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Abstract: Plant invasion has severely damaged ecosystem stability and species diversity worldwide.
The cooperation between arbuscular mycorrhizal fungi (AMF) and plant roots is often affected
by changes in the external environment. Exogenous phosphorus (P) addition can alter the root
absorption of soil resources, thus regulating the root growth and development of exotic and native
plants. However, it remains unclear how exogenous P addition regulates the root growth and
development of exotic and native plants mediated by AMF, affecting the exotic plant invasion. In this
experiment, the invasive plant Eupatorium adenophorum and native plant Eupatorium lindleyanum were
selected and cultured under intraspecific (Intra-) competition and interspecific (Inter-) competition
conditions, involving inoculation with (M+) and without AMF (M−) and three different levels of
P addition including no addition (P0), addition with 15 mg P kg−1 soil (P15), and addition with
25 mg P kg−1 soil (P25) for the two species. Root traits of the two species were analyzed to study
the response of the two species’ roots to AMF inoculation and P addition. The results showed that
AMF significantly promoted the root biomass, length, surface area, volume, tips, branching points,
and carbon (C), nitrogen (N), and P accumulation of the two species. Under M+ treatment, the Inter-
competition decreased the root growth and nutrient accumulation of invasive E. adenophorum but
increased the root growth and nutrient accumulation of native E. lindleyanum relative to the Intra-
competition. Meanwhile, the exotic and native plants responded differently to P addition, exhibiting
root growth and nutrient accumulation of invasive E. adenophorum increased with P addition, whereas
native E. lindleyanum reduced with P addition. Further, the root growth and nutrition accumulation
of native E. lindleyanum were higher than invasive E. adenophorum under Inter- competition. In
conclusion, exogenous P addition promoted the invasive plant but reduced the native plant in root
growth and nutrient accumulation regulated by AMF, although the native plant outcompeted the
invasive plant when the two species competed. The findings provide a critical perspective that
the anthropogenic P fertilizer addition might potentially contribute to the successful invasion of
exotic plants.

Keywords: plant invasion; arbuscular mycorrhizal fungi; phosphorus addition; competition; root trait

1. Introduction

Exotic plant invasions can seriously threaten local communities’ species diversity and
stability, causing substantial economic losses and ecological damage [1,2]. An essential
factor in successfully invading alien plants is their functional traits, such as root traits [3].
The underground competition of plants mainly depends on the root system, and the root
morphological character can reveal the competition advantage differences between alien
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and native plants [4]. Research showed that higher root trait values could improve the
competitive advantage of exotic plants, thus obtaining more nutrients for growth than
native species under the same conditions, which benefits them in adapting to new habitats
and spreading faster [5,6]. For example, Broadbent, Stevens [7] showed that the ability of
invasive grasses to outcompete native grasses for below-ground resources may be related
to their greater root biomass relative to native grasses. Nevertheless, root biomass is
unlikely to determine the outcome of below-ground competition between species and
usually interacts with other factors, such as feedback with soil biota [8]. In addition, studies
reveal that having more root hairs or root branches allows roots to explore larger soil
volumes and that increased surface area of root hairs or branches facilitates the release of
root-derived organics and phosphate, thus, increasing nutrient acquisition efficiency [9,10].
Betekhtina, Ronzhina [11] suggested that alien Heracleum sosnowskyi had more root branches
and root hair development than congeneric native H. sibiricum, leading to a higher nutrient
absorption efficiency of the invader than native, thus helping the invasive H. sosnowskyi
win the competition with the native H.sibiricum. Therefore, root traits play a vital role in
the competition between alien and native plants. In invasion ecology, nevertheless, the
majority of trait-based comparisons are concentrated on the more accessible above-ground
plant traits [4,12]. Thus, more research is necessary about how below-ground root traits
determine the competitive advantage of exotic and native plants.

Below-ground root competition between exotic and native plants is primarily impacted
by soil nutrient availability changes [7]. Generally, soil phosphorus (P) fluctuations caused
by human activities can drive variations in soil nutrient availability. P is a necessary constant
nutrient for plant growth, and thus, P deficiency can affect plant growth to a large extent [13].
Thus, it can be reasonably assumed that changes in soil P elements affect the invasion of
alien plants [14]. Recent research discovered that the richness of exotic plants increased
with increasing P concentration [15]. Additionally, Chen, Zhang [16] suggested that P
addition significantly increased the root length, root biomass, and nutrient accumulation of
exotic Flaveria bidentis, resulting in a higher competitive advantage. However, P is difficult
for plants to obtain as most soil P is bound to the surface of molecules or minerals and has
low mobility, thus limiting plants’ growth [17]. Given the difficulty of moving P in the soil,
plants, including invasive and native plants, invariably change their root morphological
traits and activate insoluble phosphorus in the soil by secreting activating enzymes, organic
acids, protons, and other substances from the root system to actively approach and compete
for more P elements [8,18–20]. In addition to relying on their root systems, many exotic
and native plants improve their accessibility to P elements by establishing partnerships
with various microorganisms in the soil.

Arbuscular mycorrhizal fungi (AMF) are a class of soil microorganisms that have
long been in a mutually beneficial symbiotic partnership with plants and have been ex-
tensively studied, including invasion ecology [21,22]. AM fungi are ubiquitous and can
form symbiotic associations with over 80% of terrestrial plants, which facilitate the host
plants’ growth by helping plant roots absorb mineral nutrients such as P from the soil; as a
reward, the host plant supplies a carbon (C) source from the AM fungi to sustain hyphal
development [21]. For instance, AM fungi can induce host plants to release root exudates,
such as organic acids and phosphatases, to mineralize organic P in the soil and increase
the activity of phosphatases, creating a more favorable growth environment for plants [23].
Plants mainly absorb soil-available phosphatase (AP) through their root systems; plant–
mycorrhizae symbiosis can help plants to absorb soil AP [24]. Studies have shown that P
uptake directly through roots requires more plant resource investment than P acquisition
driven by the AMF–plant symbiosis [25]. Thus, the P accessibility of exotic and native
plants by combining with AMF may directly contribute to the competitive differences
between the two species. For example, Cheng, Yue [26] showed that AMF improved the
competitiveness of native Bidens biternata by promoting P absorption, helping natives to
resist the alien Bidens alba. Additionally, Sun, Yang [27] concluded that AMF probably
received more myristic acids in return from exotic Asteraceae plants than native Asteraceae
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plants, contributing to the P absorption capacity of invaders over natives. Further, in
addition to directly utilizing hyphae, AMF can aid plants in nutrient acquisition by altering
root morphology. For instance, AMF can change the root morphological characteristics of
invasive Microstegium vimineum and increase P absorption capacity, thus helping invaders
to invade successfully [28]. Additionally, the epitaxial root hyphae formed by AMF can
improve root length, surface area, and volume, which promotes plants to obtain more
nutrients for growth in nutrient-deficient karst areas [29]. However, how AMF associated
with exogenous P addition affects the competition direction between alien and native
plants through regulating root morphological developments and nutrition acquisition
remains unclear.

Indeed, with increased human activities, such as excessively added P fertilizer, the
soil P availability is inordinately altered [30]. The plant root is the most sensitive organ
to variations in soil nutrient availability [31]. However, to date, empirical evidence of
the impacts of changes in P resource availability on the competitive interactions of root
systems between exotic and native plants is scarce. AMF–plant symbiosis often enhances
the nutrient competitiveness of alien plants, resulting in greater growth of invaders than
natives [32,33]. In addition, the root morphological characteristics can characterize the
plant’s nutrient acquisition capacity [34,35]. Therefore, we hypothesized that (1) AMF
promotes the root growth and development of invasive plants more than native plants,
resulting in a higher nutrient acquisition ability for invasive plants than native plants
(H1). Moreover, many studies suggest that as soil nutrient content increases, such as the
P element, plants reduce their dependence on AMF, thus affecting root morphological
traits [36,37]. Therefore, we hypothesized that (2) with exogenous P increases, root myc-
orrhizal colonization of invasive and native plants is reduced, and the two species’ root
growth and nutrition acquisition increase (H2). According to Xia, Wang [3], AMF can
confer higher competitiveness to invaders by promoting superior root growth and nutrient
absorption of invasive plants over native plants. Meanwhile, P addition improved the root
growth of invasive plants, and appropriate P addition is beneficial for AMF to promote
plant root growth of invasive plants over native plants [16,38]. Consequently, we hypothe-
sized that (3) exogenous P addition promotes higher root growth and nutrient acquisition of
invasive plants than native plants regulated by AMF (H3). To test the three hypotheses, we
conducted a competitive experiment using an alien species, Eupatorium adenophorum, and a
native species, Eupatorium lindleyanum. The aim was to explore how external P addition
altered the root morphological characteristics of the two plants regulated by AMF, thus
affecting the invasion of alien species.

2. Results
2.1. The Root Mycorrhizal Colonization of Alien Plant E. adenophorum and Native Plant
E. lindleyanum

The exotic plant E. adenophorum and the native E. lindleyanum showed high root
mycorrhizal colonization after (40–76.2%) inoculation with AMF (Figure 1a,b). Under P15
and P25 conditions, the root mycorrhizal colonization in Inter- competition was significantly
higher than in Intra- competition for native E. lindleyanum (Figure 1b). In addition, the
root mycorrhizal colonization under the P0 condition was higher than the P15 and P25
conditions in Intra- and Inter- competition for the two species (Figure 1a,b). Overall,
the root mycorrhizal colonization of both species gradually decreased with increasing P
addition under Intra- and Inter- competition.

2.2. The Root Biomass of Alien Plant E. adenophorum and Native Plant E. lindleyanum

The AMF, competition, P addition treatments, and the interaction of C × P and M × C × P
had a remarkable impact on the root biomass of the alien plant E. adenophorum and native
plant E. lindleyanum (Table S1). Under three P addition conditions, AMF promoted the root
biomass of the two species under Intra- and Inter- competition (Figure 2a,b). For alien E.
adenophorum with M− treatment, contrary to the P25 condition, the root biomass in Inter-
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was significantly higher than in Intra- under P0 and P15 conditions; with M+ treatment, the
root biomass in Intra- was remarkably higher than in Inter- under P0 and P25 conditions
(Figure 2a). For native E. lindleyanum with M− and M+ treatments, the root biomass in
Inter- was remarkably higher than in Intra- under three P addition conditions (Figure 2b).
For alien E. adenophorum with M− and M+ treatments, the root biomass under the P25
condition was higher than under the P0 and P15 conditions in Intra- and Inter- competition
(Figure 2a). For native E. lindleyanum with M+ treatment, the root biomass under the
P15 condition was remarkably lower than under the P0 and P25 conditions in Intra- and
Inter- competition (Figure 2b). Overall, regardless of Intra- and Inter- competition, AMF
significantly benefited the root biomass of alien E. adenophorum and native E. lindleyanum,
and exogenous P addition had different effects on the two species.
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Figure 1. The root mycorrhizal colonization of alien plant E. adenophorum and indigenous plant
E. lindleyanum. The subgraph (a,b) indicate the root mycorrhizal colonization of alien plant E.
adenophorum and indigenous plant E. lindleyanum, respectively. Abbreviations: Intra- = intraspecific,
Inter- = interspecific; P0 = without P addition of 0 mg·kg−1, P15 = with P addition of 15 mg·kg−1,
P25 = with P addition of 25 mg·kg−1. Different Greek letters (α, β) above the bars indicate significant
differences between Intra- and Inter- treatments; different lowercase letters (a, b) above the bars indi-
cate significant differences between P0, P15, and P25 treatments (p < 0.05). Note: As the uninoculated
plant roots were observed to be colonized by AMF, meaning that the root mycorrhizal colonization
under the M− treatment was considered to be zero, we only show the root mycorrhizal colonization
under AMF inoculation in the figure.
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Figure 2. The root biomass of alien plant E. adenophorum and indigenous plant E. lindleyanum. The
subgraph (a,b) indicate the root biomass of alien plant E. adenophorum and indigenous plant E.
lindleyanum, respectively. Abbreviations: M+ = with AMF; M− = without AMF; Intra- = intraspecific,
Inter- = interspecific; P0 = without P addition of 0 mg·kg−1, P15 = with P addition of 15 mg·kg−1,
P25 = with P addition of 25 mg·kg−1. Different capital letters (X, Y) above the bars indicate significant
differences between M+ and M− treatments; different Greek letters (α, β) above the bars indicate
significant differences between Intra- and Inter- treatments; different lowercase letters (a–c) above the
bars indicate significant differences between P0, P15, and P25 treatments (p < 0.05).



Plants 2023, 12, 2195 5 of 16

2.3. The Root Traits of Alien Plant E. adenophorum and Native Plant E. lindleyanum

The AMF, competition, P addition treatments, and their interaction generally influ-
enced the root length, surface area, volume, average diameter, tips, and branching points
of the alien plant E. adenophorum and native plant E. lindleyanum (Table S1). Under Inter-
competition, AMF had a remarkable impact on root length, surface area, volume, tips, and
branching points of the two species under P0 and P25 addition conditions, and AMF sig-
nificantly enhanced the average root diameter of native E. lindleyanum under P0 condition
(Figures 3a–f and 4a–f). Contrary to native E. lindleyanum, the root length, surface area,
volume, average diameter, tips, and branching points of alien E. adenophorum with M+ treat-
ment in Intra- was higher than in Inter- under P0 and P25 conditions (Figures 3a–f and 4a–f).
For alien E. adenophorum with M− and M+ treatments, the root traits under P25 conditions
were higher than P0 and P15 conditions in Intra- and Inter- competition except for the root
average diameter (Figure 3a–f). For native E. lindleyanum with M+ treatment, the root traits
under P0 treatment were remarkably higher than those of P15 and P25 conditions in Inter-
competition (Figure 4a–f).
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Figure 3. The root traits of alien plant E. adenophorum. The subgraph (a–f) indicate the root length,
root surface, root volume, root average diameter, root tips, root branching points of alien plant E.
adenophorum, respectively. Abbreviations: M+ = with AMF; M− = without AMF; Intra- = intraspecific,
Inter- = interspecific; P0 = without P addition of 0 mg·kg−1, P15 = with P addition of 15 mg·kg−1,
P25 = with P addition of 25 mg·kg−1. Different capital letters (X, Y) above the bars indicate significant
differences between M+ and M− treatments; different Greek letters (α, β) above the bars indicate
significant differences between Intra- and Inter- treatments; different lowercase letters (a–c) above the
bars indicate significant differences between P0, P15, and P25 treatments (p < 0.05).
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Figure 4. The root traits of the indigenous plant E. lindleyanum. The subgraph (a–f) indicate the
root length, root surface, root volume, root average diameter, root tips, root branching points of
indigenous plant E. lindleyanum, respectively. Abbreviations: M+ = with AMF; M− = without AMF;
Intra- = intraspecific, Inter- = interspecific; P0 = without P addition of 0 mg·kg−1, P15 = with P addition
of 15 mg·kg−1, P25 = with P addition of 25 mg·kg−1. Different capital letters (X, Y) above the bars
indicate significant differences between M+ and M− treatments; different Greek letters (α, β) above
the bars indicate significant differences between Intra- and Inter- treatments; different lowercase
letters (a–c) above the bars indicate significant differences between P0, P15, and P25 treatments
(p < 0.05).

2.4. The Specific Root Traits of Alien Plant E. adenophorum and Native Plant E. lindleyanum

The AMF treatment had a remarkable impact on the root tissue density of the native E.
lindleyanum; the competition treatment had a remarkable impact on the specific root traits
of alien E. adenophorum; the P addition treatment had a remarkable impact on the specific
root traits of the native E. lindleyanum (Table 1). AMF significantly improved the specific
root area of alien E. adenophorum in Inter- competition under the P15 condition (Figure 5b).
For native E. lindleyanum under three P conditions, AMF significantly increased the root
tissue density in Intra- treatment and significantly decreased the root tissue density in Inter-
treatment (Figure 5f). In addition, for alien E. adenophorum with M+ and M− treatments, the
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specific root length of Intra- treatment was remarkably higher than Inter- treatment under
P0 and P15 conditions (Figure 5a). For native E. lindleyanum with M+ treatment, the specific
root length and root tissue density of Intra- treatment were higher than Inter- treatment
under three P addition conditions (Figure 5d,f). Moreover, for alien E. adenophorum with
M+ and M− treatments, there was no remarkable difference among the three P addition
conditions under Intra- and Inter- competition (Figure 5a,c). For native E. lindleyanum with
M+ treatment, the specific root length and specific root area of P15 conditions were lower
than P0 and P25 under Inter- competition (Figure 5d,e).

Table 1. The three-way ANOVA for the effects of AMF (M+ vs. M−), competition (Intra- vs. Inter-),
and P addition (P0 vs. P15 vs. P25) treatments on the specific root traits of alien plant E. adenophorum
and indigenous plant E. lindleyanum. The *, ** and *** indicate p < 0.05, p < 0.01 and p < 0.001),
respectively (the * indicates a significant effect, the ** and *** indicate an extremely significant effect).

Specific Root
Traits

Treatments df
E. adenophorum E. lindleyanum

F P F P

Specific root
length

M 1 2.569 0.114 0.835 0.364
C 1 31.377 0.000 *** 13.612 0.000 ***
P 2 0.938 0.397 11.365 0.000 ***

M × C 1 0.643 0.426 0.032 0.858
M × P 2 0.668 0.517 4.637 0.013 *
C × P 2 0.732 0.485 0.803 0.453

M × C × P 2 0.212 0.809 5.453 0.007 **

Specific root
area

M 1 2.349 0.131 0.369 0.546
C 1 16.627 0.000 *** 1.056 0.308
P 2 1.356 0.265 9.109 0.000 ***

M × C 1 3.166 0.080 33.673 0.000 ***
M × P 2 0.008 0.992 0.465 0.631
C × P 2 3.129 0.051 10.872 0.000 ***

M × C × P 2 0.780 0.463 0.510 0.603

Root tissue
density

M 1 0.206 0.651 36.481 0.000 ***
C 1 11.177 0.001 ** 1.052 0.309
P 2 0.066 0.936 6.205 0.004 **

M × C 1 1.242 0.270 45.208 0.000 ***
M × P 2 3.232 0.046 3.997 0.023 *
C × P 2 0.935 0.398 4.977 0.010 *

M × C × P 2 0.598 0.553 4.328 0.018 *

2.5. The Root C, N, and P Accumulation of Alien Plant E. adenophorum and Native Plant
E. lindleyanum

As shown in Table 2, AMF remarkably improved the root C, N, and P accumulation of
alien E. adenophorum in Intra- and Inter- treatments under three P addition conditions and
significantly increased the root C, N, and P accumulation of native E. lindleyanum in Intra-
and Inter- treatments under P0 and P25 conditions (Figure 6a–f). For alien E. adenophorum
with M+ treatment, the root C, N, and P accumulation of Intra- treatment was higher than
Inter- treatment under P0 and P25 conditions (Figure 6a–c). For native E. lindleyanum with
M+ and M− treatments, the root C, N, and P accumulation of Inter- treatment were higher
than Intra- treatment under three P addition conditions (Figure 6d–f). In addition, for alien
E. adenophorum with M+ and M− treatments, the root C, N, and P accumulation of the
P25 condition were higher than P0 and P15 conditions under Intra- and Inter- competition
(Figure 6a–c). For native E. lindleyanum with M+ treatment, the root C and P accumulation
of P15 were lower than P0 and P25 under Intra- and Inter- competition (Figure 6d–f).
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Figure 5. The specific root traits of alien plant E. adenophorum and indigenous plant E. lindleyanum. The
subgraph (a–c) indicate the specific root length, specific root area, root tissue density of alien plant E.
adenophorum and subgraph (d–f) indicate the specific root length, specific root area, root tissue density
of indigenous plant E. lindleyanum, respectively. Abbreviations: M+ = with AMF; M− = without AMF;
Intra- = intraspecific, Inter- = interspecific; P0 = without P addition of 0 mg·kg−1, P15 = with P addition
of 15 mg·kg−1, P25 = with P addition of 25 mg·kg−1. Different capital letters (X, Y) above the bars
indicate significant differences between M+ and M− treatments; different Greek letters (α, β) above the
bars indicate significant differences between Intra- and Inter- treatments; different lowercase letters (a, b)
above the bars indicate significant differences between P0, P15, and P25 treatments (p < 0.05).

Table 2. The three-way ANOVA for the effects of AMF (M+ vs. M−), competition (Intra- vs. Inter-), and
P addition (P0 vs. P15 vs. P25) treatments on the C, N, and P accumulation of alien plant E. adenophorum
and indigenous plant E. lindleyanum. The *, ** and *** indicate p < 0.05, p < 0.01 and p < 0.001), respectively
(the * indicates a significant effect, the ** and *** indicate an extremely significant effect).

Root Nutrient
Accumulation

Treatments df
E. adenophorum E. lindleyanum

F P F P

C accumulation

M 1 119.019 0.000 *** 233.892 0.000 ***
C 1 33.756 0.000 *** 148.242 0.000 ***
P 2 36.721 0.000 *** 38.854 0.000 ***

M × C 1 24.193 0.000 *** 16.552 0.000 ***
M × P 2 3.962 0.024 * 45.709 0.000 ***
C × P 2 8.555 0.001 ** 32.710 0.000 ***

M × C × P 2 2.424 0.097 19.514 0.000 ***
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Table 2. Cont.

Root Nutrient
Accumulation

Treatments df
E. adenophorum E. lindleyanum

F P F P

N accumulation

M 1 74.996 0.000 *** 125.144 0.000 ***
C 1 38.926 0.000 *** 51.799 0.000 ***
P 2 31.699 0.000 *** 8.525 0.001 **

M × C 1 8.413 0.005 ** 0.022 0.882
M × P 2 6.313 0.003 ** 12.032 0.000 ***
C × P 2 9.122 0.000 *** 2.171 0.123

M × C × P 2 0.679 0.511 8.623 0.001 **

P accumulation

M 1 70.742 0.000 *** 80.432 0.000 ***
C 1 3.485 0.067 70.320 0.000 ***
P 2 61.702 0.000 *** 6.248 0.003 **

M × C 1 6.470 0.014 * 1.294 0.260
M × P 2 11.663 0.000 *** 8.267 0.001 **
C × P 2 24.941 0.000 *** 10.007 0.000 ***

M × C × P 2 9.075 0.000 *** 1.461 0.240
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Figure 6. The root C, N, P accumulation of alien plant E. adenophorum and indigenous plant E. lind-
leyanum. The subgraph (a–c) indicate the root C, N, P accumulation of alien plant E. adenophorum
and subgraph (d–f) indicate the root C, N, P accumulation of indigenous plant E. lindleyanum, respec-
tively. Abbreviations: M+ = with AMF; M− = without AMF; Intra- = intraspecific, Inter- = interspecific;
P0 = without P addition of 0 mg·kg−1, P15 = with P addition of 15 mg·kg−1, P25 = with P addition
of 25 mg·kg−1. Different capital letters (X, Y) above the bars indicate significant differences between
M+ and M− treatments; different Greek letters (α, β) above the bars indicate significant differences
between Intra- and Inter- treatments; different lowercase letters (a–c) above the bars indicate significant
differences between P0, P15, and P25 treatments (p < 0.05).
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3. Discussion
3.1. AMF Differently Affected the Root Growth and Nutrition of Alien and Native Plants

In this study, AMF promoted the root biomass, length, surface area, volume, tips,
branching points, and root C, N, and P accumulation of alien E. adenophorum and native
E. lindleyanum (Figures 2a,b, 3a–c,e,f, 4a–c,e,f and 6a–f). Many empirical studies have
confirmed the function of AMF in promoting host plant growth by assisting the plant
root system to efficiently capture nutrients from the soil [39–41]. This was consistent with
our results, indicating that AMF can promote plants to access more mineral nutrients by
altering the root morphological traits of alien and native plants, thus enhancing plant
growth and nutrient absorption [3]. Research has demonstrated that differences in the root
morphological traits of invaders and natives can represent different nutrient acquisition
efficiencies or capabilities [42]. For instance, higher root length, surface area, tips, and
branching points mean higher nutrient acquisition ability [43]. Our study suggested that
the root morphological traits, such as root length, root surface area, tips, and branching
points of native E. lindleyanum, were higher than alien E. adenophorum (Figures 3 and 4).
Therefore, the native E. lindleyanum had a greater nutrient acquisition ability than invasive
E. adenophorum. It was inconsistent with our H1 that AMF promotes the root growth and
development of invasive plants more than native plants, resulting in a higher nutrient
acquisition ability for invasive plants than native plants. Most previous studies showed
that exotic plants had a stronger competitiveness than native plants in growth and nutrition
accumulation [44,45]. For one thing, this contradictory result may be attributed to the
plant’s biological traits, whereby the native E. lindleyanum, as a congener of the invasive
E. adenophorum, may be more resistant to plant invasion. This finding is demonstrated by
a field experiment conducted by Young, Barney [46] in the Central Valley of California,
which found that communities containing Elymus glaucus, a plant that functions similarly
to Centaurea solstitialis, were more resistant to invasion than communities lacking functional
similarities. For another, this may concern mycorrhizal colonization [45,47]. Studies have
shown that the longer the specific root length, the more dependent the plant is on its own
root system for nutrients; accordingly, the less dependent the plant is on mycorrhiza [43,48].
Our study held this opinion and demonstrated that the specific root length of invasive E.
adenophorum was higher than native E. lindleyanum (Figure 5), and the root mycorrhizal
colonization of native E. lindleyanum was higher than invasive E. adenophorum (Figure 1).
Additionally, some research has shown that plants with a higher root average diameter are
more conducive to mycorrhizal colonization [20]. In our research, the root average diameter
of native E. lindleyanum was greater than invasive E. adenophorum (Figures 3d and 4d).
Therefore, our results support that native plants congeneric with exotic plants are more
resistant to invasion. Further, native plants may develop morphological traits that promote
cooperation with mycorrhizae by being more conducive to mycorrhizal colonization and,
thus, better resist invasion.

3.2. The Competition Differently Affects the Root Growth and Nutrition of Alien and Native Plants

Competition can affect the nutrient absorption of plants by influencing their root
morphology [49]. In this study, under M+ treatment, the interspecific competition reduced
the root mycorrhizal colonization, root growth, and nutrient accumulation of invasive E.
adenophorum but increased the root mycorrhizal colonization, root growth, and nutrient ac-
cumulation of native E. lindleyanum relative to the intraspecific competition, indicating that
interspecific competition with native E. lindleyanum inhibits the root mycorrhizal coloniza-
tion of exotic E. adenophorum, thereby reducing root growth and nutrient acquisition of the
invader (Figures 1–4 and 6). Zhang, Li [32] pointed out that interspecific competition influ-
ents the symbiotic relationship between AMF and host plants. Danieli-Silva, Uhlmann [50]
showed that the root mycorrhizal colonization of Cabralea canjerana decreased, and that of
Lafoensia pacari increased under interspecific competition. In general, plants with higher
root mycorrhizal colonization often receive greater mycorrhizal benefits [51,52]. Therefore,
compared to intraspecific competition, interspecific competition allows local plants to
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gain a greater competitive advantage over invasive plants by reducing the mycorrhizal
colonization of invasive plants and improving the mycorrhizal colonization of local plants,
which is beneficial for resisting the invasion of alien plants.

3.3. Root Traits of Alien and Native Plants Respond Differently to Exogenous P Addition

P is an indispensable nutrient element in plant growth [53], yet, there is very little P in
the soil that plants can directly absorb [54]. A previous study has suggested that exogenous
P addition decreased the root mycorrhizal colonization [55], which is in line with our
findings that the root mycorrhizal colonization of the invasive E. adenophorum and native
E. lindleyanum gradually decreased with exogenous P addition (Figure 1a,b). According
to the biological market theory model reported by Wyatt, Kiers [56], when plants can
obtain sufficient P directly through their roots, their dependence on AMF is reduced, which
indirectly causes a reduction in mycorrhizal colonization. Meanwhile, the plant–fungal
symbiosis may be suppressed when sufficient P is provided to the host plant from the
outside [57], which is partially consistent with H2 that with exogenous P increase, root
mycorrhizal colonization of invasive and native plants is reduced. Additionally, the two
plants’ roots responded differently to P addition, showing that root growth, morphological
trait values, and nutrient accumulation of invasive E. adenophorum increased with P addi-
tion, whereas native E. lindleyanum reduced with P addition when the two plant species
competed (Figures 2–4 and 6). It was partially inconsistent with our H2 that the two plants’
root growth and nutrition acquisition increase with exogenous P increase. Harpole [58]
raised a resource ratio theory for successful invasive plants, suggesting that the nutrient
demands of plants differ and that increasing certain nutrient effectiveness may advantage
some plants while suppressing the growth of competitors through mutual competition
among plants [59]. Our results verify this point, showing that the increase in P addition
was beneficial to the root growth of invasive E. adenophorum and inhibited the growth of
local E. lindleyanum root in competition. Compared to exotic plants, native plants have
adapted to the local soil nutrient conditions in the long-term adaptation process, and the P
addition is equivalent to changing the original soil conditions and may be detrimental to
the growth of native plants [60,61]. Notably, the impact of P addition on both plants exists
within a range, i.e., the promoting effect of P addition on the alien plant or the inhibiting
effect of the native plant does not exceed this threshold, as shown by root growth and
development of native E. lindleyanum remain higher than that of exotic E. adenophorum.

3.4. The Interaction of AMF and Exogenous P Addition Differently Affect the Alien and
Native Plants

Studies have shown that mutualistic symbiosis with AMF and exogenous P addition
can promote plant growth and development, especially in the root system [41,62]. It is
consistent with our study, where M × P significantly influenced root length and root C,
N, and P accumulation of alien plant E. adenophorum and indigenous plant E. lindleyanum
(Tables S1 and 2). Furthermore, our research suggested that M × P had no significant impact
on the root tips and branching points of native E. lindleyanum, while it had a remarkable
impact on the root tips and branching points of invasive E. adenophorum (Table S1). A high
amount of root tips and branches may help invasive E. adenophorum to explore nutrients
in a larger space [63,64], suggesting that invasive plants may access limited resources
by developing lateral roots, i.e., increasing root tips and branches when competing with
native E. lindleyanum. Previous research showed that the establishment of invasive plants
relies on the distinction in nutrient absorption and utilization efficiency between invaders
and natives [65], and root traits can reveal plant nutrient uptake and use efficiency [42].
In this experiment, with M+ treatment, root growth, morphological trait values, and
nutrient accumulation of invasive E. adenophorum increased with P addition, whereas
native E. lindleyanum reduced with P addition when the two plant species competed
(Figures 2–4 and 6), this verifies the H3 of the experiment. The findings indicated that
AMF combined with exogenous P addition might exacerbate the invasion of exotic E.
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adenophorum, which was consistent with Zhang, Leng [66], suggesting that long-term
fertilization, such as P-fertilizer additions, may lead to greater dominance of exotic species
by promoting their growth at the expense of native species. In addition, Lannes, Karrer [67]
suggested that increasing P effectiveness can indirectly positively affect invaders. With the
development of industry and agriculture, more and more P remains in areas where human
activities are frequent, such as farmland and roadsides [68], resulting in the enhancement
of soil P level, which may affect the growth of local species and aggravate the invasion of
exotic plants. The concern is that, although native plants are higher than invasive plants at
different levels of P addition, inoculating AMF and exogenous P addition beyond a certain
threshold will reverse the competitive balance between exotic plants and native plants,
leading to the successful invasion of exotic plants.

4. Materials and Methods
4.1. Experimental Material

We selected the alien plant Eupatorium adenophorum and the native plant Eupatorium
lindleyanum as plant materials in this experiment. The invasive E. adenophorum is native
to Mexico and Costa Rica in Central America and has now widely invaded the southwest
of China; the native E. lindleyanum is an indigenous plant commonly distributed in the
southwest of China. They are both annual herbs of the Eupatorium genus in the Asteraceae
family. Seeds of alien E. adenophorum and native E. lindleyanum were collected in Anshun
City, Guizhou Province, China, then brought back to the laboratory and placed in a shaded
area to wait for the seeds to fall off naturally. Subsequently, the seeds were stored for
experimental use.

The experiment substrate was typical limestone soil collected from the Huaxi district
of Guiyang City, Guizhou Province, China. After sieving, we removed the impurities of
the root, stone, and leaf from the soil, then sterilized the soil in an autoclave at 0.14 Mpa at
121 ◦C for 1 h. The soil physicochemical properties were 7.49 pH, 37.14 g/kg organic carbon
(SOC), 0.503 g/kg total nitrogen (TN), 410.576 mg/kg available nitrogen (AN), 0.704 g/kg
total phosphorus (TP), 5.023 mg/kg available phosphorus (AP), 6.489 g/kg total potassium
(TK), and 195.443 mg/kg available potassium (AK). In addition, the experimental fungus
inoculum Glomus etunicatum was purchased from the Institute of Nutritional Resources,
Academy of Agricultural and Forestry Sciences, Beijing. After 4 months of expansion
through Trifolium repens, the soil was collected and stored in a refrigerator at 4 ◦C. The
presence of fungal spores in the inoculum was observed under a microscope.

4.2. Experiment Design

A potting experiment was performed using a plastic pot (22 cm × 20 cm × 28 cm,
caliber × bottom diameter × height), and each plastic pot had a round hole of 1 cm in
diameter at the bottom to avoid water accumulation. The experiment contained three
factors: (1) the AMF treatments included inoculation with (M+) and without (M−) fungus
Glomus etunicatum for alien plant E. adenophorum and indigenous plant E. lindleyanum;
(2) the competition treatments involved intraspecific (Intra-) competition, with two alien
plant E. adenophorum or two indigenous plant E. lindleyanum separately planted in a plot,
and interspecific (Inter-) competition, with one alien plant E. adenophorum plus one indige-
nous plant E. lindleyanum mixed planted in a pot; (3) the P addition treatments included
three different P additions, involving no P addition (P0), 15 mg/kg P addition (P15), and
25 mg/kg P addition (P25). The amount of P addition in this experiment was determined
according to the Chinese soil nutrient classification standard [69]. Specifically, we dissolved
the appropriate amount of sodium dihydrogen phosphate (NaH2PO4) in 200 mL of dis-
tilled water and then sprayed it evenly over the soil surface with a spray bottle. In this
experiment, we selected 3–5 seeds of invasive E. adenophorum and native E. lindleyanum of
similar size, disinfected them with 10% hydrogen peroxide for 10 min, and then washed
them under distilled water three times. Thereafter, we put approximately 2 kg of sterilized
soil into each sterilized plastic pot and then added 50 g of fungus inoculum evenly into the
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soil. After germination, only two seedlings with good growth were retained in each plastic
pot. The remaining plants received P addition once a week for one month. Ultimately, the
plant roots were reaped, and the indexes were determined one month after the completion
of the P application. The experiment design included two AMF treatments, three P addition
treatments, three planting treatments, and six replicates, totaling 108 samples.

4.3. Measurements and Calculations

We adopted the method of Giovannetti and Mosse [70] to determine the root myc-
orrhizal colonization. In addition, we scanned clean plant roots using a digital scanner
(STD1600 Epsom, Long Beach, CA, USA; WinRhizo Version410B) to acquire root morpho-
logical indicators, such as root length, surface area, volume, average diameter, tips, and
branching points. Then, the plant roots were put into sealed bags and then in an oven
at 75 ◦C for drying until the biomass remained unchanged, and the root biomass was
recorded through an electronic balance. Subsequently, the specific root length was calcu-
lated as root length divided by root biomass; the specific root area was calculated as root
surface area divided by root biomass; root tissue density was calculated as root biomass
divided by root volume. The measurement of the root C content used the potassium
dichromate–sulphuric acid oxidation, and the root N content and P concentration used
the diffusion method plus the semi-micro open method and the molybdenum antimony
anti-colorimetric [71]. Additionally, the C, N, and P accumulation were the C, N, and P
concentrations of plant roots multiplied by the biomass of plant roots.

4.4. Statistical Analysis

The experimental data were analyzed by SPSS 27.0 software, and all data were tested
for normality and homogeneity of variance before analysis. We used three-way ANOVA
to test the effects of AMF (M+ and M−), competition (Intra- and Inter-), and P addition
(P0, P15, and P25) treatments and their interactions on the root mycorrhizal colonization,
root biomass, root morphological traits, root C, N, and P accumulation. The significant
differences between M+ and M−, Intra- and Inter-, among P0, P15, and P25 treatments on
root mycorrhizal colonization, biomass, morphological traits, and C, N, and P accumulation
at 0.05 level were determined with the least significant difference (LSD) test. All figures
were produced by Origin 2022.

5. Conclusions

We concluded that exogenous P addition reduced the root mycorrhizal colonization of
the exotic plant E. adenophorum, and the native plant E. lindleyanum decreased with increased
P addition. AMF significantly promoted the root growth and nutrient accumulation of
the two species. When inoculated with AMF, the interspecific competition decreased the
root growth and nutrient accumulation of invasive E. adenophorum but increased the root
growth and nutrient accumulation of native E. lindleyanum relative to the intraspecific
competition. Meanwhile, the exotic and native plants responded differently to P addition,
exhibiting the root growth and nutrient accumulation of invasive E. adenophorum increased
with P addition, whereas native E. lindleyanum decreased with P addition, indicating the
exotic and native plants responded differently to P addition. Further, the root biomass,
length, surface area, volume, average diameter, tips, branching points, and C, N, and P
accumulation of native E. lindleyanum were greater than invasive E. adenophorum under
interspecific competition. Overall, exogenous P addition promoted the invasive plant but
decreased the native plant in root growth and nutrient accumulation regulated by AMF,
although the native plant outcompeted the invasive plant when the two species competed.
The findings may potentially provide evidence that anthropogenically applied P fertilizer
increases the possibility of alien plant invasion, providing a perspective to understand the
plant invasion mechanisms.
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