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Abstract: The green synthesis of nanoparticles (NPs) is attracting enormous attention as a new
area of study that encompasses the development and discovery of new agents for their utilization
in different fields, such as pharmaceuticals and food. Nowadays, the use of plants, particularly
medicinal plants, for the creation of NPs has emerged as a safe, ecofriendly, rapid, and simple
approach. Therefore, the present study aimed to use the Saudi mint plant as a medicinal plant for
the synthesis of silver nanoparticles (AgNPs) and to evaluate the antimicrobial and antioxidant
activities of AgNPs compared to mint extract (ME). A phenolic and flavonoid analysis that was
conducted by using HPLC indicated the presence of numerous compounds in the ME. Through
an HPLC analysis, chlorogenic acid at a concentration of 7144.66 µg/mL was the main detected
component in the ME, while catechin, gallic acid, naringenin, ellagic acid, rutin, daidzein, cinnamic
acid, and hesperetin were identified in varying concentrations. AgNPs were synthesized by using
ME and were confirmed via UV–visible spectroscopy at 412 nm of the maximum absorption. The
mean diameter of the synthesized AgNPs was measured by TEM to be 17.77 nm. Spectra obtained by
using energy-dispersive X-ray spectroscopy indicated that silver was the main element formation in
the created AgNPs. The presence of various functional groups, analyzed by using Fourier transform
infrared spectroscopy (FTIR), indicated that the mint extract was responsible for reducing Ag+ to
Ag0. The spherical structure of the synthesized AgNPs was confirmed by X-ray diffraction (XRD).
Furthermore, the ME showed reduced antimicrobial activity (a zone of inhibition of 30, 24, 27, 29,
and 22 mm) compared with the synthesized AgNPs (a zone of inhibition of 33, 25, 30, 32, 32, and
27 mm) against B. subtilis, E. faecalis, E. coli, P. vulgaris, and C. albicans, respectively. The minimum
inhibitory concentration of the AgNPs was lower than that of the ME for all of the tested micro-
organisms, except for P. vulgaris. The MBC/MIC index suggested that the AgNPs revealed a higher
bactericidal effect compared to the ME. The synthesized AgNPs exhibited antioxidant activity with a
reduced IC50 (IC50 of 8.73 µg/mL) compared to that of the ME (IC50 of 13.42 µg/mL). These findings
demonstrate that ME could be applied as a mediator for AgNPs synthesis and natural antimicrobial
and antioxidant agents.

Keywords: Saudi mint; plant natural product; silver nanoparticles (AgNPs); antimicrobial;
antioxidant
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1. Introduction

Since ancient times, the Mentha species has been recognized as possessing several
aromatic and pharmaceutical purposes, due to their potential antifungal, antioxidant,
and inhibitory action regarding mycotoxin production in addition to their potential use
as natural food preservatives [1]. A diversity of secondary metabolites was associated
with the genus of Mentha, as it was applied in traditional medicines, household remedies
for digestive disorders and food additives, and was utilized to treat inflammation of the
mouth; minimize bacterial infection; and also as a tonic, mild laxative, culinary herb,
and astringent [2]. These biochemical features are principally caused by the presence
of various aromatic and phenolic chemicals in the various sections of the Mentha spp.
The chemical composition of the Mentha species extracts may depend on the specific
growing season, species, and climatic conditions [3,4]. For the present investigation, two
biological potentials, including the antimicrobial and antioxidant activities of mint plant
extract and AgNPs, were studied because using the mediated plant for AgNPs synthesis is
more efficient in the presence of safe compounds, which play a vital role as antioxidants.
This study also focused on antimicrobial activities because AgNPs can be used to fight
numerous micro-organisms and therefore may be used as a topical ointment to repress
human pathogenic micro-organisms.

Several cultivated Mentha species were studied in Saudi Arabia, illustrating their
potential use as a natural antioxidant and antifungal treatment [5–7]. Leaves of cultivated
M. longifolia, collected from the Al Baha region, were investigated and chemically analyzed
to detect the active constituents that combat pathogenic micro-organisms [8]. M. longifolia,
M. microphylla, and M. australis were planted in Al Madinah Al Munawwarah, Saudi Arabia.
Their analysis showed they were able to provide different amounts of essential oils [9].
Aldogman et. al. [5] recently reported that M. suaveolens L. in Saudi Arabia could be used
as a natural flavoring, antioxidant, and antifungal agent. They reported that the extract of
M. suaveolens L. displayed the highest antifungal activity (53%) and more than 90% an-
tioxidant activity [5]. The antioxidant activity of two Saudi Mentha species was evalu-
ated by Ahmed et. al. [6], who found that Mentha longifolia exhibited a stronger antioxi-
dant than M. pulegium, which was attributed to its high flavonoid content. In addition,
Anwar et. al. [7] reported that several biological activities, such as serving as an antiox-
idant and antimicrobial, were due to the presence of certain phenolic compounds. In
another report, M. suaveolens L. was used as a strong inhibitor of fungal growth as well as
mycotoxins production, and also reflected antioxidant activities [1]. Candida albicans and
Aspergillus niger were inhibited by the volatile oils of M. suaveolens [10]. Several biological ac-
tivities were associated with M. suaveolens volatile oils, particularly antioxidant activity [11].
Farnad et. al. [12] reported that the most widely detected phenolic acids were caffeic acid,
followed by cinnamic acid, protocatechuic acid, gentisic acid, vanillic acid, and hydroxy-
benzoic acid. In addition, the antioxidant activity of three species, including M. pulegium,
M. spicata, and M. suaveolens, was recently documented due to the existence of phenolic
compounds [13].

Several new discoveries in the fields of physics, engineering, biology, and agriculture
have been documented and developed in the last decade due to nanotechnology [14]. Var-
ious methods, including chemical, physical, physicochemical, and biological approaches,
were applied for the purpose of nanoparticles (NPs) synthesis, but the biological method,
using bacteria, fungi, algae, and plants, has been characterized as the main safe, ecofriendly,
and cheap process for NPs creation [15–18]. During the last decade, many scientists have
investigated the use of various plant extracts in the fabrication of silver nanoparticles (Ag-
NPs). However, due to their availability and widespread use, common medicinal and
edible plants have frequently been the subject of important research studies [19]. As sev-
eral previous studies mention, plants are rich in various secondary metabolites [20–23]
that play an essential role in the reduction and capping process throughout the creation
of NPs [19]. One of the main constituents (menthol) of Mentha piperita is responsible
for the creation of AgNPs [24]. The creation of AgNPs by Mentha arvensis [25] and
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Mentha pulegium [26] were reported. Several biological utilities of AgNPs, particularly
green ones, such as being antimicrobial, antioxidant, anticancer, antimalarial, and antidia-
betic, were documented [27]. In addition, AgNPs showed an inhibition of phytopathogenic
fungi, such as Fusarium solani and Alternaria alternata [26]. The inhibitory action of AgNPs
was also reported against multidrug-resistant bacteria, such as Methicillin-resistant S. aureus,
Salmonella enterica, E. coli, and P. aeruginosa [27–29]. In other studies, the antimicrobial
activity against bacteria and fungi as well as mycotoxins was enhanced when the plant
extract incorporated AgNPs [30,31]. Several mechanisms of the antimicrobial activities of
AgNPs were explained through the interactions with DNA and cytoplasmic contents of
microbial cells, leading to the blocking of cell division [25]. The ecofriendly, cost-effective
creation of AgNPs is being requested by both the public and environmentalists for phar-
macological and ecological applications. The current study suggests that the creation of
AgNPs via the leaf extract of M. longifolia can help to overcome the pathogenic microbes.
Additionally, studying the antioxidant activity of synthesized AgNPs can facilitate the
comparison of the antioxidant activity between the mint extract and the created AgNPs.
An HPLC analysis of the mint extract was also conducted in addition to exploring its
antimicrobial and antioxidant properties.

2. Results and Discussion
2.1. Phenolic and Flavonoid Characterizations of Mint Extract (ME)

Saudi mint was selected for the current study due to its traditional and medic-
inal applications. The antimicrobial and antioxidant activities of the extract as well
as the created AgNPs were evaluated. The experiments on mint and mint-mediated
AgNPs synthesis were described (Figure 1). The phenolic and flavonoid constituents
of Saudi mint were analyzed via HPLC. The analysis showed the existence of various
constituents with a dissimilar retention time, area, area%, and levels of concentration
(Table 1 and Figure 2). In addition, the whole chemical construction of the detected com-
pounds was documented (Figure S1). It was clear that the chlorogenic acid was found in
a very high concentration (7144.66 µg/mL) compared to the other identified compounds.
Catechin, gallic acid, and naringenin were detected in a narrow concentration range of
966.93, 980.13, and 958.50 µg/mL, respectively, followed by ellagic acid (841.23 µg/mL).
Hesperetin (83.77 µg/mL), rutin (47.82 µg/mL), daidzein (43.25 µg/mL), and cinnamic
acid (10.40 µg/mL) were detected at low concentrations. Chlorogenic acid, according to the
study conducted by Yan et. al., showed an effective improvement in tolerance to glucose as
well as insulin resistance and could decrease the abundance of microbial infections [32].
Choi et. al. reported that rutin could minimize the severity of inflammation and blood
coagulation [33]. Several studies focused on the pharmacological applications of quercetin,
as it could be used to prevent cancer proliferation, protect against Alzheimer’s Disease, and
inhibit diabetes development, as well as possessing some antioxidant properties [34,35]. In
another previous study, both catechin and gallic acid exhibited retardation potential against
Helicobacter pylori, but a higher inhibitory effect was attributed to gallic acid compared to
catechin [36]. Moreover, Bai et. al. documented that gallic acid had an anti-inflammatory
action [37]. Ellagic acid also displayed several pharmaceutical activities, including antioxi-
dant, antiproliferative, anti-inflammatory, antimutagenic, antiallergic, antiatherosclerotic,
antiallergic, neuroprotective, and nephroprotective properties [38]. In the current study,
the detected flavonoids (kaempferol and quercetin) were reported to acquire antifungal
and antibacterial properties, and the results were consistent with Jan et. al. [39].
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Figure 1. Image illustrating the mint plant (Mentha longifolia) and mint mediate AgNPs synthesis, 
which was subjected to effective extraction methods and several appropriate assays to identify the 
phytochemical analysis of the mint extract and the antimicrobial and antioxidant activities of the 
extracted product compared to the synthesized AgNPs. 

Table 1. Identified contents of phenolic and flavonoid in mint extract. 

Compound Retention Time Area Area (%) Concentration (µg/mL) 
Gallic acid 3.367 221.00 3.60 966.93 

Chlorogenic acid 4.242 1031.15 16.81 7144.66 
Catechin 4.710 78.59 1.28 980.13 

Methyl gallate 5.694 114.42 1.87 316.86 
Caffeic acid 6.079 160.35 2.61 631.52 

Syringic acid 6.388 107.35 1.75 379.83 
Rutin 8.306 8.03 0.13 47.82 

Ellagic acid 9.005 81.01 1.32 841.23 
Vanillin 9.542 85.37 1.39 189.64 

Ferulic acid 10.269 167.45 2.73 574.81 
Naringenin 10.537 160.38 2.62 958.50 

Daidzein 12.370 13.93 0.23 43.25 
Quercetin 12.861 64.90 1.06 428.51 

Cinnamic acid 14.207 11.1515 0.18 10.40 
Apigenin 14.499 74.85 1.22 283.88 

Kaempferol 15.050 156.56 2.55 570.72 
Hesperetin 15.823 31.09 0.51 83.77 

Figure 1. Image illustrating the mint plant (Mentha longifolia) and mint mediate AgNPs synthesis,
which was subjected to effective extraction methods and several appropriate assays to identify the
phytochemical analysis of the mint extract and the antimicrobial and antioxidant activities of the
extracted product compared to the synthesized AgNPs.

Table 1. Identified contents of phenolic and flavonoid in mint extract.

Compound Retention Time Area Area (%) Concentration (µg/mL)

Gallic acid 3.367 221.00 3.60 966.93

Chlorogenic acid 4.242 1031.15 16.81 7144.66

Catechin 4.710 78.59 1.28 980.13

Methyl gallate 5.694 114.42 1.87 316.86

Caffeic acid 6.079 160.35 2.61 631.52

Syringic acid 6.388 107.35 1.75 379.83

Rutin 8.306 8.03 0.13 47.82

Ellagic acid 9.005 81.01 1.32 841.23

Vanillin 9.542 85.37 1.39 189.64

Ferulic acid 10.269 167.45 2.73 574.81

Naringenin 10.537 160.38 2.62 958.50

Daidzein 12.370 13.93 0.23 43.25

Quercetin 12.861 64.90 1.06 428.51

Cinnamic acid 14.207 11.1515 0.18 10.40

Apigenin 14.499 74.85 1.22 283.88

Kaempferol 15.050 156.56 2.55 570.72

Hesperetin 15.823 31.09 0.51 83.77
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characterized via transmission electron microscopy (TEM) in order to detect the morphol-
ogy and diameter of the NPs (Figure 4). The synthesized AgNPs tended to be spherical 
with a mean diameter of 17.77 nm. The findings of the current study were consistent with 
Rizwana and Alwhibi [26], where the size of the created AgNPs, which were created by 
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sistent with Bashir et. al. [40], who found that the size of the AgNPs created by using M. 
asiatica was 29 nm. 
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Figure 2. High-performance liquid chromatography (HPLC) of the detected phenolic and flavonoid
constituents in mint extract.

2.2. Characterization of Phyto-Created AgNPs by Mint Plant (ME)

In this study, the production of AgNPs in the mixture with a surface plasmon resonance
(SRP) spectrum of 412 nm of maximum absorption was validated by using a UV–visible
optical microscope (Figure 3). The obtained results were analogous to those published
in the literature, in which biological extract was employed to produce AgNPs, and the
UV–visible absorbance spectra indicated that the SPR band for Ag particles was in the
400–450 nm range [40–42]. The creation of AgNPs was reported when using several
Mentha spp., such as Mentha arvensis and Mentha pulegium [25,26]. The synthesized AgNPs
were characterized via transmission electron microscopy (TEM) in order to detect the
morphology and diameter of the NPs (Figure 4). The synthesized AgNPs tended to be
spherical with a mean diameter of 17.77 nm. The findings of the current study were
consistent with Rizwana and Alwhibi [26], where the size of the created AgNPs, which
were created by using M. pulegium extract, ranged between 4 and 60 nm. Moreover, the
results were consistent with Bashir et. al. [40], who found that the size of the AgNPs created
by using M. asiatica was 29 nm.
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Figure 4. Transmission electron microscopy (TEM) of phyto-created AgNPs.

The quantitative elemental compositions of phyto-created AgNPs were analyzed and
compared by using a scanning electron microscopy–energy dispersive X-ray (SEM-EDX)
analysis. The existence of spherical AgNPs was found, and an elemental analysis confirmed
the fabrication of AgNPs at a rate of 76.67% (Figure 5). The EDX spectra also clearly showed
the presence of AgNPs with a strong peak at 3 KeV, which indicated that silver was the
major element formation. Moreover, the distinct peak signals of oxygen and carbon were
recorded to be 13.20% and 10.13%, respectively, which was related to the presence of
metabolites, such as carbohydrates, proteins, and others [43,44].
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Figure 5. SEM-EDX analysis for phyto-created Ag-NPs.

An XRD pattern of the AgNPs that demonstrated the spherical structure of the formed
AgNPs was observed (Figure 6). The typical diffraction peaks, at 2θ = 38.2◦, 44.3◦, 64.4◦,
and 77.1◦, were ascribed to (111), (200), (220), and (311), respectively, which reflected
the planes of the silver cubic face of the cubic-centered (FCC) crystalline form (JCPDS
No 87-0720). The results showed that the AgNPs biosynthesized by reducing Ag+ ions
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from the biological extracts had a crystalline nature, and the sharp peak at 2θ of ~38.2◦

indicated the position (111) of Ag that corresponded to the face cubic center [43,45]. The
results indicated that the biosynthesized AgNPs were composed of crystalline silver nano
with a high purity.
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Figure 6. X-ray diffraction (XRD) analysis for phyto-created AgNPs.

The functional groups found in the AgNPs were characterized by using Fourier-
transform infrared (FTIR) analysis [40,46]. The FTIR of the biogenic AgNPs displayed
varying peaks at 3684, 3186, and 2978 cm−1 (OH, NH stretching, and aliphatic primary
amines and OH broad stretching, respectively) (Figure 7). Other peaks appeared at
1816 cm−1 and 1535 cm−1 (amide-I band) and 1396 and 1207 cm−1 (CN stretching of
the amines). Interestingly, the FTIR peaks at 887 and 621 cm−1 corresponded to the forma-
tion of Ag. Moreover, the stability of the AgNPs under different storage conditions at 30 ◦C
was documented through UV/Vis spectra (Figure 8). The surface plasmon resonance (SPR)
bands were symmetrical, where the peaks’ position remained stable over time for up to
30 days, which indicated that the AgNPs were stable.
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2.3. Antimicrobial Activity of Mint Extract and Phyto-Created AgNPs

The mint extract (ME) exhibited antimicrobial activity against all the tested mi-
crobes, except for A. flavus, with various inhibition zones of 30.67, 24.33, 27.83, 29.67, and
22.83 mm (Table 2 and Figure 9); various MICs of 15.70, 15.77, 7.87, 7.90, and
62.67 µg/mL; and various MBCs of 31.83, 62.33, 15.50, 15.67, and 124.33 µg/mL, compared
with the inhibition zones of positive control gentamycin/ketoconazole against B. subtilis,
E. faecalis, E. coli, P. vulgaris, and C. albicans, respectively. Various bacterial species, includ-
ing Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Shigella flexneri, and
Klebsiella pneumoniae were inhibited by using an ethanolic extract of M. arvensis, and
S. aureus was the most susceptible (a 21 mm inhibition zone diameter) of all of the tested
bacteria in a similar way to standard antibiotic tetracycline [47]. Moldovan et. al. docu-
mented the antimicrobial activity of five Mentha spp., such as M. suaveolens var. rispate,
M. rotundifolia, M. spicata subsp. rispate, M. piperita var. officinalis F. pallescens, and F. rubescens,
with inhibition zones ranging from 8 to 26 mm against S. aureus, Listeria monocytogenes,
Salmonella typhimurium, E. coli, and C. albicans [48].

The phyto-mediated AgNPs that were created by using mint extract (ME) exhib-
ited greater antimicrobial activity compared to the ME. Moreover, the AgNPs showed a
promising inhibition zone, compared to standard antibiotics tested against bacteria and
C. albicans, with the exception of E. coli (Table 2 and Figure 9). These results are promising,
in comparison with Aziz and Jassim [49], where the diameters of the inhibition zones of
the AgNPs synthesized with mint against B. subtilis and E. coli were 25 mm and 20 mm,
respectively. In another previous study, the ability of AgNPs synthesized by M. longifolia
to inhibit the phytopathogens bacteria was recorded against Pectobacterium carotovorum,
Xanthomonas vesicatoria, Xanthomonas oryzae, and Ralstonia solanacearum, and potential in-
hibitory activity was detected between 2–12 µg ml−m [50].
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Table 2. The inhibitory activity, minimum inhibitory concentration (MIC), and minimal bactericidal concentration (MBC) of mint extract (ME) and synthesized
AgNPs against the tested microbes.

Tested Organism
Mean Inhibition Zones (mm) MIC (µg/mL) MBC (µg/mL) MBC/MIC Index Mean Inhibition

Zones (mm) of AgNO3

AgNPs ME Control * AgNPs ME AgNPs ME AgNPs ME 200 µg/mL

Bacillus subtilis 33.67 ± 1.15 30.67 ± 0.58 30.17 ± 1.26 7.83 ± 0.06 15.70 ± 0.17 31.17 ± 0.14 31.83 ± 1.01 3.98 2.03 24.22 ± 1.15

Enterococcus faecalis 25.33 ± 1.53 24.33 ± 0.58 23.17 ± 0.29 15.53 ± 0.12 15.77 ± 0.15 31.37 ± 0.20 62.33 ± 0.29 2.02 3.95 14.33 ± 1.53

Escherichia coli 30.00 ± 1.73 27.83 ± 0.29 30.33 ± 0.29 7.73 ± 0.12 7.87 ± 0.06 7.90 ± 0.17 15.50 ± 0.17 1.02 1.97 21. 33 ± 1.53

Proteus vulgaris 32.33 ± 1.53 29.67 ± 0.58 26.00 ± 0.50 15.57 ± 0.06 7.90 ± 0.10 15.70 ± 0.17 15.67 ± 0.12 1.01 1.98 20.33 ± 1.15

Candida albicans 27.50 ± 0.87 22.83 ± 0.29 22.17 ± 0.29 31.33 ± 0.14 62.67 ± 0.29 63.0 ± 0.87 124.33 ± 1.15 0.02 1.98 16.00 ± 1.00

Aspergillus flavus NA NA 17.33 ± 0.58 - - - - - - NA

* Gentamycin and ketoconazole were applied as positive controls for bacteria and fungi, respectively.
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The minimum inhibitory concentration (MIC) of AgNPs was reported to be lower in
the case of E. faecalis (15.53 µg/mL), E. coli (7.73 µg/mL), and C. albicans (31.33 µg/mL), but
higher (7.83 and 15.57 µg/mL) in the case of B. Subtilis (7.83 µg/mL) and
P. vulgaris (15.57 µg/mL) compared to the ME (Table 2). In addition, the antimicrobial prop-
erty of the synthesized AgNPs was evaluated against common oral microbes, including
Streptococcus mutans, Staphylococcus aureus, Candida albicans, and Enterococcus faecalis [51].
AgNPs, synthesized by using the leaves of Saudi Mentha pulegium, displayed antibacte-
rial activity against Listeria monocytogenes, Salmonella typhimurium, Staphylococcus aureus,
Pseudomonas aeruginosa, Escherichia coli, and Bacillus cereus, with the diameters of the in-
hibition zones ranging from 17 to 26 mm. The most effective antimicrobial activity was
reported against E. coli, while less effective antimicrobial activity was observed against
L. monocytogenes [52]. AgNPs were found to be more effective than commercial antibiotics
in the current study, in line with Naghmouchi et. al. [52]. The cidal effect of the extract or
AgNPs was determined by calculating the MBC/MIC Index, where the cidal properties
increased as the index of the MBC/MIC decreased. Values less than four indicated that the
present ME and AgNPs exerted a cidal effect. The mechanisms of the antimicrobial activity
of phyto-mediated AgNPs were studied in several reports, where the denaturation of bac-
terial protein [53], disorders of the bacterial respiratory chain [19], and lipopolysaccharides
changes [54] were reported.

2.4. Antioxidant Activity of Mint Extract and Phyto-Created AgNPs

The rise in DPPH scavenging (%) indicated the efficient antioxidant activity of the ME
and AgNPs. There was a relationship between antioxidant activity and the concentration
of either the ME or AgNPs (Table 3). A promising IC50 was recorded when using ME
(13.42 µg/mL); however, the AgNPs were more effective with a lower IC50 (8.73 µg/mL).
In the present study, the antioxidant activity of the ME and AgNPs was compared to that
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of ascorbic acid, which differed slightly, particularly at high concentrations of 500 and
1000 µg/mL. It was common to record a low value for IC50 (8.73 µg/mL) when using
ascorbic acid, but the IC50 values of the ME and AgNPs were surprisingly low. The most
frequently detected flavonoid in the ME was reported to execute several biofunctional
antioxidant activities. The findings were consistent with previous studies based in Saudi
Arabia, where M. longifolia and M. pulegium displayed efficient antioxidant activity but with
different levels of activity [6]. Additionally, the ethanolic extract of fresh or dry M. suaveolens
exhibited a strong antioxidant potential [5]. Mint extract (ME) appeared to represent a
promising antioxidant, due to its enriched content of rutin (252.16 µg/g) [54] and naringenin
(53.22 µg/g) [55] in a whole plant. Therefore, the AgNPs that were synthesized by using
ME could be applied to the treatment of several diseases that are affected by oxidative
stress. The findings of the current study are in line with a recent study conducted by Bashir
et. al., where the green fabricated AgNPs, that were created by utilizing leaf extract of
M. asiatica, displayed a significant antioxidant potential [40]. Due to the several side effects
caused by a synthetic antioxidant, researchers may consider using a natural antioxidant as
a safe alternative [56].

Table 3. DPPH scavenging (%) of mint extract (ME) and ascorbic acid.

Concentration
(µg/mL)

Ascorbic Acid ME AgNPs

DPPH Scavenging (%) SD DPPH Scavenging (%) SD DPPH Scavenging (%) SD

1000 95.5 0.002 92.1 0.002 93.7 0.003

500 92.9 0.004 85.6 0.002 88.6 0.002

250 91.1 0.005 79.3 0.002 83.0 0.003

125 84.9 0.006 72.6 0.004 76.3 0.001

62.50 76.4 0.006 65.7 0.004 69.9 0.003

31.25 69.6 0.004 59.5 0.001 63.2 0.005

15.63 62.6 0.005 52.1 0.007 56.1 0.006

7.81 54.7 0.003 45.5 0.003 48.5 0.004

3.90 44.3 0.002 35.8 0.006 41.6 0.005

1.95 40.2 0.007 30.5 0.004 35.0 0.011

0 0.0 0.004 0.0 0.016 0.0 0.016

IC50 3.45 µg/mL 13.42 µg/mL 8.73 µg/mL

3. Materials and Methods
3.1. Chemicals Used in the Study

All of the materials used in the current study were obtained from Sigma Aldrich,
(Taufkirchen, Germany), in an analytical grade form.

3.2. Collection and Extraction of the Mint Plant

Fresh mint plants (Mentha longifolia) were collected from local markets in the cities of
Medina and Hail, Saudi Arabia. Areal parts, including the leaves and stems, were washed
in distilled water, and then dried at 30 ◦C until a constant weight was obtained. The dried
collected plant (100 g) was ground down and immersed in 300 mL of methanol under a
shaking condition by using a magnetic stirrer for 24 h. The mixture was centrifuged for
10 min at 5000 rpm. The obtained supernatant was concentrated by using a rotary evapora-
tor before being completely concentrated and redissolved in DEMSO, and it was stored at
4 ◦C for further study.
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3.3. Detection of the Phenolic and Flavonoid Constituents of Mint Extract via HPLC

A total of 5 µL of mint extract as well as the AgNPs were added to the HPLC de-
vice (Agilent 1260 series, Agilent Technologies, Santa Clara, CA, USA) once the extraction
process had been completed. The Eclipse C18 column employed had the following specifica-
tions: 4.6 mm and 250 mm, i.e., 5 µm and 40 ◦C. During the mobile phase, two buffers were
used: buffer A (military Q water and 0.05% trifluoroacetic acid) and buffer B (acetonitrile
and 0.05% trifluoroacetic acid). A flow rate of 0.9 mL/min was used to apply the buffers.
The serial dilutions for buffer A were 82, 80, 60, 60, 82, 82, and 82% for 0, 0–5, 5–8, 12–15,
15–16, and 20–20 min, respectively. A flow rate of 0.9 mL/min was used for the buffers.
The mobile phase took 20 min to run, with the following serial dilutions of buffer A: 82,
80, 60, 60, 82, 82, and 82% for 0, 0–5, 5–8, 12–15, 15–16, and 20–20 min, respectively. The
presence of phenolic compounds and flavonoids was determined by using an ultraviolet
(UV) detector with a wavelength of 280 nm. Based on the injected standard compounds,
the amount of each was recorded [16,57].

3.4. Synthesis of Silver Nanoparticles (AgNPs)

The aqueous solution of 1 mM of AgNO3 was prepared by using distilled water.
A total of 10 mL of mint extract was added to 90 mL of the aqueous solution of AgNO3.
The reaction mixture was kept at 70 ◦C for 40 min, and the color change was subsequently
observed. A color change from yellow to brown was used to detect the creation of AgNPs
via Ag ion reduction.

3.5. Characterization of Synthesized AgNPs

The reaction mixture containing the AgNPs was characterized by using ultraviolet–
visible spectroscopy (Perkin Elmer, MA, USA) to measure the absorption spectrum in
a range from 200 up to 800 nm. The morphology and size of the created AgNPs were
characterized by using a transmission electron microscope (TEM) (JEOL-JEM-Plus-1400,
Tokyo, Japan). Fourier-transform infrared (FTIR) spectroscopy was applied to characterize
the functional groups that are responsible for encapsulating and reducing the Ag ions
to AgNPs by utilizing a pellet of potassium bromide on a Thermo Fisher Spectrometer
(Thermo Scientific Model-Nicolet 6700, Hillsboro, OR, USA). The infrared spectrum was
measured at a range of wavelength of 400–4000 cm−1. The elemental contents of the synthe-
sized AgNPs were examined with an energy dispersive X-ray detector (EDX-FESEM-model
no-JSM-7610F, Akishima, Japan) at an accelerating 30 kilo voltage. An X-ray diffraction
(XRD) (Model diffractometer, Shimadzu 7000, Tokyo, Japan) analysis was conducted to
determine the crystal structure of the created AgNPs.

3.6. Antimicrobial Activity of Mint Extract and AgNPs Using Agar Diffusion Method

All of the tested micro-organisms were provided by the American Type Culture Collec-
tion (Manassas, VA, USA). Mint extract and the AgNPs’ ability to inhibit micro-organisms
(Bacillus Subtilis (ATCC 6633), Enterococcus faecalis (ATCC 10541), Escherichia coli (ATCC
8739), P. vulgaris, Candida albicans (ATCC 10221), and Aspergillus flavus) was evaluated in
accordance with the Clinical and Laboratory Standards Institute (CLSI) guidelines. An agar
diffusion technique was used to test the antibacterial activity. Mueller–Hinton agar (MHA)
plates were used to maintain the tested bacteria and C. albicans, while a Dox medium
was used for the tested fungus. A seedling of 2 × 108 CFU/mL of tested bacteria and
2 × 106 of the tested fungus was applied, and the MHA and Dox agar media were in-
oculated. A 6 mm well was then made in the inoculated media, and 100 µL of the mint
extract and AgNPs was separately added to the wells. The cultured plates underwent a
24-h incubation period at 37 ◦C for the bacteria and C. albicans, while the tested fungi were
incubated at 30 ◦C for 3 days. The inhibition zone that appeared following the incubation
period was measured. The solvent employed for the extraction was applied as a negative
control, while the standard antibiotic/antifungal treatments (Gentamycin, 0.1 mg/mL and



Plants 2023, 12, 2177 13 of 17

ketoconazole, 0.1 mg/mL) were applied to inhibit the bacteria and fungi, respectively;
additionally, silver nitrate (200 µg/mL) was utilized as a positive control [58,59].

3.7. The Minimal Inhibitory Concentration (MIC) Experiment

To determine the MIC of the mint extract and AgNPs against the tested micro-
organisms, a Mueller–Hinton broth was used as the microdilution broth [60]. Various serial
dilutions containing concentrations of mint extract and AgNPs ranging from
0.98 to 1000 µg/mL were prepared. We used 96-well polystyrene microtitrate plates,
with 200 µL of each appropriate dilution of mint extract and AgNPs being dispensed per
well. A fresh-tested micro-organism culture inoculum was created in sterile NaCl (0.85%)
to match the required 1.0 McFarland turbidity. A final concentration of 2 × 106 CFU/mL
was obtained by inoculating each well with a total of 2 mL of the tested micro-organisms,
and the plates were incubated at 35 ◦C for three days. The minimal inhibitory concentration
was visually assessed to determine the lowest concentration required to inhibit the tested
micro-organisms. Each microplate contained an inoculum of the tested micro-organisms
without either mint extract or AgNPs as a positive control, and the extract and AgNPs
without the tested micro-organisms as a negative control [61].

3.8. The Minimal Bactericidal Concentration (MBC) Experiment

A total of 100 mL of the tested micro-organisms that showed no growth onto the sterile
Mueller–Hinton agar plates were subcultured from each well [62]. The cultivated plates
were incubated at 35 ◦C for three days. The MBCs were detected as the lowest concentration
of mint extract and AgNPs that visually showed no growth for the tested micro-organisms.
To determine whether the mint extract and AgNPs possessed bactericidal or bacteriostatic
properties, the ratios of the MBC/MIC were calculated. The extract was considered to be
an efficient bactericidal agent if the MBC/MIC ratio was less than four times the MIC [63].

3.9. The Antioxidant Activity of the Mint Extract and AgNPs

Mint extract’s capacity to scavenge free radicals was assessed by using a DPPH
(1,1-diphenyl-2-picrylhydrazyl) assay. A 0.1 mM DPPH solution in ethanol was created.
In total, 3 mL of mint extract and AgNPs at different concentrations (ranging from 1.95 to
1000 µg/mL) were mixed with 1 mL of a 0.1 mM DPPH solution in ethanol. Only ethanol-
soluble extracts were used, and various concentrations of those extracts were created by
diluting the original extract. The mixture was shaken vigorously and then left to stand at
25 ◦C for 30 min. In the following step, a UV-VIS Milton Roy spectrophotometer was used to
measure the absorbance at 517 nm. Ascorbic acid was used as a standard antioxidant agent.
The concentration of mint extract or AgNPs necessary to inhibit 50% of the DPPH free
radical (IC50) was calculated by utilizing a Log dose of the inhibition curve, as described by
Al-Rajhi et. al. [23]. The percentage of the DPPH scavenging influence was recorded via
the following formula:

DPPH scavenging (%) =
A0 − A1

A0
× 100

where the control reaction absorbance is A0, and the mint or AgNPs’ reaction absorbance
is A1.

3.10. Statistical Analysis

The biological activities of the mint extract and AgNPs were studied in triplicate, and
the results were assessed as a mean value of the standard deviation (±SD).

4. Conclusions

In the current investigation, Saudi mint extract appeared to represent an ecofriendly
source for creating AgNPs. In addition, several characterizations, including UV–visible
spectroscopy, TEM, FTIR, and XRD confirmed the complete synthesis of AgNPs. The mint
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extract displayed numerous phenolic and flavonoid compounds, which were identified by
HPLC, such as catechin, gallic acid, ellagic acid, naringenin, ferulic acid, kaempferol, and
Quercetin. The Saudi mint extract was also shown to be enriched with chlorogenic acid. The
findings of the present study indicate that mint extract and the synthesized AgNPs possess
significant antimicrobial potential to combat several bacteria, including Bacillus Subtilis
(ATCC 6633), Enterococcus faecalis (ATCC 10541), Escherichia coli (ATCC 8739), P. vulgaris,
and unicellular fungus (C. albicans). Additionally, promising antioxidant activities were
attributed to mint extract and AgNPs with an IC50 of 13.42 µg/mL and 8.73 µg, respectively,
compared to the IC50 value of ascorbic acid (3.45 µg/mL). However, the AgNPs displayed
the highest level of antimicrobial and antioxidant activities, which supported the use of
nanotechnology to permit and enhance the application of plant-derived products during
treatment.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants12112177/s1, Figure S1: Chemical constructions of the
identified phenolic and flavonoid in mint extract.
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