). All the above plant materials
were stored at the Triticeae Research Institute, Sichuan Agricultural University, China.

4.2. Genomic In Situ Hybridization (GISH) and Fluorescence In Situ Hybridization (FISH) Analyses

Seeds were germinated in an incubator at 22 ◦C. Samples were treated with N2O for
2 h when their roots reached 1–2 cm, after which they were immediately fixed in 90% acetic
acid for 5 min before being digested with pectinase and cellulase [51]. Slides for the in
situ hybridization were prepared as described by Han et al. [52]. Tetraploid Th. elongatum
genomic DNA labeled with dUTP-ATTO-550 (Jena Bioscience, Jena, Germany) via nick
translation was used as the probe and Chinese Spring (CS) DNA was used as the blocker
(ratio of 1:150). The GISH analysis was performed according to a published method that
was modified slightly [53]. Briefly, 1 µL tetraploid Th. elongatum genomic DNA probe,
3 µL CS DNA, and 16 µL hybridization mixture (1 g dextran sulfate, 5 mL formamide,
1 mL 20× SSC, 1 mL salmon sperm, and 2 mL ddH2O) were mixed and added dropwise to
the slides. The samples were denatured at 85 ◦C for 5 min and then incubated overnight
at 50 ◦C. They were subsequently washed with 2× SSC at 50 ◦C for 20 min and then with
75%, 95%, and 100% ethanol for 1 min each. The chromosome counterstaining and the slide
microscopy were performed as described by Gong et al. [35].

After the GISH analyses, the samples were washed with 2× SSC for 30 min and
then with 75% and 100% ethanol for 5 min each before being placed under bright light.
The Oligo-pSc119.2 and Oligo-pTa535 FISH probes were added after the GISH signal was
removed to determine the K17-1065-4 chromosomal composition. The FISH analyses were
performed as described by Li et al. [16]. The FISH signals were recorded in the same way
as the GISH signals.

4.3. FISH Chromosome Painting Analysis

The homologous group relationship of the exogenous chromosome carried by K17-
1065-4 was determined by performing a FISH chromosome painting analysis using the
bulk oligonucleotide libraries Chr1-Chr7 (provided by Prof. H.Q. Zhang, Triticeae Research
Institute, Sichuan Agricultural University; data not published) for the whole-genome
sequence of diploid Th. elongatum. The washed slides were used for the FISH analysis
involving Oligo-pSc119.2 and Oli-gop-Ta535 to distinguish the chromosome composition
of K17-1065-4. The FISH chromosome painting method was previously described by
Bi et al. [54] and Han et al. [55]. The slides were washed as described by Komuro et al. [51].
Photomicrographs were taken as described in the FISH protocol.

4.4. Stripe Rust Resistance Evaluation

Seedling stripe rust reactions of K17-1065-4, 8801, SY95-71, SM482, and SM921 were
evaluated under laboratory conditions at Sichuan Agricultural University, China. They
were inoculated with P. striiformis f. sp. tritici race CYR-34 in an artificial climate chamber,
Plants were inoculated at the two-leaf stage and the reaction to stripe rust was evaluated
on the first leaf of each plant 15–18 days after inoculation [16]. SY95-71 was used as a
susceptible control. and the disease resistance statistics were conducted as described by
Line and Qayoum [56].
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Adult-stage stripe rust resistance was examined in an experimental field at Sichuan
Agricultural University, Chengdu, Sichuan, China. Specifically, a mixture comprising
various P. striiformis f. sp. tritici races (CYR 32, CYR 33, CYR 34, Sull-4, Sull-5, Sull-7, and
G22-14) was used to inoculate the fresh young leaves of SY95-71, K17-1065-4, 8801, SM482,
and SM921 plants at the tillering stage according to the smear method, with talc added at
a ratio of 1:50 (Pst races:talc, m/V) [57], the avirulence/virulence classification of the Pst
races is provided in Table S4 [58]. Additionally, the infection types (ITs) of K17-1065-4 and
its parents were assessed using the 0–9 scale described by Line and Qayoum [56], where
plants with ITs of 0–1 were considered immune, ITs of 2–6 were moderately resistant, ITs of
7–8 were susceptible, and ITs of 9 were highly susceptible.

4.5. Agronomic Trait Evaluation

K17-1065-4, 8801, SM482, and SM921 plants were evaluated in terms of their agro-
nomic traits during the 2020–2022 growing seasons in the experimental fields at Sichuan
Agricultural University. The experiment was conducted using a randomized complete
block design with three replications. Briefly, 15 seeds were sown in 2 m rows, with 0.3 m
between rows. K17-1065-4 and its parents were assessed for agronomic traits including
tiller number, spikelet number, spike length, plant height, grain number per spike, and
1000-grain weight. The data were analyzed using SPSS Statistics 24.0 software.

4.6. Development of Simple Sequence Repeat (SSR) Markers

The SSRs in the diploid Th. elongatum chromosome 6E sequence (NCBI BioProject
ID PRJNA540081) were detected using the perl-based program MISA (http://pgrc.ipk-
gatersleben.de/misa/download/misa.pl) (accessed on 7 June 2022) and the following
criteria: single-nucleotide repeats of not less than 10; dinucleotide repeats of not less
than 6; three to six nucleotide repeats of not less than 5; and two SSR loci separated by
more than 100 bp. Primers were designed for all SSR sequences using Primer3 and then
analyzed by performing an e-PCR mock amplification using the whole-genome sequences
of CS and diploid Th. elongatum. Only the markers that amplified the target fragment on
chromosome 6E of diploid Th. elongatum were selected. The SSR sequences corresponding
to these markers were compared with the sequences of the other chromosomes (1E–5E
and 7E) of diploid Th. elongatum. The sequences that were not complete matches were
identified. These sequences were compared with the whole-genome sequence of CS and
the sequences with ≥10% homology were removed to obtain unique SSR sequences specific
to chromosome 6E of diploid Th. elongatum. All primers were produced by Sangon Biotech
(Chengdu, China). The PCR amplification program and product detection were performed
as described by Gong et al. [35].

4.7. Validation of Specific Molecular Markers

The specificity, repeatability, and stability of tetraploid Th. elongatum 6E chromosome-
specific molecular markers were verified using 154 F2 individuals from the cross between
K17-1065-4 and SM482 as well as 15 wheat-related species (Table S1). The PCR analysis
was performed as described previously.

5. Conclusions

In the present study, we characterized a cytogenetically stable wheat–tetraploid
Th. elongatum 6E (6D) disomic substitution line with a high level of resistance to stripe
rust at the adult stage. It is an extremely valuable wheat germplasm resource for the
development of new stripe-rust-resistant varieties. Moreover, 33 markers specific for
tetraploid Th. elongatum chromosome 6E were developed based on the whole-genome
sequence of diploid Th. elongatum. All these markers should be applicable for efficiently
tracing tetraploid Th. elongatum chromosome 6E and its chromosomal segments during
wheat-disease-resistant breeding. In the future, we will use 60Co-γ ionizing irradiation and

http://pgrc.ipk-gatersleben.de/misa/download/misa.pl
http://pgrc.ipk-gatersleben.de/misa/download/misa.pl
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CSph1b mutants to induce this substitution line and produce small segmental translocations
carrying stripe rust resistance genes for further breeding applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants12122311/s1, Figure S1: Stripe rust responses of 8801 and
the controls at adult plant. 1, SY95-71; 2, T. durum; 3, tetraploid Th. elongatum; 4, 8801; Table S1:
Wheat relatives used in this study; Table S2: PCR amplification results of tetraploid Th. elongatum
molecular markers; Table S3: Specific amplification of 6E chromosome markers in wheat-related
species; Table S4: The avirulence(A) /virulence(V) formula of the Pst races used in the present
study [58].
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