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Abstract: There are various herbicides which were used in the agriculture industry. Atrazine (ATZ)
is a chlorinated triazine herbicide that consists of a ring structure, known as the triazine ring, along
with a chlorine atom and five nitrogen atoms. ATZ is a water-soluble herbicide, which makes it
capable of easily infiltrating into majority of the aquatic ecosystems. There are reports of toxic
effects of ATZ on different systems of the body but, unfortunately, majority of these scientific re-
ports were documented in animals. The herbicide was reported to enter the body through various
routes. The toxicity of the herbicide can cause deleterious effects on the respiratory, reproduc-
tive, endocrine, central nervous system, gastrointestinal, and urinary systems of the human body.
Alarmingly, few studies in industrial workers showed ATZ exposure leading to cancer. We em-
barked on the present review to discuss the mechanism of action of ATZ toxicity for which there
is no specific antidote or drug. Evidence-based published literature on the effective use of natu-
ral products such as lycopene, curcumin, Panax ginseng, Spirulina platensis, Fucoidans, vitamin C,
soyabeans, quercetin, L-carnitine, Telfairia occidentalis, vitamin E, Garcinia kola, melatonin, selenium,
Isatis indigotica, polyphenols, Acacia nilotica, and Zingiber officinale were discussed in detail. In the
absence of any particular allopathic drug, the present review may open the doors for future drug
design involving the natural products and their active compounds.

Keywords: atrazine; toxicity; natural products; natural compounds; drug design; treatment

1. Introduction

Herbicides, also defined as weed killers, are substances that are commonly used world-
wide to control weeds and help increase agricultural yield [1]. However, the aimless use of
these herbicides to improve agricultural production may have effects on the environment as
well as on humans and animals. ATZ (2-chloro-4-ethylamino-6-isopropylamino-s-triazine)
is the most frequently used herbicide found in agricultural environments [1]. This herbicide
is widely applied on several agricultural crops, corn, sorghum, sugarcane, pineapples, and,
to a lesser extent, on the landscape vegetation [1]. The herbicide may be commonly used in
the form of sprays, liquids, concentrates, or in granular form. ATZ is commonly detected
in many places which has an accumulation of water such as ponds, wells, ground surface,
or even underground.

ATZ was first introduced in 1958 and is commonly used for the control of weeds in
crops [2]. ATZ is a chlorinated triazine herbicide that consists of a ring structure, known
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as the triazine ring, along with a chlorine atom and five nitrogen atoms [3]. Modern
herbicides are often synthetic and do not occur naturally. Pure ATZ is a white, odorless,
and often colorless powder, rarely volatile, flammable, or reactive. The availability of ATZ
ranges from granular and ready-to-use formulation, dissolved emulsifiable concentrates,
and wettable powder [3]. It can be introduced into the air through vaporization, with
a predicted half-life of 14 h [4]. Moreover, it is predominantly removed from the air by
rainfall [4].

1.1. Atrazine Toxicity

ATZ is among the most commonly identified herbicides in the aquatic areas in
United States [5]. ATZ is categorized as a restricted use pesticide by the United States
Environmental Protection Agency (EPA) [5]. According to EPA norms, its maximum con-
tamination limit (MCL) was set at a concentration of 3 ppb or 0.003 µg/L [5]. The 1991
European Union pesticide regulation adopted a stricter stance and restricted the use of
substances considered harmful to the environment, groundwater, or human health [5].

ATZ is a water-soluble herbicide, which makes it capable of easily infiltrating into
most aquatic ecosystems. Additionally, careless repeated applications of ATZ resulted in
large quantities of the herbicide being precipitated and finding its way into water bodies [6].
Two studies from China reported concentrations of ATZ in the soil and groundwater of
97% and 89%, respectively [7]. A study conducted in the year 2020 to determine the ATZ
levels in 1135 lakes and reservoirs in 48 states in the US revealed that ATZ was identified
in about 32% of waterbodies, at a mean concentration of 0.17 µgL−1 [8]. Reports available
from Mexico and Venezuela showed that the ATZ levels were found in the range of 5.77 to
402.00 ng L−1 and 1.00–1990 ngL−1, respectively, in the surface water [9]. It was initially
thought that, since its mode of action is to prohibit photosynthesis in the desired plants, it
would spare other species from its deleterious effects. Unfortunately, it was soon suspected
that ATZ can indirectly and directly affect aquatic organisms as well as human health.
Such effects include genetic alterations and physiological modifications, and in extreme
cases, death of the exposed organism. However, the effects are less noticeable in low
applications of ATZ but can, ultimately, reduce their life expectancy [6]. Fish can play a
role in estimating the risk associated with ATZ as they are directly or indirectly exposed
through the food chain of the environment or surface running water [10]. Some herbicides
can induce oxidative stress expressing with excess production of ROS [11,12] that could be
neutralized by antioxidant compounds and antioxidant enzyme system (AOS).

In humans, exposure to ATZ is common in farm workers and herbicide applicators,
who are frequently exposed to it. Such herbicides can enter the body through inhalation
as well as swallowing food, water, or soil that contain ATZ. On the other hand, it does
not easily pass through the skin. Once ATZ enters the systemic circulation, it is converted
into metabolites and can enter some of the organs, such as the liver, ovary, kidneys, red
blood cells, or fat. It does not stay in the body and usually gets excreted primarily in the
urine and a small amount through feces within 1 to 2 days [13]. A prospective cohort
study found a positive association with multiple myeloma, non-Hodgkin lymphoma, and
cancers of the bladder and lung [14]. In contrast, another study showed no relationship
between ATZ use and most of the cancer site [15]. Furthermore, a case–control study
found a possible association between non-Hodgkin lymphoma and ATZ use in men after
statistically adjusting for other pesticides [16]. Additionally, farmers exposed to triazine
herbicides had an increased risk of having non-Hodgkin’s lymphoma (NHL) [17].

1.2. Effects of Atrazine on Various Systems of the Body

ATZ effects are seen in most systems, and its effects on the reproductive, excretory,
and nervous systems were extensively investigated. The effects of ATZ on various body
systems are shown in Figure 1.
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Musculoskeletal system
ATZ causes functional and morphological changes in the skeletal muscle. Chronic

administration of ATZ in rats caused a decrease in basal metabolic rate, an increase in
intra-abdominal fat deposition, further swollen mitochondria in skeletal muscle and liver,
and a loss of normal cytoarchitecture [18].

Reproductive system
ATZ affects the male and female reproductive organs, thereby decreasing the repro-

duction capacity. ATZ showed estrogenic and anti-androgenic activity [19]. ATZ exposure
caused the disruption of claudin-11 and connexin-43 proteins in the blood testis barrier, and
also affected the spermatocytes, thereby reducing the number of spermatids in the rat semi-
niferous tubule culture model [20]. Male rats exposed to ATZ showed irreversible testicular
and seminiferous tubule atrophy, as well as a reduction in Leydig cell number [21]. Chronic
ATZ exposure in mice caused reduced sperm concentration, and changed gene expression
related to androgen conversion in the testis [22]. Decreased sperm count, testosterone
level, sperm motility, and epididymal weight were observed in rats treated with ATZ [23].
Exposure to low doses of ATZ significantly increased the dead spermatozoa and decreased
the sperm motility [24]. ATZ-received rats showed a decrease in daily sperm production,
sperm motility, and epididymal and testicular sperm counts [25].

Prenatal ATZ exposure caused an increase in abnormal sperm counts; in addition,
testicular and epididymal weights were decreased in postnatal exposure [26]. Mice prena-
tally exposed to ATZ showed defects in penile morphology, hypospadias, cryptorchidism,
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decreased anogenital distance, and penis size [27]. ATZ induced testicular toxicity, in the
form of reduced daily sperm production, count, and motility and an increased dead/live
sperm ratio, is associated with testicular oxidative stress [28]. ATZ-treated male mice
showed testicular damage, reduced spermatogenesis, and apoptotic spermatocytes [29].
In utero exposure to ATZ caused demasculinization of male reproductive structures and
increased the incidence of hypospadias in male mice [30].

Female rats treated with ATZ showed an increase in the estrogen to androgen ratio [31].
ATZ exposure in adult ovariectomized Wistar rats decreased the GnRH neurons, thereby
significantly reducing the FSH and LH hormone surges [32]. ATZ administration for
14 days markedly reduced the peak LH surge in rats [33]. In a multigenerational study,
ATZ exposed rats of the F1 generation did not show any adverse effects [34]. However,
F2 generation animals showed testicular diseases, precocious puberty in males, and mam-
mary gland tumors in both males and females. Precocious puberty in female animals,
motor hyperactivity, and a high frequency of testis disease were observed in F3 generation
animals [34]. ATZ exposure altered the estrous cycle activity in female Wistar rats. Vaginal
opening was delayed, and it was not observed in a few animals. Estrous cycle was irregular
with a longer phase of diestrus [35]. Low-level ATZ exposure showed more defects in
chromosomal synapsis, less quality of oocytes, and structural and numerical abnormalities
of chromosomes [36]. ATZ exposure in female mice reduced the number of primordial folli-
cles, increased the number of multi oocyte follicles, and further interfered with prophase I
of meiotic division, which affects the follicle maturation process [37]. In utero exposure
to ATZ showed endometrial hyperplasia and leiomyomas in female mice [38]. In a recent
study, Multi-Generational atrazine exposure in mice altered early steroidogenesis gene
expression in F1 and F2 generations and germ cell-specific gene expression in F1 [39].
Furthermore, preterm births increased in people living in the ATZ exposure counties [40].
Women exposed to ATZ affected the steroidogenesis and ovulation in cumulus granulosa
cells, compromising female reproduction [41].

No association between preterm birth and ATZ exposure due to public drinking was
observed in the Western region of Kentucky [40]. Another study in France reported an
association between the high ATZ levels in drinking water and preterm birth [42]. Another
study conducted in the Indiana region showed a positive link between ATZ exposure and
infants who are small for-gestational-age [43]. Researchers also reported an association
between ATZ exposure and intrauterine growth inhibition in the Iowa region [44].

Gastrointestinal system
ATZ toxicity is seen in the liver. Rats receiving oral ATZ showed oxidative stress,

degeneration, and apoptosis in submandibular salivary glands [45]. ATZ-treated rats
showed degenerated hepatocytes with markedly high levels of ALP, AST, and ALT total
bilirubin concentrations and reduced GSH [45]. Rats exposed to even the smallest doses of
ATZ showed portal lymphocytic inflammation, hepatic peri-acinar necrosis, and lipidosis
in hepatocytes [46]. Subacute exposure to ATZ led to an increase in catalase, SOD, and
GST in the liver; in addition, genotoxicity was also observed [47]. In a recent review, it
was concluded that ATZ exposure causes oxidative stress and alters the expression of
genes that are linked to hepatocyte function [48]. Repeated ATZ exposure enhanced the
GST expression, and mRNA expression levels of various cytochromes; however, chronic
administration caused habituation or adaptation [49]. ATZ elevated Na(+)-K(+)-ATPase
activity and diminished Mg(2+)-ATPase and Ca(2+)-Mg(2+)-ATPase activities in mouse
liver [50]. Following ATZ administration, an electron microscopic study of rat liver re-
vealed dose-dependent histopathological changes such as smooth ER degeneration, lipid
accumulation in hepatocytes, and structural alterations in bile canaliculi [51]. ATZ was
found to affect the small intestine, it decreased the epithelial height of intestinal villi, ratio
between villus height to mucosa thickness, and crypt depth, whereas high doses of ATZ
significantly increased these features in the rat jejunum [52]. In an in vitro study, ATZ
enhanced the cell proliferation in human colonic epithelial cells [53].

Respiratory system



Plants 2023, 12, 2278 5 of 27

Inhalation is one of the main routes of ATZ entry into the body, it affects the respiratory
system. ATZ aerosol inhaled mice showed that oxidative and nitrosative stress increased
cytokines and lipid peroxidation, and apoptosis that resulted in enhanced mucus produc-
tion and mast cell degranulation [54]. Furthermore, in humans, ATZ exposure increased
the risk of developing choanal atresia and stenosis [55].

Nervous system
ATZ has toxic effects on the central nervous system. ATZ-treated rats showed degen-

eration and apoptosis in the cerebrum and hippocampus [45]. Rats exposed to even lower
doses of ATZ showed lymphocytic meningoencephalitis [46]. ATZ-treated rats showed
degenerated, vacuolated neurons in the cerebellum [56]. Male mice treated with ATZ
showed oxidative stress, inflammatory damage such as neuronal swelling, and mitochon-
drial vacuolar degeneration [57]. Maternal ATZ exposure caused spatial learning and
memory impairments and hippocampal damage in offspring rats [58]. ATZ exposure in
rats damages the hippocampus and affects spatial memory. It also downregulated the
dopamine receptors [59].

ATZ exposure degenerated the nigrostriatal dopaminergic neurons, leading to the
effects on motor functioning behavior [60]. ATZ exposure through drinking water during
gestation and lactation damaged the nigrostriatal dopaminergic pathway, resulting in func-
tional changes in motor and emotion in juvenile offspring and decreased cognition in adult
offspring [61]. Pregnant rats exposed to ATZ decreased the dopamine concentration in their
offspring [62]. Chronic ATZ exposure showed changes in the nigrostriatal dopaminergic
pathway such as hyperactivity, decreased dopamine levels, increased anxiety, and extra-
cellular glutamate levels in the striatum [63]. Sprague Dawley male rats exposed to ATZ
showed an increase in the GABAergic neuron gene expression in the striatum and ventral
midbrain, glutamatergic neuron expression was found in hippocampus [64]. ATZ caused
hypoactivity soon after its administration, it significantly decreased locomotor activity [65].
Short term ATZ exposure in mice showed behavioral changes, motor and cognitive function
impairments, and elevated anxiety [66]. In an in vitro study, ATZ inhibited the growth of
human embryonic stem cells and neural stem cells [67].

Cardiovascular system
ATZ induces cardiotoxicity in the form of enhanced plasma total cholesterol, HDL-

cholesterol, LDL-cholesterol, and triglycerides [28]. Maternal ATZ exposure in Sprague
Dawley rats increased the blood pressure in both male and female offspring [68]. Rats
exposed to even lower doses of ATZ showed coronary periarteritis [46]. In a study on
isolated rat aorta and heart, ATZ caused vasodilatation of the aorta and significantly
inhibited the normal twitch tension of isolated heart [69]. ATZ exposure in the mice
decreased the creatine kinase activity, changes in the ionic content, and downregulation
of sodium, potassium, and calcium ATPase activities [50]. Juvenile and peripubertal male
Wistar rats exposed to ATZ showed an increase in angiogenesis in the form of enhanced
numerical and volumetric density of capillaries in the left ventricle myocardium [70].

Endocrine system
ATZ disrupts the hypothalamic pituitary axis; hence, it is classified as an endocrine-

disrupting chemical. ATZ-administered rats showed vacuolated follicular cells of the
thyroid gland [56].

Excretory system
ATZ toxic effects are marked on the kidneys, as they are the clearance routes. Chronic

ATZ exposure increases the risk of developing end stage renal disease [71]. ATZ ex-
posure was found to be associated with an increased risk of renal cell carcinoma [72].
Short-term ATZ exposure resulted in elevated levels of antioxidant enzymes and kidney
function biomarkers such as creatinine and urea [73]. ATZ administration in female Wistar
rats caused increased serum urea nitrogen and creatinine levels; in addition, nitric ox-
ide and malondialdehyde levels were also increased in kidney tissue homogenates [74].
ATZ-treated male mice showed histopathological changes and biochemical alterations by
activating the nuclear xenobiotic receptors, disrupting cytochrome P450s homeostasis, and
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inducing nephrosis and renal injury [75]. ATZ exposure in male mice induces nephrosis
and causes renal injury via activation of nuclear xenobiotic receptors [75]. ATZ caused renal
injury in mice in the form of renal tubular epithelial cell edema and glomerular atrophy [76].
Wistar rats exposed to ATZ had increased renal peroxidative damage and serum uric acid
levels [77]. Long-term ATZ exposure in rats caused the renal degenerative changes and
fibrosis in rats [78].

ATZ-exposed human male pesticide applicators showed altered kidney function,
chronic kidney disease, and a reduced glomerular filtration rate [79]. ATZ lowered eGFR
and enhanced the risk of end stage renal disease as well as chronic kidney disease among
male pesticide applicators [79]. ATZ applicators were found to have an increased incidence
of renal cell carcinoma in later stages of life [72].

Integumentary system and blood
In a model of a flow-through in vitro diffusion system, absorption as well as metabolism

of ATZ through human skin was examined. About 16.4% of the applied dose of ATZ was
absorbed by the skin [80]. The same study concluded that skin microsomal enzymes are
involved in the biotransformation of the ATZ [80].

In a research study, six volunteers received exposures through the skin and inhalation.
It was found that the metabolism was rapid, with equal amounts of the deisopropyl metabo-
lite and the fully N-dealkylated metabolite being produced [81]. In another study involving
human skin, three-quarters of the ATZ applied was remained in the skin following 20 h, and
50% of the total metabolites such as deisopropylatrazine and diamino derivatives [82]. ATZ
and its metabolites have toxic effects on the blood. The mice administered high doses of
ATZ revealed atrophy and destruction of the thymus and spleen, it caused immunotoxicity
through the cellular and humoral immunity pathways [83]. In addition to that, in utero
ATZ exposure significantly decreased the clonogenic capacity of myeloid progenitor cells
in male mice [84]. In fish (Schizothorax plagiostomus), ATZ exposure altered the biochemical
and hematological parameters and promoted the DNA damage in erythrocytes [85].

2. Mechanism of Action of Atrazine

ATZ is a well-known endocrine disrupting compound. Its exposure affects the neu-
roendocrine system and associated endocrine axes, including the hypothalamus–pituitary–
gonadal (HPG) axis and the hypothalamic–pituitary–adrenal (HPA) axis. The hypotha-
lamus consists of abundant GnRH neurons that release GnRH [32,86]. ATZ affects the
production of LH and FSH from the anterior pituitary by inhibiting the release GnRH.
By changing the hypothalamic regulation of hormones, ATZ was reported to reduce the
prolactin concentrations and the amplitude of the luteinizing hormone (LH) spike in exper-
imental female Sprague Dawley and Long-Evans rats [87]. ATZ exposure increases Kiss1
mRNA levels and decreases GnRH release, ultimately resulting in a reduction in anterior
pituitary hormones: LH and FSH. Reduced amounts of these anterior pituitary hormones
promote changes in estrogen, testosterone, and progesterone levels [88]. ATZ deleterious
effects on the reproductive system are due to its action on the steroid synthesis [89]. ATZ
exposure also reduced the expression of Lhr mRNA and the ovulatory genes Areg, Ereg,
and PgR gene expression [90]. Furthermore, the ATZ-induced abnormal ovarian mor-
phology and progesterone [91] are mediated by increasing the Star and Cyp11a1 markers
expression through ERK1/2, cAMP, AKT, and CREBPB-signaling pathways and inhibiting
phosphodiesterase 4 (Pde4) [91–94]. ATZ increases aromatase (CYP19A1) activity, increas-
ing the aromatization of testosterone and its conversion to estrogen [93,95]. However,
controversial results were reported on the effects of ATZ on CYP19A1 [31,96].

The mechanism of action of ATZ on reproductive system is shown in Figure 2.
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3. Approaches to Counteract Atrazine Toxicity

There are different approaches that target the elimination of ATZ toxicity in the
environment, which include restricting the use of ATZ and the use of alternative methods
that reduce reliance on ATZ. In an attempt to eliminate ATZ toxicity in the environment,
the US Environmental Protection Agency implemented measures that result in reducing
runoff, such as the use of terraces or vegetated filter strips, or producing more cover
crops, or reducing the use of ATZ overall [97]. The number of measures taken by the US
Environmental Protection Agency on growers varies depending on factors such as the
concentration of ATZ in the watershed in the field, the likelihood of the watershed being
exposed to ATZ, and the amount of ATZ used by the grower. The agency could require the
use of some or all of these measures, or they could provide a picklist in which the grower
could select the measures that would best suit him. This selection is based on factors such
as the geographic region, field topography, and crop [97].

An alternative method to reduce ATZ concentration is by using adsorbents such as
activated carbon, biochar, bentonite, and zeolite. However, activated carbon use may be
limited due to its high cost, pollution, and difficult regeneration [98]. Biological treatment
technology can also be used, which results in the degradation of ATZ. This includes micro-
bial remediation, phytoremediation, and plant-microbial remediation. A study conducted
by Sánchez et al. (2017) aimed to explore the ability of ryegrass, tall fescue, barley, and
maize, to degrade ATZ via phytoremediation, and it showed that all of them had the
ability to do so [99]. Alternatively, growers can reduce their reliance on ATZ in different
ways: (1) by producing cover crops, which compete with weeds for nutrients, light, and
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water. However, it would increase the cost because the grower would essentially be placing
and removing crops that do not result in any income. Additionally, it is not feasible for
sweet corn because its seedling vigor is reduced in fields with cover crop residues, and it
is not feasible for sugarcane because it is perennial [100]; (2) by using rotary hoes, which
can cover a large area in a short period of time [101]; (3) postponing the use of a portion of
fertilizers on corn crops until they are best able to absorb them can prevent weeds from
getting the nutrients, they need to grow [102]; (4) through the use of a method called
crop rotation, which involves growing different crops in the same area but in recurring
sequences. This method prevents weeds from multiplying and reduces the likelihood of
developing resistant weeds [103].

4. Natural Products and Compounds as Possible Agents to Counteract Atrazine Toxicity

Lycopene
The lycopene (Lyc) extraction could provide a food grade resource of carotenoid [104].

Its bioavailability depends on dietary content. Its consumption along with a fatty meal
amplifies its bioavailability [105]. Lyc’s anti-cancer property is due to its ability to inhibit
the cell cycle and induce apoptosis [106]. The cardio-protective property of Lyc has the
ability to modulate several essential actions, including apoptosis and inflammation [107].
Neurobiological enhancing effects of Lyc were reported on various neurodegenerative
diseases, including Parkinson’s and Alzheimer’s diseases [108].

The most important health challenges of the liver include hepatitis, cirrhosis, fibrosis,
and liver carcinoma. One study discussed the hepato-protective properties of lycopene and
also investigated the mechanisms behind this kind of effect [109]. Lyc is a structurally a
carotenoid widely found in fruits and vegetables. It reduces oxidative stress. It showed a
potential preventive role against ATZ-induced Nlrp3 inflammasome activation in spleen
through ox-mtDNA depletion [110]. In mice, Lyc pretreatment inhibited ATZ-induced
oxidative damage in the cerebrum via xenobiotic-sensing nuclear receptors and CYP450s
modulation [57]. Lyc co-supplementation along with ATZ regulated the IL-6/STAT3/Foxo1
axis increased thymic CD45 levels and maintained thymic homeostasis [110].

Curcumin
Curcumin is a polyphenol that is prepared from the Curcuma aromatica Salisb root

tuber and the rhizome of C. longa L. Curcumin, chemically known as 1,7-bis(4-hydroxy-
3-methoxyphenyl)-1, 6-heptadiene-3, 5-dione. Its main biological activities include anti-
inflammatory, anti-tumor, and anti-oxidant activities [111]. Its other activities are an-
tidiabetic, anti-proliferative, antibacterial, antifungal, and anticancer, etc. [112] It shows
anti-inflammatory effects through inhibition of interleukin-4 (IL-4), a pro-inflammatory
cytokine secretion [113]. Curcumin can improve cardiovascular function by delaying
cellular senescence, inhibiting the oxidative stress induced cell senescence and reducing
ROS production [114]. Curcumin had positive, neuroprotective results on motor, sensory
function as well as cognitive deficits [115]. Curcumin has therapeutic potential for the
reproductive system by decreasing the risk of cancer and other malignant diseases [116]. In
rats, curcumin supplementation showed significant cardiac protection against ATZ expo-
sure associated cardiotoxicity via redox status modulation, improving the mitochondrial
function and expression of caspase-3 [117]. Pretreatment with curcumin in rats against
ATZ toxicity showed positive results by improving the anti-oxidant effect in hepato-renal
injury [77]. In male albino rats, curcumin and ATZ co-supplementation prevented DNA
lysis, oxidative damage, apoptosis, and mitochondrial dysfunction [118]. Curcumin admin-
istration in rats prevented the ATZ exposure-induced alterations in reproductive hormones
and testicular injury [119].

Panax ginseng Essential Oil
Panax ginseng, popularly known as Asian ginseng, is a plant species that possesses an-

tioxidant, immune stimulating, cardio protective, anti-aging, and anti-tumor properties [120].
Panax ginseng consists of functional bioactive compounds called ginsenosides. It has a wide
range of properties such as anti-inflammatory, anti-allergic, and antidiabetic activities [120,121].
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Supplementation of ginseng in regular diets is shown to boost the reproductive effective-
ness of African catfish [121]. Panax ginseng essential oil (GEO) ameliorated the sub-lethal
dose of ATZ induced toxicity in Nile tilapia fish. This study revealed that GEO supplementa-
tion in diet significantly improved the lipid metabolism and antioxidant status in the liver
and enhanced immune function. These effects were mediated through its anti-apoptotic,
antioxidative, anti-stress, and anti-inflammatory activities [122].

Spirulina platensis
Spirulina (Spirulina platensis) (SP) is a blue, green microalga, belonging to the cyanobac-

teria family, and it contains the majority of therapeutic and prophylactic components of
nutrition [123]. Spirulina (Spirulina platensis) contains huge amounts of protein, fat, car-
bohydrate, chlorophyll, phycocyanin, vitamins, minerals, carotenoid, and other pigments
that are favorable to health. It is an appropriate meal for humans and animals because its
cell wall lacks cellulose [124]. The presence of the phycocyanin component in spirulina can
promote anti-arthritic properties, and it has anti-atherogenic, chemo- and radio-protective,
and tumor-inhibiting properties [125]. Studies concluded that Spirulina can suppress tu-
morigenesis and critical viral infections, apparently due to its capacity to stimulate and
progress the immune system [126]. Several studies showed its neuroprotective proper-
ties of Spirulina against neuroinflammation, Parkinson’s disease, ischemic brain dam-
age, and schizophrenia [127–129]. Oral administration of the phycocyanin component of
Spirulina platensis can prevent the diabetic nephropathy by inhibiting NADPH dependent
superoxide production [130]. In carps, SP showed beneficial effects against ATZ exposure
induced oxidative stress and associated liver damage [131]. In Cyprinus carpio L, SP dietary
intake prevented the ATZ exposure-induced immune responses [132]. An experiment on
adult female zebrafish showed that SP supplementation ameliorates ATZ induced toxic
effects across generations [133].

Fucoidans
Fucoidans are fucose-rich polymers that belong to the sulfated class, and they are found

in various species of brown seaweed. They are known to be present in Laminaria japonica
(kombu), Cladosiphon sp. (mozuku), Undaria pinnatifida (wakame), and Fucus vesiculosus
(bladderwrack) [134,135]. Fucoidan has various biological activities, including anti-tumor
and immune modulation properties [136], anti-coagulant effect [137] and anti-inflammatory
effects [138]. The cardiovascular protective properties of fucoidan and its applications on the
coagulation system, inflammation, and vascular cells were discussed in one study [139]. Its
neuroprotective effects against brain injury, amyotrophic lateral sclerosis, Alzheimer’s dis-
ease, and Parkinson’s disease were reviewed [140]. Fucoidans supplementation in the mice
mitigates the musculoskeletal changes and promotes muscle health and performance [141].
They suppress tumor cell proliferation factors and metastasis by increasing cell apoptosis
and angiogenesis inhibition [142]. ATZ-treated fish revealed deterioration of the epithelium,
intestinal mucosa, inflammatory cell infiltration, and enzyme values of the liver and kidney,
but this condition was different and better in the fucoidan treated group, and this study
showed dietary fucoidan is essential in fish diets to improve the impacts of ATZ induced
toxicity [143].

Vitamin C
Vitamin C is well known as L-ascorbic acid; it is especially popular among the gen-

eral population primarily due to its antioxidant properties. The sources of vitamin C are
fruits such as star fruit, kiwi, guava, black currant, and strawberry. A sufficient amount
of vitamin C is mainly present in the citrus family [144–146]. The average plasma lev-
els of vitamin C in healthy adults are between 40 and 65 µM [147]. Various biological
properties of vitamin C supplementation can prevent and treat diseases such as cardio-
vascular disease, cancer, inflammatory conditions, hematopoietic soft tissues, and be-
havioral impairments [148–151]. Vitamin C supplementation is beneficial against acute
respiratory distress syndrome [152] and neurodegenerative diseases such as Alzheimer’s
disease [153,154]. Sufficient supplementation of vitamin C in the diet of a poorly nourished
population showed beneficial effects on cellular and DNA integrity [155]. An animal study
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revealed the protective role and anti-oxidant mechanism of vitamin C in kidney function
and renal arterial reactivity against renal ischemia and reperfusion injury [156]. Vitamin C
can reduce cardiovascular risk by decreasing the production of monocyte adhesion to the
endothelium, and adhesions or atheromas, are considered early signs of the development
of atherosclerosis [157].

ATZ herbicide exposure-induced toxicity was treated by dietary supplementation of
vitamin C on Rhamdia quelen fish, and the results showed that vitamin C could reverse the
abnormal liver biomarkers [158]. A study conducted on the degradation efficiency and
the degradation mechanism of ATZ in the presence of vitamin C at different pH values
by investigated by liquid chromatography, mass spectrometry, high performance liquid
chromatography, and ion chromatography [159]. This study’s results help understand how
vitamin C applications can solve organic pollutants [159].

Soybean isoflavones
Soybeans mainly contain isoflavones such as genistein, formononetin, daidzein,

biochanin A, and coumestrol. They are easy to consume daily in the diet [160]. Chemi-
cally, isoflavones belong to the flavonoid family with a 3-phenylchromone skeleton [161].
According to the FDA, an intake of 50 mg of isoflavones per day is considered safe and
sound [162]. Constituents of soybean isoflavones such as genistein and daidzein have
anti-cancer and antioxidative effects, and also affect a variety of lifestyle diseases [163].
Genistein has proven neuroprotective effects by blocking the neurotoxicity in the nerve cells
of the brain [164]. Genistein has anti-obesity properties that act directly on the adipocytes
or preadipocytes and modulate obesity-related metabolic diseases [165]. Genistein also has
antihypertensive properties through which it reduces the cardiac failure [166]. Genistein
plays a vital role as an anti-inflammatory and anti-lipid peroxidase effect by regulating the
gene expressions associated with liver inflammation and fibrosis [167]. Kidney dysfunction
due to ischemia and reperfusion was improved by Genistein [168]. Soy isoflavones show
anti carcinogenic effects by suppressing the expression of tyrosine kinase, apoptosis, and
regulating the cell cycle [169].

Pre-treatment of SH-SY5Y neurons with soybean isoflavones prevented ATZ-induced
metabolic failure and cytotoxicity [170]. In the same study, the soybean isoflavones pre-
vented neurotoxicity and mitochondrial dysfunction by modulating the BEX2/BNIP3/NIX
pathway [170]. Soybean isoflavones can prevent ATZ exposure induced DAergic neurons
degeneration by mTOR-dependent signaling pathway mediated autophagy activation [171].

Quercetin
Quercetin, derived from quercetum (oak forest), is widely available in plants, nor-

mal vegetables, and leaves. It is also found in some medicinal plants such as elderberry,
Ginkgo biloba, and Hypericum perforatum [172]. Quercetin is a highly antioxidant compound
that can directly scavenge free radicals and inhibit lipid peroxidation activity [173]. The
antimicrobial properties of Quercetin can fight various bacteria [174]. Quercetin can facili-
tate the mitochondrial synthesis, minimize protein or amino acid utilization, and improve
energy [175]. Quercetin is an anti-tumor compound, this property is performed through
by preventing the cell cycle process, promoting cell apoptosis, and reducing blood vessel
generation and transfer [176]. Quercetin exerts anti-inflammatory activities on both en-
dothelial cells and monocyte macrophages [177]. The cardioprotective activity of Quercetin
showed positive beneficial effects on atherosclerosis, hypertension, and cardiotoxicity [178].
L-Carnitine plays a significant role in proteolysis, protein synthesis, and the maintenance
of skeletal muscle protein balance [179]. L-Carnitine and Quercetin have a positive effect
on promoting fatty acid oxidation [180]. Exercise-induced fatigue was ameliorated by
Quercetin and L-Carnitine and also other compounds through targeting multi-signaling
pathways in mice [181].

An experimental study in the adult male albino rat’s showed that significant protective
action against the ATZ-induced reproductive toxicity was reversed in a dose-dependent
manner such as Quercetin in low dose and L-Carnitine in both low and high doses [182].
Quercetin’s action against ATZ-induced testicular toxicity in an experimental animal study
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showed positive results, such as improved testicular function and partial improvement of
sperm motility [183]. In one study, treatment with quercetin against sub-acutely induced
ATZ toxicity in rats showed improved reproductive function and sperm quality through an
antioxidant defense mechanism [184].

Fluted pumpkin seeds
Fluted pumpkin (Telfairia occidentalis) is a vegetable found in West Africa and cultivated

for its edible seeds and leaves [185]. In addition to its nutritional value, it is widely used
as a medicinal herb to treat many diseases such as diabetes, anemia, hypertension, and
malaria [186]. Fluted pumpkin seeds (FPS) are rich in proteins, carbohydrates, minerals, and
vitamins. Moreover, FPS are rich in bioactive constituents that possess different biochemical
and physiological effects [187]. A study demonstrated that FPS have antioxidant, anti-
cancer, and anti-inflammatory activities [188]. FPS were also used traditionally to improve
sexual performance and enhance fertility in men [189]. FPS showed a protective potential
against oxidative damage induced by chemotherapy in germ cells [190]. In addition to the
anti-oxidant property, FPS also possesses an anti-inflammatory effect through the inhibition
of interleukin-6 and serum nitrite [191]. Due to its healing properties, FPS was traditionally
used to treat various diseases in Asia and Africa [186].

FPS’s beneficial effects against ATZ exposure-induced toxicity is not well explored.
Only one study demonstrated the protective effect of FBS against the toxicity of ATZ [192].
In this study, daily treatment of Wister rats with FPS extract (25 mg/kg) significantly
checked the testicular damage induced by ATZ [192]. They found that FPS protected the
testis by decreasing malondialdehyde and increasing glutathione concentrations in the
testicular tissue. However, they found that the higher dose of FPS (50 mg/kg) was harmful
to the testes [192].

Vitamin E
Vitamin E is a fat soluble antioxidant vitamin found in varied foods such as fruits,

vegetables, meat, and eggs [193]. Vegetable oils are the main source of vitamin E. It consists
of two main groups, namely, tocotrienols and tocopherols, which are known as effective
antioxidants [193]. Each of these groups are also divided into alpha, beta, gamma, and
delta isomers. A previous report showed that vitamin E has a potent antioxidant and anti-
inflammatory properties, which are highly beneficial in different aspects of health [194].
It was also reported that vitamin E has the ability to neutralize peroxyl radicals and lipid
peroxidation. The antioxidant activity of vitamin E can protect the polyunsaturated fatty
acids in the cell membrane by removing reactive oxygen species and reactive nitrogen
species [195–198].

Studies showed that vitamin E has a protective effect against ATZ-induced genotoxicity
in liver cells. Administration of vitamin E (300 mg/Kg) significantly attenuated the DNA
damage induced by ATZ [199,200]. A study revealed that the co-administration of vitamin
E and testosterone significantly ameliorated the toxic effects of ATZ on sperm quality and
testis by increasing endocrine function and antioxidant capacity [201]. The antioxidant
property of vitamin E reduced apoptosis and increased steroidogenesis of Leydig cells.
Moreover, the oxidative stress induced by ATZ in shrimp palaemonetes argentines was
remarkably decreased by the antioxidant effect of vitamin E [202]. In another in vitro
study, vitamin E was able to delay the ATZ-induced degenerative changes of goat testicular
tissue [203].

Garcinia kola seeds
Garcinia kola (GK) is a plant found in Asia and tropical Africa and is also known

commonly as bitter cola because of the bitter taste of its seeds [204]. GK stems, roots, and
seeds were traditionally used to treat diabetes mellitus, liver disorders, and sickle cell
disease [205,206]. GK has anti-inflammatory, antioxidant, and antimicrobial properties [207].
The pharmacological properties of GK seeds are attributed to their complex mixture of
biflavonoids, polyphenolic compounds, and prenylated benzophenones. Kolaviron is one
of the biflavonoids that are extracted from GK seeds and is known as the most active phyto-
chemical in these seeds [208]. Normal consumption levels of GK seeds are considered safe
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for human [207]. Recent reports demonstrated that GK attenuated oxidative stress through
enhancing the antioxidant enzymes and suppressing the inflammatory markers [209]. Thus,
GK seeds are potent remedy to restore kidney, liver, and testicular markers [210].

An in vitro study showed that kolaviron biflavanoids (KB) of GK seeds attenuated
ATZ-induced cytotoxicity of cultured interstitial Leydig primary cells (ILCs) [210]. Treat-
ment with KB protected ILCs by decreasing the levels of malondialdehyde (MDA) and
reactive oxygen species (ROS). KB has significantly restored the expression of the steroidoge-
nesis gene to normal in ILCs exposed to ATZ [211]. KB are known to possess anti-apoptotic
activities. Treatment of PC12 cells by KB significantly reduced the apoptosis induced by
ATZ. Inhibition of apoptosis in PC12 cells was achieved through the downregulation of
ROS, malondialdehyde, caspase-3 activity, and the increase in glutathione and catalase
activity. The expression of apoptosis markers such as caspase-3, caspase-9, and p53 was
also restored by KB treatment [212].

Melatonin
Melatonin (N-acetyl-5-methoxytryptamine) is a natural indolic compound derived from

tryptophan widely found in different organisms, including bacteria and eukaryotes [213].
Melatonin is also found in aromatic plants, leaves, and seeds. In mammals, pineal gland
produces melatonin as its main secretory product. Melatonin, a known hormone or neuro-
transmitter, plays a role in various functions, including antioxidant and anti-inflammation
activities and circadian rhythm regulation [214]. Melatonin is also synthesized in other or-
gans, including, the brain, lungs, spleen, liver, kidney, and pancreas [215]. Many beneficial
results of melatonin were obtained from experimental and clinical trials, which suggest
using melatonin as a therapeutic drug to wield varieties of diseases such as neurological
diseases, insomnia, and sleep disturbance [216–218].

A potential role of melatonin on ATZ exposure-induced oxidative damage in rat
erythrocytes was studied [219]. The study results revealed that melatonin supplementation
significantly restored ATZ-induced morphological and biochemical changes in erythrocytes
by scavenging the free radicals, activating superoxide dismutase and restoring the ATPases
activity [219]. Another study showed that melatonin can inhibit ATZ induced-apoptosis
by attenuating endoplasmic reticulum stress, Fas-mediated caspase 8 and 3 activation,
and p53 independent mitochondrial apoptosis [220]. Figure 3 shows the various natural
compounds that were studied against various toxic effects.

L-carnitine
Levocarnitine (L-Carnitine; LC) is an essential natural, water soluble compound for

humans that can be found in most body tissues. It can be obtained from foods such
as milk and meat and is also synthesized in the body including the brain, liver, and
kidney [221]. LC plays an important role in lipid metabolism by working as an active
amino acid derivative, micronutrient and facilitating long-chain fatty acid transportation
into the mitochondria [222]. The protective effects of LC are due to its antioxidant properties
which work as scavengers of reactive oxygen species [223]. In addition, LC reduces lipid
peroxidation by facilitating the transport of long-chain fatty acids into the mitochondria to
generate ATP for the cell [224]. It was demonstrated that LC could also repair oxidative
damage and regenerate endogenous antioxidant activity [225,226].

Co-supplementation of LC at low and high doses (200 and 400 mg/kg body weight,
respectively) significantly ameliorated the ATZ-induced reproductive toxicity [182]. In this
study, LC was able to abolish the toxic effect of ATZ through the improvement of CYP17A1
mRNA, the indicators of serum oxidative stress, and serum testosterone [182]. In another
study, it was shown that LC attenuated ATZ-induced hepatotoxicity in albino rats. LC
significantly alleviated the hepatotoxicity by reducing inflammation, oxidative stress, and
apoptosis in the liver [227]. The co-administration of LC restored the normal histological
structure and improved antioxidant enzymes [227]. These studies demonstrated that LC
has an ameliorative effect on ATZ-induced reproductive toxicity and hepatotoxicity through
its anti-inflammatory, antioxidant, and anti-apoptotic properties [182,227].
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Selenium
Selenium is an essential micronutrient that can be found naturally in water, soil, and air.

It is important for various metabolic processes in the body. Selenium and its compounds
can be introduced into humans through the raw materials of animals and plants [228].
It works as a cofactor enzyme that provides an anti-oxidative protection and regulates
the inflammation in the body [229]. Selenium is an important component of glutathione
peroxidase, an enzyme that protects membrane lipids from oxidative degradation [230].
A deficiency in selenium is associated with many adverse health effects, including viral
infection, Kashin–Beck disease, autoimmune disease, and cardiovascular disease [231–234].
A high intake of selenium can change the composition of the gut microbiota [235]. Hepatic
Selenoprotin P works as a survival factor by transporting proteins in the plasma to different
parts of the body, including the brain [236].

Few experiments were conducted on the protective effect of selenium intake on ame-
liorating the damage induced by ATZ. A study by Adesiyan et al. (2011) evaluated the
protective effect of selenium against ATZ-induced hepatotoxicity and reproductive toxicity
in rats [25]. Selenium supplementation had no ameliorative effect against the biochem-
ical changes that were induced by ATZ treatment in the testes [25]. However, selenium
showed a protective effect against ATZ-induced biochemical alteration in the liver [25].
Another study evaluated the capacity of diphenyl diselenide (PhSe)2, an organo-selenium
compound, to protect fish from damage induced by ATZ [237]. This study showed that
diet supplementation of (PhSe)2 can protect cyprinus carpio (carp) against ATZ-induced
damage through enhancing the activities of antioxidant enzymes [237].

Isatis indigotica (Cruciferae)
Isatis phytogenic extract has numerous functional components such as carotenoids,

glycoproteins, polysaccharides, phenols, and essential oils [238]. Isatis is widely cultured in
some European, Asian, and Middle Eastern regions. Isatis root powder is extracted primar-
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ily from Isatis indigotica (Cruciferae) [239]. In vivo and in vitro experiments concluded the
anti-oxidant, anti-inflammation, antibacterial, antiviral, anti-cancer, and immunomodula-
tory effects of Isatis phytogenic extract [240,241]. Isatis leaves contain the highest content of
indigotin, and indirubin which perform antibacterial activity [242]. ATZ exposure caused
alterations in oxidative stress, immunity, and genotoxicity, subsequently leading to growth
rate inhibition and feeding difficulties Nile tilapia [243]. In Nile tilapia, ATZ exposure-
induced hepato-renal dysfunction, growth inhibition, and oxidative stress are significantly
reversed by 1% dietary supplementation of Isatis [244].

Polyphenols
Polyphenols are widely found in edible plants. The main four major classes of

polyphenols are the flavonoids, phenolic acids, stilbenes, and lignans [245]. Quercetin
and kaempferol are the flavonols commonly present in fruits and vegetables [246]. Lig-
nans are allicin derivatives, and this content is widely found in linseeds, sesame seeds,
lentils, cabbage, pears, and garlic [247]. Stilbenes are not commonly found in food, but
resveratrol and its derivatives are present in red grapes and red wine [248]. Lentils con-
taining polyphenols showed a potential role in reducing blood pressure by inhibiting the
angiotensin I-converting enzyme (ACE) activity in spontaneously hypertensive rats [249].
Studies concluded that polyphenols have chemo-preventive effects by modulating cancer
cell signaling pathways and promoting apoptosis [250,251].

ATZ and its metabolites have a toxic effect on sperm quality due to the production of
oxidative stress in the male reproductive system, and they also lead to a reduction in the
fertilization competence of spermatozoa by impairing their morphology and altering the
mitochondrial membrane potential [252]. In male goats (Capra hircus), dietary treatment
with polyphenol prevented the ATZ exposure-induced changes in spermatozoa [252].

Acacia nilotica
Acacia nilotica is also called gum Arabic kikar and black babul. In Sudanese folk

medicine, it is popularly called as ‘Garad’ or Sunt. It is a medicinal plant belonging to
the Fabaceae family and is usually found in tropical and sub-tropical regions [253]. All
parts of this plant were shown to be effective against various ailments such as neurological
problems, tuberculosis, small pox, and GIT problems [254]. In the folk medicine of Sudan,
it is used to strengthen teeth and reduce toothache [254]. The extract of Acacia nilotica
has various phytochemical components such as flavonoids, tannins, and phenols [253].
Acacia nilotica’s potential role in treating diabetes mellitus, cancers, and inflammatory dis-
eases was demonstrated. These effects were attributed to its antioxidant properties [255]. In
a recent study, its seedpod was shown to possess anti-ulcerogenic activity [256]. Administra-
tion of 400 mg/kg/day of Acacia nilotica was partially protected against 200 mg/kg bw/day
ATZ-induced toxicity by reversing the significantly elevated serum levels of AST, ALT, ALP,
and decreasing GSH level in adult male albino rats [56].

Zingiber officinale Roscoe
Zingiber officinale Roscoe, popularly called ginger, belongs to the Zingiberaceae family.

Traditionally, its underground rhizomes are used in food preparation as a spice [257]. It
is a well-known herbal medicine and is frequently used as a home-remedy for treating
various diseases including nausea, headache, common cold, and emesis. Its principal
bioactive compounds are paradols, gingerols, shogaols, and terpene compounds [258].
Its potential biological activities include antioxidant, anti-inflammatory, antimicrobial,
and anticancer activities [259,260]. Previous studies showed its potential ameliorative
effects against neurodegenerative and cardiovascular diseases, metabolic syndrome, and
respiratory disorders [260]. Its beneficial effects such as potent anti-platelet, antioxi-
dant, anti-tumor, anti-rhinoviralis, anti-hepatotoxicity, and anti-arthritic activities are also
demonstrated [261–263].

In mice, ATZ exposure-induced oxidative stress in both liver and kidney [264]. ATZ signif-
icantly in reduced the antioxidant enzymes activities and increased the lipid peroxidation [264].
The ginger co-supplementation on each alterative day for 14 days prevented the ATZ
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exposure-induced oxidative stress in liver and kidney [264]. These findings indicate that
ginger can be used as a therapeutic agent to prevent ATZ-induced oxidative damage.

The effects of natural compounds against atrazine exposure-induced toxicity that were
studied in various studies are depicted in Table 1.

Table 1. Effect of natural compounds or natural products against atrazine exposure-induced toxicity.

Author; Year Animal Model
Atrazine Dose
and Duration
of Treatment

Natural Product or
Natural Compound
Dose and Duration
of Treatment

Atrazine Induced
Toxicity

Mechanism of
Actions

Dai et al.,
2022 [57] Mice 50 and 200 mg/kg

b.wt./day for 21 days
Lycopene—5 mg/kg
b.wt./day for 21 days Neurotoxicity

Anti-oxidant effect by
modulating
xenobiotic-sensing
nuclear receptors and
cytochrome P450

Keshk et al.,
2014 [117] Rats 400 mg/kg b.wt./day

for 3 weeks

Curcumin—400 mg/kg
b.wt./day for
3 weeks

Cardiac toxicity

Modulating redox
status, mitochondrial
function, caspase-3
expression

Abo El-Noor et al.,
2014 [118] Rats 100 mg/kg b.wt./day

for 21 days

Curcumin—
400 mg/kg/day for
21 days

Nephrotoxicity

By ameliorating the
oxidative stress,
apoptosis, DNA
damage,
mitochondrial
dysfunction.

Ahmed et al.,
2022 [122]

Nile tilapia
(Oreochromis niloticus)

1.39 mg/L for
60 days

Panax ginseng
essential oil—60 days

Growth inhibition
and hepatotoxicity

Anti-oxidant and
anti-apoptotic effects

Toughan et al.,
2017 [131] Cyprinus carpio L. 428 µg/L for 40 days

Spirulina (Spirulina
platensis)—1% for
40 days

Hepatotoxicity
Anti-oxidant and
anti-inflammatory
effects

Khalil et al.,
2017 [132] Cyprinus carpio L. 428 µg/L for 40 days

Spirulina (Spirulina
platensis)—1% for
40 days

Immunotoxicity

Immune related
genes expression
modulation and
anti-inflammatory
effect

Hedayatirad et al.,
2020 [133]

Adult female
Zebra fish

5 µg/L and 50 µg/L
for 28 days

Spirulina (Spirulina
platensis)—10 g/kg
b.wt./day for 28 days

Immunotoxicity and
endocrine disruptor
toxicity

Transgenerational
antimicrobial effects
and immunotoxic
suppression

Abdel-Warith et al.,
2021 [143] Nile tilapia fish

1/5 96 h LC50
(1.39 mg/L) for
30 days

Fucoidan—0.8% for
30 days

Growth retardation,
hepatic and
renal toxicity

Anti-oxidant and
anti-inflammatory
effects

Gomes et al.,
2022 [158] Rhamdia quelen fish 10 µgL−1 for 96 h

Vitamin C—1 g/kg
b.wt for 30 days Hepatotoxicity Antioxidant and

anti-peroxidase effect

Li et al.,
2019 [171] Rats 50 mg/kg for 45 days

Soybean—
isoflavones 10, 50, or
100 mg/kg for
45 days

Neurotoxicity

Autophagy
modulation through
mTOR-dependent
signalling pathway

Abdel Aziz et al.,
2018 [182] Rats 120 mg/kg b.wt.

21 days

Quercetin—10 and
50 mg/kg b.wt/day
L-carnitine—200 and
400 mg/kg b.wt for
21 days

Reproductive toxicity
and genotoxicity Anti-oxidant effects

Abarikwu et al.,
2016 [183] Rats 120 mg/kg b.wt./day

for 16 days

Quercetin—
10 mg/kg b.wt./day
for 16 days

Testicular toxicity Anti-oxidant effects

Farombi et al.,
2013 [184] Rats 120 mg/kg/b.wt./day

for 16 day

Quercetin—
20 mg/kg/b.wt/day
for 16 days

Testicular toxicity Anti-oxidant effects



Plants 2023, 12, 2278 16 of 27

Table 1. Cont.

Author; Year Animal Model
Atrazine Dose
and Duration
of Treatment

Natural Product or
Natural Compound
Dose and Duration
of Treatment

Atrazine Induced
Toxicity

Mechanism of
Actions

Abarikwu et al.,
2022 [192] Rats 50 mg/kg b.wt./day

60 days

Fluted pumpkin
seeds extract—25 and
50 mg/kg b.wt/day
for 60 days

Testicular toxicity Antioxidant activity

Singh et al.,
2008 [199] Rats 300 mg/kg b.wt./day

for 7,14 and 21 days

Vitamin E—
100 mg/kg b.wt/day
7, 14, and 21 days

Genotoxicity Antioxidant activity

Agdam et al.,
2017 [201] Rats 200 mg/kg b.wt./day

for 22 and 48 days
Vitamin E—
150 mg/kg/b.wt/day Testicular toxicity

Promoting
antioxidant capacity
and endocrine
function

Griboff et al.,
2014 [202]

Shrimp Palaemonetes
argentinus 0.4 mg/L for 21 days Vitamin E—(16 mg%)

for 21 days Oxidative stress Antioxidant effects

Bhatti et al.,
2011 [219] Rats 300 mg/kg of

bw/day for 21 days

Melatonin—
10 mg/kg bw/day
for 21 days

Erythrocytes toxicity Antioxidant effects

Sharma et al.,
2014 [220] Mice 100 mg/kg b.wt./day

for 14 days

Melatonin—
20 mg/kg b.wt/day
for 14 days

Immunotoxicity

Suppression of
endoplasmic
reticulum stress,
Fas-mediated and
p53 independent
mitochondria-
mediated apoptosis
and autophagy
modulation

Rashad et al.,
2023 [227] Rats 400 mg/kg b.wt./day

for 14 days

L-Carnitine—
100 mg/kg b.wt/day
for 14 days

Hepatotoxicity

Antioxidant,
anti-inflammatory,
and anti-apoptosis
activities

Adesiya et al.,
2011 [25] Rat 120 mg/kg b.wt./day

for 16 days

Selenium—
0.25 mg/kg
b.wt/day for 16 days

Hepatotoxicity Antioxidant effects

Marins et al.,
2018 [237] Fish 2 or 10 µg/L for 96 h

Selenium compound
diphenyl diselenide
(PhSe)2 containing
diet—3 mg/kg
b.wt/day

Hepatotoxicity and
reproductive toxicity Antioxidant effects

Ali et al.,
2021 [244] Nile tilapia fish 1.39 mg/L for

30 days
Isatis diet—1% for
30 days

Hepatotoxicity and
renal toxicity Antioxidant effects

Komsky-Elbaz et al.,
2019 [252]

Male goat (Capra
hircus)

15 mg/kg b.wt./day
for 6 months

Polyphenol A—
standard ration for
90 days

Testicular toxicity Antioxidant effects

Ahmed et al.,
2022 [56] Rats 200 mg/kg b.wt/day

for 30 days

Acacia nilotica—
400 mg/kg/day for
30 days

Hepatotoxicity,
neurotoxicity and
genotoxicity

Antioxidant effects

El-Shenawy et al.,
2011 [264] Mice 78.25 mg/kg

b.wt./day for 14 days

Ginger extract—
120 mg/kg b.wt for
14 days

Hepatotoxicity and
renal toxicity Antioxidant effect

5. Conclusions

The herbicide ATZ has potential toxic effects which are harmful to the human body.
Admittedly, the use of herbicide cannot be curtailed but individuals handling such herbicide
need to be educated about its toxic effects. In oxidative stress, there is also a disturbance
in the antioxidant defense mechanism of the body and various enzymes which act as
scavengers. ATZ exposure may result in a state of oxidative stress with the accumulation
of free radicals. The increase in free radicals results in damage to the cells, RNA, DNA,
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lipids, carbohydrates, and proteins in the body. Oxidative stress plays an important role
in various diseases related to cardiovascular, endocrine, central nervous, gastrointestinal,
urinary, and reproductive systems. In future, potential biomakers could help us with
warning signs of ATZ exposure. In the absence of any particular drug being available to
treat atrazine toxicity, the only other option is trying natural compounds obtained from
lycopene, curcumin, Panax ginseng, Spirulina platensis, Fucoidans, vitamin C, soyabeans,
quercetin, L-carnitine, Telfairia occidentalis, vitamin E, Garcinia kola, melatonin, selenium,
Isatis indigotica, polyphenols, Acacia nilotica, and Zingiber officinale for the treatment of
toxicity. The phytochemicals such as flavanoids, tannins, alkaloids, and polyphenols
compounds present in the natural products may act as antidotes to counteract the ATZ
exposure induced toxicity. In the present review, we explored the need of future drug design
based on evidence-based literature related to natural products and natural compounds
which could be used to treat ATZ toxicity. Additionally, more studies required to explore
the molecular mechanisms behind the ameliorative potential of natural products and also
to identify the active compounds in these products/extracts. Further clinical trials are
needed to develop a potential therapeutic drug to treat ATZ exposure-induced toxicity.
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