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Abstract: Macleaya cordata is a dominant plant of mine tailings and a zinc (Zn) accumulator with
high Zn tolerance. In this study, M. cordata seedlings cultured in Hoagland solution were treated
with 200 µmol·L−1 of Zn for 1 day or 7 days, and then, their leaves were taken for a comparative
analysis of the transcriptomes and proteomes between the leaves of the control and Zn treatments.
Differentially expressed genes included those that were iron (Fe)-deficiency-induced, such as vacuolar
iron transporter VIT, ABC transporter ABCI17 and ferric reduction oxidase FRO. Those genes were
significantly upregulated by Zn and could be responsible for Zn transport in the leaves of M. cordata.
Differentially expressed proteins, such as chlorophyll a/b-binding proteins, ATP-dependent protease,
and vacuolar-type ATPase located on the tonoplast, were significantly upregulated by Zn and, thus,
could be important in chlorophyll biosynthesis and cytoplasm pH stabilization. Moreover, the
changes in Zn accumulation, the production of hydrogen peroxide, and the numbers of mesophyll
cells in the leaves of M. cordata were consistent with the expression of the genes and proteins. Thus,
the proteins involved in the homeostasis of Zn and Fe are hypothesized to be the keys to the tolerance
and accumulation of Zn in M. cordata. Such mechanisms in M. cordata can suggest novel approaches
to genetically engineering and biofortifying crops.

Keywords: Macleaya cordata; transcriptome; proteome; transporter; Zn tolerance; Fe deficiency

1. Introduction

Zinc (Zn) is an essential trace element in plants but is also toxic to cells at excessive
concentrations. Zn hyperaccumulators are those plants with both a high tolerance for and
the ability to accumulate Zn [1]. Therefore, Zn hyperaccumulators have potential use in the
phytoremediation of contaminated soils [2]. Furthermore, transgenic approaches can be
used to incorporate the traits of hyperaccumulators and biofortify crops [3].

The compartmentation and accumulation of Zn have been investigated in two hy-
peraccumulators, Arabidopsis halleri and Noccaea caerulescens. In the hyperaccumulators,
most of the Zn was accumulated in epidermal cells and the trichomes of the leaves [4,5].
However, in other studies, Zn primarily accumulated in the vacuoles of mesophyll cells in
the leaves of A. halleri [6,7]. Sedum alfredii, another hyperaccumulator, accumulates 2.9% Zn
in the xylem of shoots in a Zn citrate form [6,8]. However, the functions of proteins in plant
Zn tolerance and sequestration are unclear.

Most Zn transporters are involved in iron (Fe) transport. For example, in Arabidopsis,
iron-regulated transporter 1 and ZIP family transporters are responsible for Fe and Zn
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uptake [9,10]. Therefore, the cellular utilization of Fe decreases when Zn is in excess, and
plants exhibit symptoms of Fe starvation [11]. Excess Zn depressed the activities of Rubisco
and PSII in Arabidopsis, which showed symptoms of Fe deficiency [10]. Plants also possess
homeostatic mechanisms to compartmentalize heavy metals in different plant tissues to
minimize damage [11,12].

Macleaya cordata (Willd.) is found in tailing areas, it has a fast growth rate, large
biomass, and huge taproots, and has been reported to be a hyperaccumulator for the
phytoextraction of uranium- and molybdenum-contaminated soil [13,14]. M. cordata also
has a good ability to accumulate Zn, mercury, cadmium, lead, and manganese [15–19],
indicating that it is a good candidate species for phytoremediation. In addition, we found
that M. cordata had a very high tolerance to Zn under hydroponic conditions [20], and
we also analyzed the oxidative stress response in the roots of M. cordata exposed to Zn
and Pb [21]. However, little is known about the tolerance and accumulation mechanisms
of M. cordata to these heavy metals. The objectives of this study were to investigate the
mechanisms of response, transport, and tolerance of M. cordata to Zn via transcriptome and
comparative proteome analyses of the leaves.

2. Results
2.1. Zn Accumulation in Roots and Shoots of Macleaya cordata

After the 200 µmol·L−1 Zn treatment for 1 day (Zn 1d) or 7 days (Zn 7d), the fresh weight
(FW) in the roots and shoots per plant exhibited no significant change when compared to that
of the control (Figure 1a,b). The ratio of the fresh weight to dry weight was 11.2–12.2 of roots
or 8.2–9.5 of shoots, and there was no significant difference in the roots or shoots in the present
study. However, Zn concentration per gram of fresh weight in the roots and shoots increased
significantly (Figure 1c,d). Moreover, with the extension of the treatment time, the increase in
Zn concentration in the shoots was more significant than that in the roots, indicating that the
leaves of M. cordata had a special capacity for Zn accumulation.
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 Figure 1. Fresh weight (FW) and zinc (Zn) concentration in (a,c) the roots and (b,d) shoots of Macleaya
cordata. Plants were exposed to control (CK) or 200 µmol·L−1 Zn treatment for 1 day (Zn 1d) or
7 days (Zn 7d). Values are the mean ± SE (n = 3). Means denoted by different letters are significantly
different (p < 0.05, Duncan’s test).
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2.2. H2O2 Production and Chlorophyll Content in Leaves of Macleaya cordata Exposed to Excess Zn

With 3,3′-diaminobenzidine (DAB) staining, reddish brown spots form due to the
rapid reaction of H2O2 with DAB under catalase. The production of H2O2 was detected
by observing the location and intensity of brown spots. The veins of the control plants
were lightly stained, whereas the brown color of the leaf veins deepened significantly in
the leaves of M. cordata under the Zn 7d conditions (Figure 2a). The concentrations of H2O2
in the leaves assayed using spectrophotometry were consistent with those of histochemical
detection via DAB staining (Figure 2b). Therefore, oxidative stress in mesophyll cells
increased after Zn treatment for 7 d. In addition, the contents of chlorophyll a and b in the
leaves of M. cordata decreased significantly under the Zn treatment (Figure 2c).
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Figure 2. Hydrogen peroxide (H2O2) production and chlorophyll content in the leaves of Macleaya
cordata under excess Zn. (a) Histochemical location of H2O2 by 3,3′-diaminobenzidine staining.
Bar = 2 cm. (b) H2O2 content and (c) chlorophyll content in the leaves of M. cordata. Plants were
exposed to 200 µmol·L−1 Zn for 1 day (Zn 1d) or 7 days (Zn 7d). Values are the mean ± SE (n = 3).
Means denoted by different letters are significantly different (p < 0.05, Duncan’s test). Experiments in
(a) were repeated at least five times with similar results.

2.3. Transcriptomic and Proteomic Analysis Overview

In the transcriptome of M. cordata leaves, 32,485 non-redundant transcripts were
annotated, and a total of 499 differentially expressed genes (DEGs) were screened for
significant differential expression with |log2(fold change)| > 1 between the two sample
sets (Zn 1d vs. CK and Zn 7d vs. CK). An overview of the numbers of DEGs in Zn 1d
and Zn 7d is shown in Figure 3a. Ninety DEGs were upregulated only in Zn 1d, and
59 DEGs were upregulated only in Zn 7d. However, there were almost twice as many
downregulated DEGs as upregulated DEGs in either Zn 1d or Zn 7d. Moreover, fifteen
DEGs were upregulated and thirty-four DEGs were downregulated in both Zn 1d and
Zn 7d, respectively.
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Figure 3. Venn diagrams showing the numbers of (a) differentially expressed genes and (b) differen-
tially expressed proteins in the leaves of Macleaya cordata. Upward green arrow shows an increase
and the downward red arrow shows a decrease in the expression of genes or proteins in the leaves of
M. cordata exposed to 200 µmol·L−1 Zn for 1 day (Zn 1d) or 7 days (Zn 7d).

After the MS/MS raw data of the proteome were searched against the M. cordata
transcriptome, a total of 296 differentially expressed proteins (DEPs) were screened, and
significant differential expressions between the Zn and control treatments of 1.5-fold (up) or
0.67-fold (down) change were found. Venn diagrams of the protein expression in response
to the Zn 1d and Zn 7d treatments are shown in Figure 3b. There were 92 DEPs that
were upregulated in Zn 1d and 93 DEPs that were upregulated in Zn 7d. The number of
downregulated DEPs was slightly greater than that of upregulated DEPs in either the Zn
1d or Zn 7d treatments, and there were 59 upregulated and 82 downregulated DEPs in both
the Zn 1d and Zn 7d treatments.

2.4. Characteristic of Transporter Genes in Leaves of Macleaya cordata

A total of 555 non-redundant transporters were identified from the transcriptome of M.
cordata leaves. Among the transporters, 24 transporter genes were identified as DEGs in the
leaves of M. cordata under the Zn treatment (Figure 4a). The genes were mainly categorized
into ATP-binding cassette transporters (ABC, 5 of 24), amino acid transporters (AAT, 3 of
24), nitrate transporters (NRT, 3 of 24), two tonoplast dicarboxylate transporters (TDT),
two sugar transporters (ST), a phosphate transporter (PHT), a vacuolar iron transporter
(VIT), a sulfate transporter (SULTR), an oligopeptide transporter (OPT) and three other
transporters (Figure 4a). The expression change in the transporters under the Zn treatment
was analyzed (Figure 4b). The Zn treatment downregulated 15 of the 20 transporters;
however, four ABC transporter genes were upregulated in Zn 1d or 7d. Five transporter
genes, including VIT, ABCI17X1, and ABXI17X3, were upregulated by the Zn 7d treatment.
Significantly, both VIT and ABCI17X3 genes were downregulated in the Zn 1d treatment
and were upregulated in the Zn 7 d treatment.

2.5. Differentially Expressed Genes Involved in Response and Tolerance of Macleaya cordata to Zn

Twenty-eight DEGs were involved in signal transduction (Figure 5a), and eighteen
appeared in the Zn 1d treatment. With the exception of the transcription factor of the
MYB44 gene, which appeared in both Zn 1d and Zn 7d, 27 DEGs were upregulated in
either the Zn 1d or Zn 7d conditions, and 19 of the 28 DEGs were downregulated by
Zn. Among those DEGs, the expression of the serine/threonine protein kinase (STN)
gene decreased the most, whereas GTPase increased the most, and both appeared in the
Zn 7d treatment. Five genes, including GTPase, calcium-binding protein (CML), WRKY,
MYB44, and GATA transcription factors, were upregulated in the Zn 7d treatment, and
five other genes, including those for myelin (MYT1), bZIP, and iron deficiency response
(FER) transcription factors and two phosphatases (PP37 and PP51), were upregulated in
the Zn 1d treatment. Other DEGs involved in signal transduction were downregulated by
the Zn treatment. Furthermore, 18 DEGs had at least an annotation for cytochrome P450
(CYP) from NCBI (nr), Swiss-port, GO, COG, KOG, or KEGG, and five pathogenesis-related
protein (PRs) were downregulated in the Zn 7d treatment (Figure 5b).
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Figure 4. Identification and expression levels of putative Zn transporters in the leaves of Macleaya
cordata. (a) Proportions of the identified transporters. (b) Expression levels of the identified trans-
porters. Plants were exposed to 200 µmol·L−1 Zn for 1 day (Zn 1d) or 7 days (Zn 7d). Expression
levels of transporters were based on Log2 (Fold change) (n = 3, padj < 0.05). ABCI17X1 and ABCI17X3:
ATP-biding cassette (ABC) transporter family I members; ABCG22X1, ABCG22X2, ABCG36: ABC
transporter family G members; TDT(L): tonoplast dicarboxylate transporter (like); VIT: vacuolar iron
transporter; PHT: phosphate transporter; NRT2.5, 5.6, 4.5: nitrate transporter family members; MRS:
magnesium transporter; AAT: amino acid transporter; CAAT: cationic amino acid transporter; SULTR:
sulfate transporter; OPT: oligopeptide transporter; ST: sugar transporter; SWEET: bidirectional sugar
transporter; SCP: sugar carrier protein.

Seventeen DEGs were involved in cysteine metabolism (Figure 6a), but only five DEGs
appeared in the Zn 1d treatment. Among them, four DEGs were upregulated by Zn, and
glutathione hydrolase (GH) was the most upregulated in the Zn 7d treatment. Two DEGs
of defensin-like proteins (PDF3 and PDF4) were the most downregulated in the Zn 7d
treatment. Metallothionein (MT) and glutathione S-transferase (GST10) were also most
downregulated in the Zn 7d treatment. A heavy-metal-associated isoprenylated plant
protein (HIPP) gene was downregulated in both the Zn 1d and 7d treatments. Eleven
DEGs involved in cell wall structural proteins were downregulated in the Zn 1d treatment,
and only leucine-rich repeat receptor protein kinase (LRR5) and a glycine-rich cell wall
structural protein (GRP5) were upregulated in the Zn 7d treatment (Figure 6b).
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Figure 5. The expression levels of genes involved in (a) signal transduction and (b) stress response in
the leaves of Macleaya cordata. Plants were exposed to 200 µmol·L−1 Zn for 1 day (Zn 1d) or 7 days
(Zn 7d). The expression levels of genes were based on Log2 (Fold change) (n = 3, padj < 0.05). ERF:
ethylene-responsive transcription factor; RAV, WRKY, MYB, bHLH, GATA, bZIP: transcription factors;
MYT: myelin transcription factor; FER: iron-deficiency-induced transcription factor; HST: heat stress
transcription factor; PP: phosphatase; MAPKKK: mitogen-activated protein kinase kinase kinase; RLK:
receptor-like protein kinase; STN: serine/threonine protein kinase; CML: calcium-binding protein;
CDPK: calcium-dependent protein kinase; CYP: cytochrome P450; PR: pathogenesis-related protein.
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Figure 6. Expression levels of genes involved in (a) cysteine metabolism and associated with (b) cell
wall structural proteins in the leaves of Macleaya cordata. Plants were exposed to 200 µmol·L−1 Zn for
1 day (Zn 1d) or 7 days (Zn 7d). The expression levels of the genes were based on Log2 (Fold change)
(n = 3, padj < 0.05). MT: metallothionein; GST: glutathione S-transferase; GluR: glutamate receptor;
GGT: gamma-glutamyltranspeptidase; GGCT: gamma-glutamylcyclotransferase; GH: glutathione
hydrolase; Grx: glutaredoxin; FRO: ferric reduction oxidase; Trx: thioredoxin; HPP: metal-ion-binding
protein; HIPP: heavy-metal-associated isoprenylated plant protein; CAT: catalase; PDF: defensin-like
protein; LRR: leucine-rich repeat receptor protein kinase; GRP: glycine-rich cell wall structural protein;
CRP: chitin recognition protein.
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2.6. Validation of DEGs by Quantitative Real-Time PCR (qRT-PCR)

The expression of nine DEGs from the transcriptomic analysis was verified through the
expression levels according to qRT-PCR. The relative expressions of ABC17X1, ABC17X3,
TDT, WRKY, and MYB genes were consistent with the results of the transcriptome; however,
VIT gene expression increased in the Zn 1d treatment according to qRT-PCR, in contrast to
the results in the transcriptome (Figure 7). In addition, the relative gene expression of MT,
ERF105, and ERF61 increased significantly in the Zn 7d treatment, which is in contrast to
the results of the transcriptome.
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Figure 7. The relative expression level of genes in the leaves of Macleaya cordata via quantitative
real-time PCR. Plants were exposed to 200 µmol·L−1 Zn for 1 day (Zn 1d) or 7 days (Zn 7d). The
relative expression levels of genes denoted using different letters indicate significant differences
(p < 0.05, Duncan’s test).

2.7. Proteomic Profiling of Leaves in Macleaya cordata under Zn Treatment

Eight DEPs were identified as chlorophyll a-b binding proteins (CABs), but only CAB5
was upregulated in the Zn 1d treatment (Figure 8a). Moreover, the chlorophyll apoprotein
(CAP) gene was also upregulated in the Zn 7d treatment. Eleven DEPs were involved in
ATP metabolism (Figure 8b), and three of the four ATP synthase genes were upregulated in
both the Zn 1d and 7d treatments. However, three vacuolar-type ATPase (V-ATPase) genes
were upregulated in the Zn 7d treatment, and the genes of an ATP-dependent Clp protease
(ClpP3) and zinc metalloprotease (ZMP) were also upregulated in the Zn 1d treatment.
The morphology of mesophyll cells was determined via paraffin sectioning with safranin
and fast green staining (Figure 8c). Compared with the control, the number of mesophyll
cells increased significantly under the Zn treatments, and the degree of increase was most
pronounced in the Zn 7d treatment.
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Figure 8. The expression levels of the proteins involved in (a) chlorophyll and (b) ATP metabolism,
and (c) cytochemical characteristics of mesophyll cells in leaves of Macleaya cordata. Plants were
exposed to 200 µmol·L−1 Zn for 1 day (Zn 1d) or 7 days (Zn 7d). Expression levels of proteins
were based on fold change (p < 0.05, Student’s t-test). Paraffin section experiments were repeated
at least three times with similar results. CAB: chlorophyll a/b-binding protein; CAP: chlorophyll
apoprotein; ClpP: ATP-dependent protease; ZMP: ATP-dependent zinc metalloprotease; V-ATPase:
vacuolar-type ATPase.

Fourteen DEPs were stress-response-related proteins, and most, including one APX,
two of three PODs, three of the four heat shock proteins (HSPs), and three PRs, were
upregulated by Zn (Figure 9a). Seven DEPs were involved in sulfur metabolism (Figure 9b),
but only two glutamine synthetase genes (GS2 and GS3) were upregulated by Zn. How-
ever, ferredoxin–NADP reductase (FNR), sulfite reductase (SiR), cysteine synthase (CS),
ferredoxin-dependent glutamate synthase (Fd-GOGAT), and GS1 were downregulated
by Zn.
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Figure 9. The expression levels of the proteins involved in (a) stress response and (b) sulfur
metabolism in the leaves of Macleaya cordata. Plants were exposed to 200 µmol·L−1 Zn for 1 day
(Zn 1d) or 7 days (Zn 7d). Expression levels of proteins were based on fold change (p < 0.05,
Student’s t-test). APX: ascorbate peroxidase; POD: peroxidase; COX: cytochrome c oxidase; CYT: cy-
tochrome complex; HSP: heat shock protein; FNR: ferredoxin–NADP reductase; SiR: sulfite reductase;
CS: cysteine synthase; Fd-GOGAT: ferredoxin-dependent glutamate synthase; GS: glutamine synthetase.

3. Discussion
3.1. Increase in Zn Concentration and H2O2 Production in Leaves of Macleaya cordata Exposed to Zn

In a previous study, compared with the control, 200 µmol·L−1 Zn for 7 days signifi-
cantly inhibited the root length and shoot height of M. cordata [21], and the same growth
inhibition also appeared in the present study. Compared to the control, there was no
significant difference in the fresh weight per plant under the Zn 1d and Zn 7d conditions
(Figure 1a,b). Moreover, the Zn concentration in the roots and shoots of M. cordata clearly
increased under excess Zn (Figure 1c,d). With extended treatment time, the Zn concen-
tration in the roots and shoots of M. cordata increased further, but the proportion of Zn
increase in shoots was much greater than that in the roots in the Zn 7d treatment. This
result was consistent with our previous studies [20,21]. When comparing Zn concentrations
in solutions and in plants, we found that only a small amount of Zn in the solutions was
transported to the plants, and most of them were transported and accumulated in the
shoots of M. cordata during the Zn treatments (Figure 1c,d). Thus, the tolerance to Zn in M.
cordata is higher in the leaves than in the roots.

In plants exposed to excess Zn, H2O2 acts as both a signal molecule and an indicator
of oxidative stress [22,23]. The production of H2O2 in the leaves of M. cordata increased
significantly with the extension of Zn treatment tie (Figure 2a,b). However, the content of
chlorophyll a and b decreased significantly with the Zn treatment (Figure 2c). The results
indicated that oxidative stress occurred in mesophyll cells exposed to excess Zn.

3.2. An Fe Deficiency Signal Regulates Expression of Transporter Genes in Macleaya cordata

Vacuolar sequestration is a strategy that safely stores excess metal ions to reduce
toxicity to the cells [24]. Vacuolar iron transporter (VIT) is a transporter that transports
cytoplasmic Fe ions as well as Zn along with Fe into vacuoles [25]. However, when there
is excess Zn in plants, cellular Fe utilization decreases, and plants exhibit Fe deficiency
signals [23]. Shinozaki and Yoshimoto [11] found that VITs can help maintain Fe and
Zn homeostasis in cells rather than allocating Fe to vacuoles. The knockout of OsVIT2
causes an increase in Fe accumulation in rice grains [26]. In this study, according to both
the transcriptome and qRT-PCR results, the VIT gene in the leaves of M. cordata was
significantly upregulated in the Zn 7d treatment (Figures 4b and 7). It was hypothesized



Plants 2023, 12, 2275 10 of 18

that VIT transported both Zn and Fe to vacuoles and, as a result, Fe deficiency developed
in the leaves of M. cordata under excess Zn.

ABC transporters have crucial roles in the pathways of plant secondary metabolites and
responses to environmental stress. In this study, among ABC transporters, two I family numbers,
ABCI17X1 and ABCI17X3, were upregulated in the Zn 7d treatment (Figures 4b and 7), and two
G family members, ABCG22X1 and ABCG22X2, were upregulated in the Zn 1d treatment
(Figure 4b). Two Arabidopsis ABC transporters, AtABCI10 and AtABCI11, are significantly
induced by Fe deficiency and regulate chloroplast biogenesis and metal homeostasis [27].
The transporter OsABCI7, located on the thylakoid membrane of rice, can regulate intracel-
lular reactive oxygen species (ROS) homeostasis and maintain the stability of the thylakoid
membrane [28]. According to Kuromori et al. [29], Arabidopsis AtABCG25 is a plasma
membrane exporter of ABA in the ABA signaling pathway. In addition, AtABCG40, located
on the plasma membrane, is a pump that excludes lead as well as other toxic compounds
from the cytoplasm [30,31]. Therefore, it was hypothesized that (1) the increase in the
expression of ABCI17 located on the thylakoid membrane transported Fe to chloroplasts in
order to synthesize chlorophyll, and (2) the increase in the expression of ABCG22 located on
the plasma membrane was important in transporting Zn and other compounds to apoplasts
in the leaves of M. cordata exposed to excess Zn.

Carboxylic acids, such as malate, citrate, and fumarate, can chelate metallic nutrients
and toxic heavy metals [32]. A high concentration of citrate has been detected in the xylem
of the hyperaccumulator S. alfredii, and the amount of citrate increased significantly with
an increase in Zn concentration [6,33]. In addition, in mutants of tonoplast dicarboxylate
transporters (TDTs), leaf citrate and malate levels decreased in Arabidopsis [34,35]. In
this study, two TDT transporter genes, TDT and TDTL, were downregulated (Figure 4),
which was attributed to reductions in carboxylic acids. Peptide transporter AtOPT3 loads
Fe into the phloem for Fe redistribution from mature to developing tissues in Arabidop-
sis [36]. Moreover, OPT3 is highly induced by Fe deficiency in the vascular systems of N.
caerulescens [37]. In this study, OPT3 was downregulated in the Zn 1d treatment (Figure 4b),
thereby reducing long-distance Fe transport in M. cordata.

Concerning nitrate transporter family members, NRT2.5 was upregulated, but NRT4.5
and NRT5.6 were downregulated in the Zn 1d treatment (Figure 4b). Excess Zn increases the
expression of Arabidopsis AtNRT1.1 to promote nitrate absorption and Zn transport [38].
However, in mutants of AtNRT1.1, Zn accumulation in Arabidopsis decreases, as does the
inhibition of photosynthesis caused by Zn stress [38]. In addition, a magnesium transporter,
a phosphate transporter, two sugar transporters, and three amino acid transporters were
downregulated in Zn 1d in the present study (Figure 4b), although the roles in Zn transport
in M. cordata were unclear.

3.3. Macleaya cordata Regulate Zn Tolerance by Multiple Signal Pathways

Macleaya cordata has a high tolerance to Zn [19–21]. In this study, ten of twenty-four
genes associated with signal transduction were upregulated in the leaves by Zn. The DEGs
of MYT, FER, bZIP, and two PPs were upregulated in the Zn 1d treatment, whereas the
DEGs of WRKY, MYB44, GATA, CML, and GTPase were upregulated in the Zn 7d treatment
(Figure 5a). In addition, 19 genes involved in signal pathways were downregulated in the
Zn 1d or Zn 7d treatments. The WRKY transcription factors have a novel Zn-chelating DNA-
binding domain, and several WRKYs are upregulated in response to the H2O2 treatment in
A. thaliana [39]. In Pepper, WRKYs are also upregulated by Cd and H2O2 stress [40], and
the overexpression of ThWRKY improves the Cd tolerance of Saccharomyces cerevisiae [40,41].
In this study, STN was downregulated almost six times in the Zn 7d treatment (Figure 5a).
In rice, the loss-of-function of OsSTN8 suppresses photosystem II phosphorylation [42].
Therefore, there were multiple signal pathways that regulated transport or antioxidant
protection during the Zn treatment.

Cell wall structural proteins, including LRR, GRP, and CRP, function during signal
transduction in higher plants [43–46], and in particular, LRRs conduct cell wall signals
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to regulate plant growth and stress tolerance [44]. In the present study, most cell wall
structural protein genes were downregulated in the Zn 1d treatment; only LRR5 and GRP5
were upregulated in the Zn 7d treatment (Figure 6b).

The FRO genes encode ferric chelate reductase, which is responsible for the reduction of
Fe, and it is mainly expressed in the cytoplasm to transport Fe to chloroplasts in leaves [47,48].
The overexpression of AtFRO2 increases Arabidopsis tolerance to low iron [47]. The
FRO gene was upregulated in the Zn 1d treatment (Figure 6a) and thus could regulate
the balance between excess Zn and Fe deficiency. PDFs are cysteine-rich peptides that
have a range of biological functions, including defending against heavy metal stress [49].
The overexpression of AtPDF1.1 increases the sequestration of Fe in Arabidopsis leaves
and consequently activates an iron-deficiency-mediated response via the ethylene signal
pathway [49]. The Grxs and Trxs are small oxidoreductases that have roles in the biogenesis
of iron–sulfur clusters. In Arabidopsis, the expression of Grxs and Trxs is downregulated
via the hydrolysis of GSH [50,51]. Two PDFs, two Grxs and one Trx were downregulated in
the Zn 7 d treatment (Figure 6a), which might induce Fe deficiency and GSH degradation
in the leaf cells of M. cordata exposed to excess Zn. Ferredoxins (Fds), which are iron–
sulfur proteins, have crucial roles in photosynthetic electron transport and are especially
important for energy conservation [52]. In this study, the decrease in the Fd-containing
proteins Fd-GOGAT and FNR could be caused by Fe deficiency (Figure 9b).

When plants respond to environmental stress, GSH is the most abundant nonpro-
tein thiol [32]. Sulfur and GSH metabolism are important in plant tolerance to heavy
metals [53–55]. In this study, most DEGs involved in cysteine and GSH metabolism
were downregulated by Zn. The exceptions were FRO and GluR, which were upregu-
lated in the Zn 1d treatment, and GH and GGT were upregulated in the Zn 7d treatment
(Figure 6a). The GGTs and GHs are enzymes that hydrolyze GSH, which releases gluta-
mates and cysteines to some acceptors [56]. Wound-induced electrical signals, cytoplasmic
Ca2+ concentration, and glutamate can induce GluR expression in Arabidopsis [57,58]. In
the leaves of M. cordata under the Zn treatment, the upregulated DEGs of GluR, GH, and GGT
and the downregulated DEGs of Grx and Trx indicated that the hydrolysis of GSH increased
to provide additional cysteines and glutamates (Figure 6a). The increase in cysteines could
be used to synthesize other metal-binding proteins, such as MTs (Figures 4b and 7). The
HPPs and HIPPs are a group of metallochaperones, which play important roles in metal
homeostasis [59]. In this study, HPP and HIPP, which were downregulated by the Zn
treatment, could be consumed to maintain Zn-Fe homeostasis (Figure 6). The enzyme GS
catalyzes the conversion of glutamate into glutamine, and it is also a key enzyme involved
in nitrogen assimilation during the development of wheat [60]. In this study, the increase in
DEPs of GS2 and GS3 (Figure 9b) further confirmed the degradation of GSH in the leaves
of M. cordata under Zn treatment.

Excess Zn induced H2O2 production and antioxidant defense in the leaves of M. cordata
(Figure 2a,b). The DEPs involved in antioxidant defense, including two PODs and one APX,
were significantly upregulated by Zn (Figure 9a). Those proteins likely had active roles in
removing H2O2 in the leaves of M. cordata exposed to excess Zn (Figure 2b). Moreover, four
HSPs and three PRs were upregulated in the Zn 1d or 7d treatments. An increase in PRs
and HSPs was also observed in Cu-treated [54,61] or H2O2-treated rice [55].

3.4. Macleaya cordata Regulate Zn and Fe Homeostasis by Chlorophyll and ATP Metabolism

Chloroplasts are the major sink in terms of Fe in leaves [62,63]. Fe is also an essential
cofactor in chlorophyll biosynthesis enzymes, and low Fe leads to a decrease in chlorophyll
synthesis [11]. In M. cordata, most CABs (except CAB5) were downregulated by Zn, and a
CAP was significantly upregulated in the Zn 7d treatment (Figure 8a). A decrease in the
content of chlorophylls was consistent with CAB expression in the leaves of M. cordata under
Zn treatments (Figure 2c). Chlorophyll is bound to different chlorophyll-binding proteins,
which then become the core complexes of the two photosystems [64]. Chlorophyll content
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in the leaves affects the stabilization and expression of CAPs [65]. The expression of CAB
and CAP influences chlorophyll biosynthesis in Camellia sinensis [66] and Arabidopsis [64].

Chlorophyll absorbs light energy via photosystems and ultimately provides energy
for plant growth and other biological processes, including ion transport and antioxidant
protection. In this study, DEPs involved in ATP metabolism, including three ATP synthases
and three V-ATPases, were upregulated by Zn (Figure 8b). The V-ATPases have vital roles
in intracellular acidic compartments and can biosynthesize ATP in yeast vacuoles [67]. In
addition, Zn transport in yeast vacuolar membranes requires V-ATPase [68]. The ATP-
dependent ClpP and Zmp are the major proteases in chloroplast protein homeostasis [69].
The protease ClpP is involved in Fe homeostasis in Arabidopsis leaves, and the loss of Clp
results in decreases in FROs in chloroplasts [70]. On the other hand, the degradation prod-
ucts of chloroplasts by proteases are beneficial for synthesizing new mesophyll cells, which
can ultimately regulate the numbers of mesophyll cells and Fe homeostasis in chloroplasts.
In addition, Zmp has critical roles in the biogenesis of thylakoid membranes [69]. In this
study, ClpP 3 and Zmp were upregulated in the Zn 7d treatment (Figure 8b), which could
explain the increase in the number of chloroplasts and mesophyll cells in the leaves of M.
cordata (Figure 8c).

4. Materials and Methods
4.1. Plant Material and Hydroponic Culture

Seeds of M. cordata were collected from the tailings of Huaguoshan Town, Luoyang
City, China (Lat. 39◦19′ N, Long. 111◦53′ E). The seeds were germinated in vermiculite, and
then eight seedlings were cultured with a 2.5 L plastic vessel containing Hoagland nutrient
solution (1 mM KH2PO4, 1 mM KNO3, 1 mM Ca(NO3)2, 1 mM MgSO4, 20 µM Fe-EDTA,
46 µM H3BO3, 9 µM MnCl2, 0.76 µM ZnSO4, 0.32 µM CuSO4, and 0.11 µM H2MoO4)
under controlled conditions (14 h day length with photosynthetically active radiation of
400 µmol m−2 s−1 and 25/20 ◦C day/night temperatures). The solution pH was adjusted
to 5.3, with the renewal of the nutrient solution every 2 days. Uniform 20-day-old seedlings
with four leaves were treated with 200 µmol·L−1 Zn for 1 day (Zn 1d) or 7 days (Zn 7d). Zn
was applied as ZnSO4·7H2O. The control plants were cultivated in a complete Hoagland
solution, with a minimum of 0.76 µmol L−1 Zn (CK). After Zn exposure for 1 d or 7 d,
the shoots and roots of M. cordata were, respectively, collected for the determination of Zn
content, and the second youngest leaves were separated for the detection of H2O2 in situ,
chlorophyll and H2O2 content, qRT-PCR, transcriptome, and proteome analysis.

4.2. Determination of Zn Concentration

The shoots and roots of M. cordata were collected and washed; in particular, the whole
roots were immersed in 25 mmol·L−1 EDTA-Na2 solution for 10 min and then washed with
distilled water again. Before being dried in an air circulation oven at 70 ◦C, the samples
were weighed to obtain the fresh weight and the dry weight of the roots and shoots,
respectively. Subsequently, about 0.2 g of the dried samples were then digested following
the procedure described by Zhang et al. [20]. An ICP-OES (Optima 8000, PerkinElmer,
Waltham, MA, USA) was used to analyze the contents of Zn in M. cordata. Zn concentration
was calculated on a fresh weight basis (µmol g−1FW).

4.3. Histochemical Detection of H2O2

For the histochemical detection of H2O2 in leaves, the 3,3′-diaminobenzidine (DAB)
method was used, following the procedure described by Zhang et al. [71]. The second-
youngest leaves were cut and immersed in a 1 mg·mL−1 solution of DAB (pH 3.8), vacuum-
infiltrated for 10 min, and then incubated at room temperature for 4 h in the dark. Sub-
sequently, the leaves were bleached in boiling ethanol, and images were captured with a
Nikon D7100 digital camera.
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4.4. Determination of Chlorophyll Content

Chlorophyll was extracted from 1.0 g of the fresh leaves (the second-youngest leaves)
of M. cordata according to the method of Arnon [72]. The chlorophyll content was calculated
on a fresh weight (FW) basis (mg g−1 FW).

4.5. Microscopic Observation of Mesophyll Cells

To detect the cellular characteristics of mesophyll tissue, the second-youngest leaves
were cut into small pieces and immersed in FAA fixative solution (Gefan Biotech, Shanghai,
China) for more than 24 h. After ethanol dehydration at room temperature, the samples
were embedded in paraffin blocks, and 15 µm-thick sections were prepared according to
the method of Maniou et al. [73]. The sections were stained following Johansen’s safranin
and the fast green protocol [74]. Microscopic images were collected and analyzed. The
cytoderm, with lignification, appeared red, and the cellulose cell wall appeared green.

4.6. Transcriptome Sequencing

The total RNA was extracted using a FastPure Plant Total RNA Isolation kit (Vazyme,
Nanjing, China) according to the method of Zhang et al. [75]. After passing the library
inspection, high-throughput sequencing was then performed using a HiSeq 2000 sequenc-
ing platform at Genepioneer Biotech (Nanjing, China). The transcriptome sequencing
data of the M. cordata leaves are shown in Table S1, and 104.02 Gb of clean data were
obtained after the raw data were filtered. The sequenced reads were assembled with
Trinity software, and 116,944 transcripts and 58,583 unigenes were obtained. With NCBI
Blast, the sequences of unigenes were compared with the genome sequence of M. cordata
(www.ncbi.nlm.nih.gov/nuccore/MVGT01004176, accessed on 15 January 2021) provided
by Liu et al. [76], and the annotations of unigenes were obtained using the NCBI (nr),
Swiss-prot, GO, COG, KOG, and KEGG databases. The Benjamini–Hochberg correction
method was used to adjust the p-values (padj) and decrease the number of false positives
in the final analysis. Padj < 0.05 and |log2(Fold change)| > 1 were used to determine
the significant differential expression between the Zn treatments and the control. When
the value of log2(Fold change) was greater than 1, a differentially expressed gene (DEG)
was upregulated under the Zn treatment, whereas when the value was less than 1, a DEG
was downregulated.

4.7. Quantitative Real-Time PCR

Leaf RNA was extracted using a FastPure Plant Total RNA Isolation kit (Vazyme) and
reverse transcribed using HifairTM II 1st Strand cDNA Synthesis for qRT-PCR (Yeasen,
Shanghai, China) according to the manufacturer’s instructions. The primers were designed
online (https://sg.idtdna.com/PrimerQuest/Home/Index, accessed on 10 July 2021) ac-
cording to the cds from the M. cordata transcriptome (Table S2). The Bio-Rad CFX System
and Hifair III One-Step qRT-PCR SYBR Green kit (Yeasen, Shanghai, China) were used for
qRT-PCR analysis. The specificity of the amplified PCR products was verified via melting
curve analysis, and the reference gene is the Mc18s gene of M. cordata.

4.8. Proteome Analysis

The leaf proteins of M. cordata were extracted using the method of Zhang et al. [55],
and the amount of protein was determined using a Bradford Protein Assay kit (Chemstan,
Wuhan, China). Approximately 500 µg of proteins were dissolved in a lysis solution with
50 mM Tris-HCl (pH 8.0) with 8 M urea and 1 M dithiothreitol. Subsequently, proteomic
analysis was performed using liquid chromatography–tandem mass spectrometry (LC-
MS/MS) based on label-free quantification according to the method of Duan et al. [77].
The MS/MS raw data were searched against the M. cordata transcriptome database using
Proteome Discoverer software (v2.1; Thermo Fisher Scientific, Waltham, MA, USA). Signifi-
cantly differentially expressed proteins (DEPs) were those with minimum cutoff between

www.ncbi.nlm.nih.gov/nuccore/MVGT01004176
https://sg.idtdna.com/PrimerQuest/Home/Index
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the Zn and control treatments of 1.5-fold (up) or 0.67-fold (down) change and significant
t-test (p < 0.05).

4.9. Statistical Analysis

The data were analyzed using SPSS 25.0, and the figures were prepared with GraphPad
Prism 9. The data are expressed as the mean ± SE (standard error) of three independent
replicates; the means denoted by different letters are significantly different (p < 0.05, Dun-
can’s test). The staining experiments were repeated at least five times, with similar results.

5. Conclusions

Comparative analyses of the transcriptomes and proteomes indicated that M. cordata
had multiple mechanisms for Zn accumulation and tolerance, as illustrated in the schematic
model in Figure 10. It was hypothesized that excess Zn induced ROS production and Fe
deficiency, which activated a series of signal molecules in M. cordata to cope with those
stresses. Fe-deficiency-induced genes, including VIT, ABCIs, ABCGs, and FRO, were
upregulated in the Zn 1d or 7d treatments, could be responsible for Zn-Fe homeostasis in
the cytoplasm and chloroplasts. Fe-deficiency-induced proteins and three V-type ATPases
were upregulated in the Zn 7d treatment, which can be responsible for H+ homeostasis in
the cytoplasm. Moreover, the DEPs of CAB5, ClpP3, and Zmp were upregulated in the Zn
1d treatment and thus could play pivotal roles in chlorophyll synthesis and increase the
numbers of mesophyll cells in the leaves of M. cordata in the Zn 7d treatment (Figure 11).
Therefore, the proteins involved in Zn-Fe homeostasis might be key to Zn tolerance and
accumulation in M. cordata.
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Figure 10. Schematic model of the genes and proteins proposed to mediate Zn tolerance and
accumulation mechanisms in the leaves of Macleaya cordata. Genes (Italics) or proteins in red font
were upregulated, whereas those in black font were downregulated by excess Zn. The differentially
expressed genes or proteins on the left of the scatter line are identified under the 1-day ZN treatment
(Zn 1d), and the right is identified under the 7-day Zn treatment (Zn 7d).
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