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Abstract: Rice is an important staple food crop for over half of the world’s population. However,
abiotic stresses seriously threaten rice yield improvement and sustainable production. Breeding
and planting rice varieties with high environmental stress tolerance are the most cost-effective, safe,
healthy, and environmentally friendly strategies. In-depth research on the molecular mechanism of
rice plants in response to different stresses can provide an important theoretical basis for breeding rice
varieties with higher stress resistance. This review presents the molecular mechanisms and the effects
of various abiotic stresses on rice growth and development and explains the signal perception mode
and transduction pathways. Meanwhile, the regulatory mechanisms of critical transcription factors
in regulating gene expression and important downstream factors in coordinating stress tolerance are
outlined. Finally, the utilization of omics approaches to retrieve hub genes and an outlook on future
research are prospected, focusing on the regulatory mechanisms of multi-signaling network modules
and sustainable rice production.
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1. Introduction

Rice (Oryza sativa L.) is a major food crop and staple food source for half of the
world’s population [1]. According to the report published by the Department of Eco-
nomic and Social Affairs of the United Nations (https://www.un.org/en/desa, accessed
on 3 March 2023), the world population is projected to reach almost 10 billion in 2050
and 11.2 billion in 2100. According to the Global Agricultural Productivity Index 2022
(http://www.globalagriculturalproductivity.org/, accessed on 3 March 2023), global agri-
cultural productivity has fallen below the level needed for the sustainable growth of
agricultural output. The average annual Total Factor Productivity growth rate declined
from 1.99% in 2001–2010 to 1.12% in 2011–2020. As per the world’s population growth
rate, rice production will need to increase by 160 million tons from the current yield
(104 million tons) [2,3]. In various aspects, rice significantly promotes social stability,
economic development, and food security. By providing a staple food source, rice can
help stabilize communities and societies that depend on it for nutrition. Secondly, the
cultivation and production of rice can provide employment opportunities for people within
the agricultural sector, thereby promoting economic development and reducing poverty.
For 70% of the low-income people in Asia, rice is not just a food crop but a way of life,
as it is often their primary source of income. We will need about twice as much total
food production in the predicted scenario to feed our fast-growing population. In past
decades, breakthroughs in rice hybridization and dwarf breeding substantially enhanced
grain yield and provided a roadmap for future breeding programs [4]. Climate change,
including frequent extreme temperatures, rising carbon dioxide and ozone levels, and
uneven rainfall, aggravates the degree of drought or salinization of agricultural lands and
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changes the growing environment of crops. Despite the significant increase in rice yield,
plant breeders face challenges amid the fast-growing world population and the effects of
climate change. The acceleration of global climate change has led to an increased incidence
of abiotic stress factors, leading to a loss of yields in approximately 50% of rice-growing
land [5,6]. In Asia alone, around 42 million hectares of rice-growing areas are affected by
drought stress, while globally, 45 million hectares of irrigated land and 32 million hectares
of rain-fed dryland are impaired by salinity stress [6]. Additionally, flooding affects over
35% of global rice-growing land [7], and rice productivity is notably impacted in rain-fed
areas (which represent more than 50% of total rice-growing land) due to the prevalence
of floods, water deficits, and salt stresses [8,9]. As per estimation, countries (China, India,
the United States, and Indonesia) where more than 70% of the global population resides
may experience increased flood risk due to changing seawater levels and extreme weather
events [10]. For instance, a four-degree increase in temperature could lead to a decline in
crop yields of 15–35% in Africa and Asia, with estimates of a 25–35% yield reduction in the
Middle East [11]. It is reported that elevated salinity levels affect 7% of the world’s land
area, leading to an annual economic loss of USD 27.2 billion due to adverse environmental
impacts [12]. In addition, it is projected that salinity stress will impact over 30% of cul-
tivable lands globally by 2050 [13], with the potential for further increases due to changes
in seawater levels. Therefore, cloning important genes related to abiotic stress tolerance,
analyzing the molecular mechanisms of stress responses, and further mining their breeding
application value hold important theoretical and practical significance for rice breeding
and food security.

The fine-mapping and cloning of several genes that are responsible for tolerance
to various abiotic stresses has laid the foundation for yield improvement and enriched
the genetic resources of rice [14,15]. Additionally, integrative omics approaches have
efficiently determined the genetic variability of the available germplasm resources and
provided the basis for rice breeding. The regulatory genes that are responsible for important
agronomic traits have been reported through the efficient utilization of genome-wide
association studies (GWAS) and integrative omics approaches, which is significant in rice
breeding [16,17]. Mainly, the massive utilization of multi-omics methods has provided
innovative insights into several biological topics and has been utilized for the genetic
improvements to rice [18,19]. Their use is particularly vital for reducing agricultural costs
and providing environmental protection.

In short, addressing food security is an endless and challenging task. Here, we re-
view the key achievements made in rice genetics and breeding for environmental stress
tolerance in past years, which will help provide systematic and comprehensive informa-
tion and theoretical support for developing rice with improved yield and tolerance to
multiple stresses.

2. Recognition and Signaling of Abiotic Stress

Abiotic stresses severely harm agricultural production and cause extreme deterioration
of the ecological environment. When plants are stressed, molecular and morphological
changes occur, directly or indirectly affecting plant growth and development. Abiotic stress
decreases the final yield by severely affecting the physiology and morphology of crops at
the vegetative and reproductive stages. Adversities, such as extreme temperatures, drought,
and salinity, are often interconnected. In the past decade, abiotic stresses have occurred
more commonly because of global climate change [20,21]. These stresses hamper water
uptake and nutrient absorption and disturb plant growth and development, significantly
decreasing the germination percentage, growth rate, leaf size, and productive tillers [22]. At
the reproductive stage, rice displays more susceptibility to extreme temperatures, and both
low and high temperatures lead to spikelet sterility and decreased grain filling [23,24]. Since
plants are sessile organisms, they have evolved complex mechanisms to combat stresses
by activating cellular machineries, stress avoidance, and recovery from stress [25]. After a
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stress attack, plants perceive the signals, transduce them to various cellular compartments,
and establish a response mechanism to alleviate the effects of episodic stress events.

Plant responses to abiotic stress generally begin with signal perception. After sensing
the abiotic stress, the plasma membrane produces secondary signaling molecules, such
as reactive oxygen species (ROS) and inositol phospholipids. The secondary messenger
stimulates the intracellular membrane by regulating the intracellular Ca2+ level, which
then initiates a protein phosphorylation cascade to generate phosphorylated proteins
that are directly participating in cytoprotection or regulating the transcription of specific
stress-responsive target genes [26]. Some gene products are involved in the production of
regulatory factors, such as abscisic acid (ABA) and ethylene, which activate the expression
of transcription factors (TFs) [27]. TFs bind to target gene-promoter sequences, further
activating or inhibiting downstream functional gene expression, and ultimately play a
regulatory role in abiotic stress responses [28]. Revealing abiotic stress response mecha-
nisms and cultivating new varieties of stress-resistant crops will help achieve sustainable
agricultural development and ensure food security for the growing world population.
Here, we discuss the transcriptional networks that mediate the rice plant’s response to
different abiotic stresses, with a particular emphasis on the candidate genes and TFs that
are involved in abiotic stress responses and play a critical role in conferring stress tolerance.
A list of important candidate genes with their genomic locations is given in Table 1, and
their functions are discussed in subsequent sections.

2.1. Low Temperature

In rice, a low temperature below 15 ◦C directly affects the germination percentage,
seedling vigor, tillering, reproduction, and grain maturity [29]. Moreover, many physio-
logical, biochemical, and molecular changes occur during cold acclimation, including the
activation of antioxidant systems, the synthesis and accumulation of cryoprotectants, and
mechanisms protecting and stabilizing cell membranes [30]. To maintain cell membrane sta-
bility, the level of unsaturated phospholipids in the membrane composition increases, and
cells accumulate sucrose- and proline-rich osmotic molecules and antifreeze proteins, which
trap water molecules by creating hydrogen bonds. Cold stress changes the cell membrane’s
fluidity and affects the structure and activity of membrane-localized proteins, triggering
the Ca2+ influx, which is essential for inducing the expression of temperature-responsive
genes [31]. Studies have confirmed that the rice cold sensor (COLD1) binds to the rice G
protein α subunit 1 (RGA1) to mediate cold sensing and low-temperature-induced extracel-
lular Ca2+ influx in rice [14] (Figure 1A). In addition to COLD1, the rice CBL-interacting
protein kinase 7 (OsCIPK7) is thought to sense low-temperature signals by regulating the
conformation of its kinase domain and Ca2+ influx [32]. However, the mechanism by which
COLD1 and OsCIPK7 regulate Ca2+ influx under low-temperature stress remains unclear.
Over the past decades, many chilling stress-related genes have been identified in rice using
different genetic approaches; however, few have been cloned and characterized [33].

Chlorophyll content and fluorescence are important indicators for evaluating plant
stress tolerance [34]. In rice, low temperatures reduce chlorophyll synthesis and chloroplast
formation, confirming that chlorophyll-related changes are essential indicators of rice toler-
ance to low temperatures [35]. Studies have demonstrated that overexpressing OsiSAP8
in rice can significantly improve the plant chlorophyll content and cold tolerance [36]. In
rice, the cell membrane is the first to perceive low temperatures and chilling damage, and
its physicochemical properties are sensitive to low temperatures, resulting in intracellular
electrolyte leakage. Therefore, the electrolyte leakage rate is often an important indicator
of whether plants can tolerate low temperatures [37]. It was revealed that the overexpres-
sion of OsNAC5 results in decreased electrolyte leakage, thus indicating tolerance to low
temperatures [38].
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Figure 1. Mechanism of cold, heat, and drought stress sensing and tolerance in rice. (A) Cold stress 
mechanism and response. Cold stress signals are perceived by COLD1 and CIPK, and different genes 
related to phytohormones and osmoprotectants are regulated. The upregulation of ABA-responsive 
genes leads to ABA accumulation and cold tolerance. (B) Heat stress sensing and response. Heat 
stress signals are perceived by different heat shock transcription factors and proteins. Different 
genes associated with ROS, lipid metabolism, Ca2+ homeostasis, and phytohormones are regulated. 
Several ROS and cell homeostasis genes are activated to trigger the heat stress response. (C) Pathway 
of drought sensing and tolerance. The root system is crucial for drought tolerance, and DRO1 is 
upregulated under drought stress, leading to deeper roots and improved drought tolerance. Other 
genes associated with phytohormones, stomatal balance, water-use efficiency, osmotic adjustment, 
and root and shoot biomass are crucial for drought tolerance. 

Chlorophyll content and fluorescence are important indicators for evaluating plant 
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ance to low temperatures [38]. 

Under cold stress in rice, the intracellular oxygen metabolism is imbalanced, and ROS 
are generated, triggering membrane lipid peroxidation and resulting in cell membrane 

Figure 1. Mechanism of cold, heat, and drought stress sensing and tolerance in rice. (A) Cold stress
mechanism and response. Cold stress signals are perceived by COLD1 and CIPK, and different genes
related to phytohormones and osmoprotectants are regulated. The upregulation of ABA-responsive
genes leads to ABA accumulation and cold tolerance. (B) Heat stress sensing and response. Heat
stress signals are perceived by different heat shock transcription factors and proteins. Different
genes associated with ROS, lipid metabolism, Ca2+ homeostasis, and phytohormones are regulated.
Several ROS and cell homeostasis genes are activated to trigger the heat stress response. (C) Pathway
of drought sensing and tolerance. The root system is crucial for drought tolerance, and DRO1 is
upregulated under drought stress, leading to deeper roots and improved drought tolerance. Other
genes associated with phytohormones, stomatal balance, water-use efficiency, osmotic adjustment,
and root and shoot biomass are crucial for drought tolerance.

Under cold stress in rice, the intracellular oxygen metabolism is imbalanced, and ROS
are generated, triggering membrane lipid peroxidation and resulting in cell membrane
system damage [39]. ROS signaling can activate stress-responsive genes and downstream
signaling pathways that help plants cope with cold stress, such as antioxidant defense
mechanisms, osmolyte accumulation, and membrane remodeling. ROS also promote
polyunsaturated fatty acid degradation and malondialdehyde (MDA) production, further
damaging plant tissues and cells [40]. The protective mechanism of rice against oxidative
stress has two major systems: the enzymatic and the non-enzymatic systems. The enzy-
matic system includes various antioxidant enzymes catalyzing ROS-scavenging reactions.
Among them, superoxide dismutase (SOD) and catalase (CAT) are the two most effective
antioxidant enzymes, converting superoxide anion and hydrogen peroxide (H2O2) into
water and oxygen molecules, thus reducing ROS damage to cells [41]. Non-enzymatic
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systems also include various antioxidants, among which reduced glutathione (GSH) and
ascorbic acid are the most essential [42,43]. In rice, overexpressing the ascorbate perox-
idase gene OsAPXa can increase ascorbate peroxidase activity at low temperatures and
reduce lipid peroxidation and MDA levels, improving the seed setting rate of rice at low
temperatures [44].

Under cold stress, rice accumulates large amounts of soluble sugars, such as sucrose,
hexose, raffinose, glucose, fructose, and trehalose. Soluble sugars can act as osmotic
regulators of cells under low temperatures, stabilizing cell membranes and protoplasmic
colloids. In addition, sugars also provide a carbon skeleton and energy for synthesizing
other organic substances [45,46]. Overexpressing the trehalose synthesis genes OsTPP1,
OsTPP2, and OsTPS1 can significantly improve rice tolerance to low temperatures [47].

In rice, when the pollen mother cell meiosis encounters low temperatures, sugars—
including sucrose, glucose, and fructose—accumulate in the anthers, and simultaneously,
the activity of sucrose-degrading enzymes decreases, and the expression of monosaccha-
ride transporters is downregulated. This results in an insufficient supply of sucrose to the
tapetum and pollen grains, causing pollen sterility [48]. A previous study observed that
externally applying sucrose could significantly improve the fertility of rice pollen under low
temperatures and increase the seed setting rate [49]. Rice also accumulates a large amount
of proline at low temperatures. Proline is widely involved in osmotic regulation and carbon
and nitrogen metabolism and protects most enzymes from denaturation and inactiva-
tion [50]. At the same time, proline also stabilizes polyribosomes and maintains protein
synthesis [51]. Under adverse conditions, proline can also remove the excess hydrogen ions
(H+) produced by the stress reaction and maintain the optimal pH for aerobic respiration in
the cytoplasm [52]. In addition, proline binds to proteins through its hydrophobic group to
improve the hydrophilicity of proteins [53]. In rice, the overexpression of OsCOIN can lead
to a significantly increased proline content and enhanced low-temperature tolerance [54].

ABA is essential in low-temperature adversity [55]. Under cold stress, maintain-
ing a relatively low level of ABA is beneficial for improving the stress tolerance of rice.
Overexpressing the rice ABA metabolism gene OsABA8ox1 reduced ABA levels in rice
seedlings and improved the tolerance to low temperatures [56]. The ABA signaling path-
way comprises the ABA receptors PYR/PYL/RCAR (pyrabactin resistance/pyrabactin
resistance-like/regulatory component of the abscisic acid receptor), negative regulator type
2C protein phosphatase (PP2C), positive regulator four core components, including SNF1-
related protein kinase 2 (SNF1-related protein kinase 2, SnRK2), and the TFs AREB/ABF
that form a dual negative regulatory system [57–60].

Under low-temperature conditions, endogenous ABA increases and binds to PYR/PYL/
RCAR. Consequently, PYR/PYL/RCAR interacts with PP2C, thus inhibiting its binding
to SnRK2. SnRK2 can phosphorylate TFs and activate ABA-responsive gene expressions,
improving plant tolerance to low temperatures. However, under normal conditions, the
endogenous ABA content is unchanged, and the interaction between PP2C and SnRK2 pre-
vents the latter from phosphorylating downstream substrates, repressing the expression of
ABA-responsive genes [61]. The ABA receptor OsPYL9 positively regulates ABA signaling,
and its overexpression can significantly improve cold tolerance in rice [62]. In addition to
the core component PYL-PP2C-SnRK2-ABF, the components of the ABA signaling pathway
include Ca2+, ROS, nitric oxide (NO), phospholipid molecules, and other kinases, such as
mitogen-activated protein kinases (MAPK) [26].

The C-repeat-binding factor/dehydration-responsive element-binding factor (CBF/
DREB1) is an essential TF part of ABA-independent low-temperature response signaling
pathways. CBF belongs to a subfamily of the AP2/ERF (APETALA 2/ethylene responsive)
TF family. The AP2/ERF family is divided into four subfamilies: AP2, ERF, DREB, and
RAV (related to VP1/ABI3) [63]. CBF contains a conserved AP2 domain, which can
bind to the promoter region of low-temperature-responsive genes (CORs) containing
the core element CCGAC (also known as CRT, C-repeat) under low temperatures and
activate the transcription of CORs. The CBF gene is usually regulated by the bHLH-like
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TF (ICE1). Therefore, the low-temperature regulation pathway is also called the ICE-CBF-
COR pathway [64]. Previous studies have demonstrated that overexpressing OsDREB1D
and OsDREB1F of the DREB1 subfamily in rice can improve the tolerance of rice to low
temperatures [65].

The mitogen-activated protein kinase OsMAPK3 phosphorylates OsbHLH002/OsICE1,
thus reducing its ubiquitination level and promoting the accumulation of active Os-
bHLH002. Later on, the expression of the downstream gene OsTPP1 is activated by
OsbHLH002, which finally increases the content of trehalose and improves rice tolerance
to low temperatures [66]. In addition, some CBF genes are induced by ABA, such as
OsDREB1F. OsDREB1F is involved in both ABA-independent and -dependent signaling
pathways [67], suggesting that the ABA-dependent signaling pathway overlaps with the
ICE-CBF-COR pathway [68]. Under cold stress, at the booting stage, the endogenous
gibberellins (GA) content in rice decreases. A previous study demonstrated that mutants
of sd1 and d35 were sensitive to low temperatures and that external GA treatment could
improve the pollen fertility of mutants at low temperatures [49]. The recently cloned HAN1
is crucial for rice cold tolerance at the seedling stage. HAN1 encodes an oxidase that
fine-tunes the JA-mediated chilling response by catalyzing the conversion of biologically
active jasmonoyl-L-isoleucine (JA-Ile) to the inactive form 12-hydroxy-JA-Ile (12OH-JA-
Ile). Functional nucleotide polymorphism in the HAN1 promoter increases putative MYB
cis-elements in the allele of temperate japonica rice, enhancing its cold tolerance [69,70].

Several other genes that are involved in cold stress tolerance have been cloned and
functionally identified in rice. qLTG3-1 encodes a conserved glycine-rich (GRP) domain,
and the three sequence variations in the coding region determine the strength or weakness
of seed germination under low temperatures in rice [71]. In a study, it was observed that
a single SNP in OsGSTZ2 was responsible for amino-acid differences and was essential
for improving low-temperature tolerance in rice at the seedling stage [72]. LTG1 encodes
casein kinase I, and the amino acid substitution at position 357 (I357K) in the coding
region has important effects on the growth rate, heading date, and rice yield under low
temperatures [73]. Ctb1 encodes a protein containing an F-box domain, which interacts
with the E3 ubiquitin ligase subunit Skp1 and participates in low-temperature signaling in
the ubiquitin–proteasome pathway [74]. CTB4a encodes a conserved leucine-rich repeat
receptor-like kinase LRR-RLK (leucine-rich repeat receptor-like kinase), which interacts
with the β subunit AtpB of ATP synthase and affects its activity. The three SNPs (−2536,
−2511, and −1930 upstream of ATG) in the CTB4a promoter region determine the tolerance
of different rice cultivars at low temperatures [33]. OsbZIP73 positively regulates low-
temperature tolerance at the seedling stage, and the interaction between OsbZIP71 and
OsbZIP73 modulates the ROS and ABA levels in response to cold stress [75]. In rice, NUS1 is
mainly expressed in immature leaves and upregulated under cold stress, and nus1 mutants
display impaired chloroplast rRNA accumulation and repressed transcription/translation
capacity [76]. Other essential genes, such as TEMPERATURE-SENSITIVE VIRESCENT
(TSV), WHITE STRIPE LEAF 5 (WSL5), and OsCYP20-2, can protect rice from chilling stress
by regulating different chloroplastic and photosynthetic genes [77–79]. Significant progress
has been made for cold stress tolerance, but our knowledge on plant responses at the
single-cell level remains scarce.

Table 1. List of key genes involved in abiotic stress tolerance of rice.

Gene Symbol Gene Name Locus ID Position 1 Position 2 References

Cold stress

OsCOLD1 Chilling tolerance divergence 1 LOC_Os04g51180 30311519–30316303 30311574–30316221 [14]

OsCIPK7 CBL-interacting protein kinase 7 LOC_Os03g43440 24226224–24227930 24226372–24227930 [32]

OsiSAP8 Stress associated protein gene 8 LOC_Os06g41010 24491979–24494238 24491993–24493907 [36]

OsNAC5 NAC domain transcription factor 5 LOC_Os11g08210 4299149–4301783 4299277–4301784 [38]
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Table 1. Cont.

Gene Symbol Gene Name Locus ID Position 1 Position 2 References

OsAPXa Ascorbate peroxidase 1 LOC_Os03g17690 9843327–9846747 9843336–9846670 [44]

OsTPP1 Trehalose-6-phosphate phosphatase 1 LOC_Os02g44230 26767603–26771633 26767607–2677162 [47]

OsCOIN Cold-inducible LOC_Os01g01420 209771–214229 209771–214173 [54]

OsPYL9 Pyrabactin resistance-like 9 LOC_Os06g36670 21556404–21557334 21556404–21557283 [62]

OsDREB1D Dehydration responsive element-binding
protein 1D LOC_Os06g06970 3310866–3311822 3310919–3311822 [65]

OsHAN1 Salt overly sensitive 1 LOC_Os12g44360 27494401–27508851 27495775–27508468 [69]

Heat stress

OsHSP26.7 Heat shock protein 26 LOC_Os03g14180 7697015–7698284 7697015–7698027 [80]

OsHSP17.7 Small heat shock protein 17.7 LOC_Os03g16040 8838031–8838510 8837821–8838527 [81]

OsTT1 Thermo-tolerance 1 LOC_Os03g26970 15420148–15424724 15420151–15424562 [82]

OsGIRL1 Gamma-ray-induced LRR-RLK1 LOC_Os02g12440 6487390–6490577 6488457–6490577 [83]

OsNSUN2 NOP2/SUN domain family member 2 LOC_Os09g29630 18013221–18020628 18013221–18020611 [84]

OsTCM5 Thermo-sensitive chlorophyll-deficient
mutant 5 LOC_Os05g34460 20433366–20437932 20433366–20437932 [85]

OsEG1 Extra glume 1 LOC_Os01g67430 39177169–39178676 39177169–39178676 [86]

OsRBG1 Rice big grain 1 LOC_Os11g30430 17694857–17696042 17694769–17696076 [87]

OsANN1 Annexin 1 LOC_Os02g51750 31698161–31700503 31698204–31700438 [88]

Drought stress

OsDRO1 Deeper rooting 1 LOC_Os09g26840 16307780–16310837 16307780–16310837 [89]

OsASR5 Abscisic acid stress and ripening 5 LOC_Os11g06720 3278435–3279425 3278451–3279419 [90]

OsDST Drought and salt tolerance LOC_Os03g57240 32645456–32647051 32645695–32646908 [91]

OsJAZ1 Jasmonate ZIM-domain protein 1 LOC_Os04g55920 33306461–33310232 33306468–33310169 [92]

OsEPF1 Epidermal patterning factor 1 LOC_Os04g54490 32414780–32415613 32414780–32415613 [93]

OsCPK9 Calcium-dependent protein kinase 9 LOC_Os03g48270 27467403–27472759 27467413–27472746 [94]

OsITPK2 3,4-trisphosphate 5/6-kinase 2 LOC_Os03g12840 6901924–6907409 6902118–6907409 [95]

Salt stress

OsSAPK4 Stress/ABA-activated protein kinase 4 LOC_Os01g64970 37710241–37715296 37710241–37714835 [96]

OsMAPK44 Mitogen-activated protein kinase 44 LOC_Os05g49140 28188762–28194025 28188894–28194022 [97]

OsLOL5 LSD1-like-5 LOC_Os01g42710 24292537–24299697 24294290–24299500 [98]

OsBADH1 Betaine aldehyde dehydrogenase 1 LOC_Os04g39020 23171426–23176369 23171516–23176332 [99]

OsKAT1 Shaker potassium channel 1 LOC_Os01g55200 31761223–31763887 31761223–31763887 [100]

OsHAK5 High-affinity potassium (K+) transporter
5 LOC_Os01g70490 40825681–40830301 40825678–40830191 [101]

OsVP1 Viviparous 1 LOC_Os01g68370 39723155–39726988 39723171–39726984 [102]

Osmotic stress

OsP5CS1 Pyrroline-5-carboxylate synthetase 5 LOC_Os05g38150 22374029–22381039 22374029–22380820 [103]

OsPPa6 Inorganic pyrophosphatase 6 LOC_Os02g52940 32374870–32378546 32374870–32378165 [104]

OsCCD1 Carotenoid-cleavage dioxygenase 1 LOC_Os12g44310 27464735–27472036 27464832–27471667 [105]

OsANN10 Annexin 10 LOC_Os09g27990 16999259–17001374 16999461–17001374 [106]

OsCSLD4 Curled leaf and dwarf 1 LOC_Os12g36890 22602880–22607315 22602934–22607307 [107]

OsPP65 Protein phosphatase 65 LOC_Os04g37660 22389303–22393831 22389359–22394048 [108]

OSCA1 Osmolality-sensing ion channel 1 LOC_Os01g45274 25692717–25705090 25696671–25705077 [109]

Submergence stress

OsSUB1B Submergence 1B LOC_Os09g11480 6404474–6406039 6404482–6406039 [110]

OsSUB1C Submergence 1C LOC_Os09g11460 6387891–6389789 6387891–6389789 [110]
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Table 1. Cont.

Gene Symbol Gene Name Locus ID Position 1 Position 2 References

OsEIL1 Ethylene insensitive3-like gene 1A LOC_Os03g20790 11776086–11778008 11774230–11778954 [111]

OsACE1 Accelerator of internode elongation 1 LOC_Os03g22510 12929937–12930797 12929937–12930797 [112]

The position 1 and position 2 correspond to Rice Genome Annotation Protect (http://rice.uga.edu/ (accessed
on 4 April 2023)) and RAP-DB (https://rapdb.dna.affrc.go.jp/index.html (accessed on 4 April 2023)) genome
browsers, respectively.

2.2. Heat Stress

High temperatures above 35 ◦C can negatively impact plant growth, pollen viability,
fertilization ability, and grain filling [113]. At the same time, high temperatures inhibit
photosynthesis and reduce water content, negatively impacting plant cell division and
growth [114]. At present, numerous high-temperature-related genes have been cloned in
rice. They can be roughly divided into different categories, including heat shock proteins
(HSPs), heat shock TFs (HSTFs), stress-related TFs, and others, and they play a role in
temperature sensing and stress responses (Figure 1B).

HSPs have a wide variety and rich content in plants and are major molecular chaperone
proteins. HSPs help with the correct folding of proteins and assist their transmembrane
transfer under plant stress, thus enhancing the plants’ stress tolerance. About 17 proteins
of this type have been reported in rice, and most are reportedly induced by heat shock only.
Their specific biological functions are not clear yet [115,116]. Among them, OsHSP26.7
encodes a chloroplastic HSP, which protects chloroplasts from oxidative damage caused by
high temperatures and ultraviolet light [80]. OsHSP17.7 was isolated from heat-stressed
rice, and HSA32 and HSP101 were proved to interact to form a positive feedback regulation
loop with a post-transcriptional role [81].

HSTFs form the regulatory hubs of the heat stress response, responsible for the signal
transduction and activation of heat shock protein expression. Among the ~25 HSTFs in
rice, ~13 are induced by heat shock; however, research on their functions is still lacking,
and the molecular mechanism leading to their expression remains to be revealed [117].
OsHsfA2d encodes two splice isomers, which function under high-temperature stress and
help cells establish a protein folding balance [118]. OsHsfA2e is localized in the nucleus and
displays C-terminal transcriptional activity. Its higher expression can significantly enhance
Arabidopsis environmental stress tolerance [119]. OsHsfA2a has multiple transcripts that
are essential for rice growth and stress responses [120].

In addition to HSTFs, other TFs containing stress elements are involved in high-
temperature stress. OsDREB1B is an AP2/EREBP TF whose expression is altered by temper-
ature variations [121]. OsWRKY11 encodes a TF containing a WRKY domain, and under
the HSP101 promoter, it can significantly improve rice heat and drought tolerance [122].
OsAREB1 and OsbZIP60 encode a bZIP TF, and their expression is affected by high tem-
peratures. The ethylene response factor (HYR) is a key regulator of the direct activation
of photosynthesis and can also regulate downstream carbon metabolism genes and affect
morphology–physiology under drought and high-temperature stress, stabilizing the rice
yield [123]. SNAC3 is an NAC TF that can significantly enhance high-temperature tolerance
by mediating the metabolism of reactive oxygen species (ROS) [124]. In rice, the OsMYB55
TF is induced by high temperatures, and its overexpression can significantly improve
high-temperature tolerance and grain yield [125].

Additionally, several enzymes are involved in temperature stress and other biological
pathways in rice. GAD3 and OsGSr encode a glutamate decarboxylase and a glutamine
synthase, respectively, which are highly expressed after being activated by OsMYB55 to
promote the synthesis of stress-related amino acids and have an essential contribution
to the high-temperature tolerance of rice [125,126]. OsHTAS encodes a ubiquitin ligase
located in the nucleus and cytoplasm. It mediates the hydrogen peroxide-induced stomatal
opening and closing and has a positive regulatory effect on heat tolerance in rice [127].
OsTT1 was identified in African rice, which has a leucine-rich repeat receptor encoding

http://rice.uga.edu/
https://rapdb.dna.affrc.go.jp/index.html
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a 26S proteasome α2 subunit. It is involved in the ubiquitination and degradation of
toxic proteins and is essential to the high-temperature response of rice [82]. OsGIRL1
encodes a leucine-rich repeat receptor protein kinase, and its overexpression confers an
enhanced seedling survival rate under heat stress [128]. TOGR1 is a DEAD-box RNA
helicase involved in high-temperature responses and the processing of rRNA precursors,
which is essential for cell proliferation at high temperatures [83]. AET1 is a histidine tRNA
guanylyltransferase regulating the translation process of ribosomal proteins and is essential
for maintaining protein translation stability at high temperatures [129]. OsNSUN2 encodes
an mRNA m5C methyltransferase, which maintains the normal growth and development of
rice under high temperatures by regulating mRNA translation efficiency [84]. PGL encodes
chlorophyll a oxidase 1, mainly expressed in green tissues, whose mutants are sensitive
to heat stress [130]. TCM5 is a chloroplast-targeted Deg protease involved in chloroplast
development under high temperatures and is essential for the functional maintenance of
the photosynthetic system domain [85].

EG1 is a high-temperature-mediated mitochondrial lipase that can trigger the expres-
sion of floral organ genes under high temperatures and maintain the stability of floral organ
development [86]. OsAPX2 is a rice cytoplasmic ascorbate peroxidase gene involved in
heat-induced ascorbate peroxidation in rice [131]. OsGSK1 is a homologous protein of BIN2,
a key regulator of the Arabidopsis BR signaling pathway, and its knockout mutants display
sensitivity to heat stress [132]. GSA1 encodes a rice glycosyltransferase UGT83A1 with a
broad-spectrum of glycosyltransferase activity and regulates the synthesis of flavonoid
metabolites, rice yield, and stress resistance [133].

The accumulation of soluble sugars such as glucose and fructose, and non-soluble
sugars such as starch, is an important mechanism for plants to cope with heat stress [134].
Studies have shown that a high accumulation of sugars can inhibit photosynthesis [135],
possibly due to the feedback regulation of sugar accumulation in the Calvin cycle and
Rubisco activity [136]. To overcome the inhibitory effect of high sugar accumulation on
photosynthesis, several strategies have been proposed. For example, it has been suggested
that the application of exogenous sugar-metabolizing enzymes, such as invertases and
sucrose synthases, can enhance photosynthesis under heat stress by reducing the sugar
accumulation [137]. In addition, the manipulation of sugar transport and allocation path-
ways, such as the overexpression of sugar transporters or starch synthesis enzymes, has
also been proposed to reduce sugar accumulation and maintain photosynthesis under
heat stress [138]. In rice, some key genes have been identified that play important roles in
sugar accumulation and photosynthesis under heat stress. For example, the expression of a
sucrose transporter OsSUT1 is upregulated under heat stress, leading to an increased sugar
accumulation and decreased photosynthesis [139]. Two heat-responsive genes, ONAC127
and ONAC129, which encode NAM/ATAF/CUC (NAC) domain TFs were also found to
be involved in the grain-filling process under heat stress. It was revealed that ONAC127
and ONAC129 regulate sugar transportation and abiotic stress responses, which are crucial
for proper grain filling. The target genes of ONAC127 and ONAC129 in developing rice
seeds include the sugar transporter gene OsSWEET4 and monosaccharide transporter
gene OsMST6 [140]. Other members of few gene families like trehalose-6-phosphate phos-
phatase and hexokinases might also be potential targets to study sugar metabolism and
photosynthesis under heat stress [47,141]. The functional analysis of these gene may help
in understanding the regulation of sugar accumulation and the Calvin cycle in rice, and
their manipulation may offer potential means to overcome the negative impact of sugar
accumulation on photosynthesis under heat stress.

In addition to the abovementioned gene categories, others related to high temperatures
have been reported. FLO2 is a protein containing a 34-peptide repeat sequence that controls
the amylose content of rice seeds. The overexpression of FLO2 causes grain enlargement
and displays significant expression differences among different rice varieties under high-
temperature stress [142]. Fie1 is a fertilization-independent endosperm-autonomous gene
that regulates seed size and the nighttime high-temperature sensitivity of seeds during grain
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filling, which is of great significance for maintaining yield under high temperatures [143].
RBG1, a novel positive regulator of grain size, was reported to enhance tolerance to heat,
osmosis, and salt stress in rice through auxin and cytokinin pathways [87]. OsLEA4 and
OsLEA5 encode two late embryogenesis proteins, and their expression in Escherichia coli led
to significant high-temperature tolerance, suggesting they may contribute to stress tolerance
in crop species [144]. ZFP177 encodes an A20/AN1-type zinc finger protein induced by heat
stress, and its overexpression in tobacco can improve heat stress tolerance [145]. OsRZFP34
encodes a ring zinc finger protein induced by heat, and its loss of function leads to a
smaller stomatal diameter and reduced temperature tolerance [146]. OsANN1 is a calcium-
binding protein with ATPase activity, and its knockout mutants displayed sensitivity to
heat stress, resulting in severe redox imbalance [88]. OsCNGC14 and OsCNGC16 are
two cyclic nucleotide-gated ion channel proteins in the plasma membrane responsible for
regulating the influx of cytoplasmic calcium ions; their mutants are sensitive to temperature
stress [147]. SLG1 encodes a conserved cytoplasmic tRNA 2-thiolated protein 2 (RCTU2)
involved in tRNA modification and is essential in high-temperature resistance in rice
seedlings and at reproductive development stages in rice [148]. OsGR-RBP4 is a glycine-
rich RNA-binding protein screened from the rice cDNA library under heat shock and
constitutively induced by heat stress [149].

Transcriptional modifications are crucial for environmental temperature perception
and heat stress responses [150]. Recently, four genes related to post-transcriptional regula-
tion under heat stress have been reported in rice, including RNA helicase TOGR1, tRNA
His guanylyltransferase AET1, RNA methyltransferase OsNSUN2, and cytoplasmic tRNA 2-
thiolated protein 2 SLG1 [83,84,129,148]. Among them, TOGR1 is a chaperone protein of the
small subunit complex in the nucleolus and is involved in processing rRNA precursors at
high temperatures [83]. AET1 plays a decisive role in the maturation of the precursor tRNA
His on the endoplasmic reticulum and ribosomes and in later protein translation [129].
OsNSUN2 mediates the mRNA methylation modifications of photosynthesis-related detox-
ification proteins in the nucleus under high temperatures and improves the translation
efficiency to ensure the normal growth of rice [84].

In higher plants, the connection between ubiquitin molecules and substrates can me-
diate various cellular functions through the Ub/26S proteasome system, which is also
crucial for plant heat tolerance [151]. Three genes involved in this pathway have been
reported in rice—OsHCI1, HTAS, and OsTT1 [82,126,127]. Among them, HTAS and OsHCI1
encode E3 ubiquitin ligases. HTAS has ubiquitin ligase activity in vitro and can interact
with ascorbate peroxidase to mediate stomatal opening and closing under high temper-
atures. OsHCI1 accumulates in large amounts in the nucleus at high temperatures and
mediates the rapid export of ubiquitination and degradation of substrate proteins along
the cytoskeleton [82,126,127]. OsTT1, as a 26S proteasome α2 subunit, can help degrade
toxic proteins more efficiently to maintain a high-temperature response [82].

In plants, the accumulation of some metabolites significantly contributes to high-
temperature tolerance. In rice, the MYB55 TF regulates the expression of downstream
glutamate dehydrogenase GAD3 and glutamine synthase OsGS1.2 and promotes the ac-
cumulation of stress-related amino acids, such as L-glutamic acid and GABA, under high
temperatures [125]. In addition, the UDP glucosyltransferase gene GSA1 can promote
flavonoid and anthocyanin synthesis under heat, drought, and salt stress and enhance the
stress resistance of rice [133]. The lipase gene EG1 is located in mitochondria and plastids
and mediates the mitochondrial lipase pathway under high temperatures, regulating lipid
metabolism and downstream gene expression [86].

Calcium ions are essential in plant responses to abiotic stress, acting as second mes-
sengers; however, the molecular mechanism underlying the upregulation of intracellular
calcium ion concentration as a key stress signal remains to be elucidated [152]. In rice,
CNGC14 and CNGC16 act as cyclic nucleotide-gated ion channels to regulate calcium influx
from the plasma membrane under high temperatures, while OsANN1 regulates the redox
balance by increasing the activity of ROS-scavenging enzymes [88,147].
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In rice, APX2 and SNAC3 are directly related to ROS scavenging [124,131]. The
ascorbate peroxidase gene APX2 is synthesized in large amounts in the cytoplasm at high
temperatures, enhancing the ability of rice to scavenge hydrogen peroxide, protecting
spikelets from lipid peroxidation, and maintaining fertility [131]. The TF SNAC3 positively
regulates the expression of ROS-scavenging genes in the nucleus and enhances high-
temperature tolerance in rice [124].

Hormonal signaling is also essential under high-temperature stress, and various
hormonal signals interact in rice. OsGSK1 acts as a negative regulator of BR signaling
to mediate the response to heat stress in rice [132]. Another plasma membrane receptor
kinase, OsGIRL1, regulates heat stress by responding to ABA or SA signaling [128]. The
heat stress-related TF OsAREB1 is a positive regulator of ABA signaling. Finally, OsRZFP34
is involved in ABA-mediated stomatal opening and closing under heat stress [146].

Several high-temperature-related genes have been reported, and the signaling path-
ways they are involved in have gradually become clear. However, the molecular mechanism
and regulatory network of high-temperature sensing, signaling, and transduction to down-
stream elements remain poorly known and must be the main topic for future research.

2.3. Drought Stress

Drought is an important abiotic factor limiting rice growth and production. The
agricultural drought threat’s frequency and range are increasing worldwide, and 50% of
global rice production is severely affected by it. Breeding drought-resistant rice varieties
is a practical option to fight against drought stress [153]. However, drought tolerance in
rice is a complex trait controlled by multiple genes and significantly interacting with the
environment, which makes the drought tolerance mechanism in rice more complicated.
Drought tolerance-related genes are divided into three major categories: transcriptional con-
trol, stress signaling, and membrane transport [154,155]. These genes mainly influence the
molecular, physiological, and biochemical mechanisms after plants are subjected to drought
stress [156]. Many work in ABA-dependent and -independent regulatory systems [157].

The root system is responsible for absorbing and translocating nutrients and water
and is essential for crop drought-escaping strategies. Drought-tolerant rice varieties have
a well-developed root system. By increasing the root-shoot ratio and enhancing root
penetration, the plant can maintain a higher water potential under drought conditions,
efficiently absorbing water in the soil and forming a stable internal environment for the
normal growth of plants [155]. Under drought stress, the root system enhances the overall
drought resistance of rice by improving cuticle resistance and increasing the number of root
hairs, density, and depth [158]. Many genes involved in root traits in rice are also involved
in drought tolerance. A major QTL Deeper rooting 1 (DRO1) controls root tip cell elongation,
asymmetric growth, and gravity-based downward bending of the root tip (Figure 1C). The
transformation of shallow-rooted rice varieties with DRO1 resulted in drought tolerance
by developing deep roots [89]. Other QTLs, including DRO2 and DRO3, also control
deep rooting under normal conditions [159]. In rice, qRL6.1 and qRL7 are associated with
root length under hydroponic conditions [160,161]. Overexpressing OsDREB2B, CYP735A,
and OsDREB1F improves root morphological adaptations under drought conditions [155].
More than 100 association loci were identified using a GWAS study of 529 rice accessions,
providing a genetic basis for drought tolerance improvement [162]. Several genes associated
with osmoregulation and late embryogenesis were also identified with a positive role under
water deficit conditions [156]. Other genes, such as EcNAC67 and OsPYL/RCAR5, induce a
higher root and shoot mass and delay leaf rolling under drought stress [163,164].

Controlling the stomatal aperture is an efficient strategy for developing drought-
tolerant plants. The opening of the stomata in response to light and under normal water
conditions allows water evaporation via transpiration and the entrance of CO2 into leaves
for photosynthesis [93,165]. Under drought stress, plants close their stomata to reduce
water loss and improve the water-use efficiency and survival rate. In plant species, ABA
regulates stomatal movement to reduce transpiration during drought stress [57,58,166]. In
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rice, PYR1 and PYL proteins function as ABA receptors. The multiple mutants of group
I OsPYL1, OsPYL6, and OsPYL12 display defects in the stomatal movement and tran-
spiration control but promote grain productivity [70]. Overexpressing OsPYL3, OsPYL5,
OsPYL9, or OsPYL11 improves drought tolerance but reduces yield under normal condi-
tions [60,62,163]. Several studies reported that H2O2 is essential in stomatal conductance
under drought stress in ABA-independent and -dependent manners. For example, AB-
SCISIC ACID STRESS AND RIPENING5 (OsASR5) improves drought tolerance through
a stomatal closure pathway associated with H2O2 and ABA signaling [90]. In addition,
DROUGHT AND SALT TOLERANCE (DST) and OsSRO1 work independently of ABA to
regulate stomatal closure by modulating H2O2 accumulation [91,167]. OsJAZ1 improves
plant growth under drought stress and induces ABA signaling [92]. Stomatal density, size,
and index are essential for improving drought tolerance. Plants overexpressing EPIDER-
MAL PATTERNING FACTOR1 (OsEPF1) reduced their stomatal density, index, and size,
improving growth, yield, and drought tolerance [93]. Previously, it was reported that
OsDRAP1 (DREB2-like) confers drought tolerance [168]. Introducing OsLEA3-1, OsNAC5,
OsWRKY47, OsbZIP71, OsNAC10, or OsbZIP46 in rice improves drought tolerance [169–174].
Introducing AtDREB1A, EDT1/HDG11, OsTPS1, or OsMIOX in rice improves the water-use
efficiency, antioxidant activity, photosynthesis, and accumulation of osmolytes [175–178].
The transgenic plants overexpressing OsCPK9 display improved drought tolerance through
better osmoregulation and enhanced stomatal closure [94]. Overexpressing OsDREB2A
improves the survival rate of rice plants under severe salt and drought conditions [179].
Several CDPKs (CDPK7 and CIPK03/CIPK12) are involved in signal transduction pathways
in the response to drought stress [180,181]. Under drought stress, reduced inositol triphos-
phate levels and ROS homeostasis are observed in plants overexpressing OsITPK2 [95].
The genes from the WRKY F family are essential in rice growth in response to drought
stress [182]. Multiple TFs, such as OsMUTE, OsSPCHs, OsICEs, and OsFAMA, also control
stomatal movement and development in rice [183]. However, the detailed mechanism of
drought tolerance by these TFs remains unknown. Stomatal development is the key pa-
rameter to control drought stress and deserves more attention to develop drought-resistant
rice varieties.

2.4. Salt Stress

Salt stress affects rice growth and grain quality, directly affecting the market popularity
and economic value of rice. Excessive soil salinity reduces the soil’s water potential, makes
it difficult for plants to absorb water, and causes physiological drought. High external salt
concentrations increase cell membrane permeability and electrolyte extravasation. Plants
generally reduce the cellular water potential by regionalizing intracellular salts, absorbing
exogeneous inorganic ions, and synthesizing organic osmotic regulators such as soluble
sugar, betaine, and proline, thus enhancing plant water absorption capacity and relieving
physiological drought. Under salt stress, absorbing external inorganic ions regulates cellular
osmolarity in rice. Salt-tolerant rice mainly maintains cell osmotic regulation by increasing
the absorption of potassium ions and reducing that of sodium ions [184].

When rice is subjected to salt stress, the excessive accumulation of Na+ in cells re-
duces the absorption of K+ and Mg2+. The cell is likely to lack phosphorus and Ca2+

(Figure 2A). The antagonism of salt stress on nutrient elements disrupts the growth of the
apical meristem and affects chlorophyll synthesis, causing physiological disorders and
hindering normal metabolism. Salt stress relatively reduces the content of K+, leading to cell
membrane hyperpolarization and a decrease in sugar transport and osmotic pressure and
affecting cell extension, growth, and development of shoots and roots. Salt stress inhibits
the absorption and utilization of Ca2+, resulting in the blockage of cell wall formation, the
inhibition of cell division, and the decline of the membrane system [185,186].
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Figure 2. Salt stress, osmotic stress, and submergence stress tolerance mechanisms in rice. (A) Salt 
stress sensing and response. Different proteins play a role in antioxidant and osmoprotectant accu-
mulation, ROS and Na+ homeostasis, MDA accumulation, and electrolyte leakage and are required 
to trigger the tolerance mechanism. Some WRKY TFs suppress the expression of OsNAC1 and 
DREB1B, resulting in salt susceptibility. (B) Osmotic stress tolerance mechanism overview in rice. 
The genes involving ABA, proline, and polysaccharides biosynthesis are mentioned. Further, genes 
involved in ROS scavenging, preventing electrolyte leakage, and balancing the intracellular Ca2+ 
concentration are also highlighted. (C) Submergence tolerance response and regulatory mechanism. 
Rice follows the quiescent strategy to adapt and escape periodic flash flooding. SUB1A is the key 
regulator for submergence tolerance. It triggers the transcriptional regulation of SLR1 and other ERF 
response factors. In floating rice, ethylene accumulation under deep-water conditions stabilizes the 
ethylene signaling factor OsEIL1. OsEIL1 increases gene expression by binding to the promoter of 
SD1. After that, the accumulated gibberellin increases the expression of ACE1; meanwhile, the ex-
pression of DEC1, a factor inhibiting internode elongation, is reduced. On the other hand, OsEIL1 
also binds to the promoter regions of SNORKEL1 and SNORKEL2, triggering the expression of other 
downstream genes. 

TFs positively or negatively regulate salt tolerance, and 80 TFs are upregulated under 
salt stress. For example, the TFs OsDREB2A, OsCOIN, OsbZIP71, OsMYB2, and OsbZIP23 
can lead to various changes in rice, including an accumulation of antioxidants and osmo-
protectants and increased Na+ and K+ transporter activity [187]. Overexpressing these salt-
responsive TFs enables efficient osmotic regulation, minimal oxidative damage, and in-
creased seedling survival rates in rice [171,188]. Among the negative regulatory TFs, 
OsWRKY13 delays the growth and development of plants by inhibiting the expression of 
the salt-responsive genes SNAC1 and ERD1 [189]. Overexpressing OsWRKY45-2 resulted 
in a significant decrease in the survival rate of rice plants under salt stress, which was 
caused by the repressed expression of genes, such as SNAC1, DREB1B, NCED4, and 
Rab16D, suggesting that OsWRKY45-2 may be a transcriptional repressor of these genes. 
The regulation of OsWRKY45-2 expression by OsWRKY13 indicated that these two TFs 
might work together in the same pathway to regulate rice salt tolerance jointly. In 

Figure 2. Salt stress, osmotic stress, and submergence stress tolerance mechanisms in rice. (A) Salt
stress sensing and response. Different proteins play a role in antioxidant and osmoprotectant
accumulation, ROS and Na+ homeostasis, MDA accumulation, and electrolyte leakage and are
required to trigger the tolerance mechanism. Some WRKY TFs suppress the expression of OsNAC1
and DREB1B, resulting in salt susceptibility. (B) Osmotic stress tolerance mechanism overview in rice.
The genes involving ABA, proline, and polysaccharides biosynthesis are mentioned. Further, genes
involved in ROS scavenging, preventing electrolyte leakage, and balancing the intracellular Ca2+

concentration are also highlighted. (C) Submergence tolerance response and regulatory mechanism.
Rice follows the quiescent strategy to adapt and escape periodic flash flooding. SUB1A is the key
regulator for submergence tolerance. It triggers the transcriptional regulation of SLR1 and other
ERF response factors. In floating rice, ethylene accumulation under deep-water conditions stabilizes
the ethylene signaling factor OsEIL1. OsEIL1 increases gene expression by binding to the promoter
of SD1. After that, the accumulated gibberellin increases the expression of ACE1; meanwhile, the
expression of DEC1, a factor inhibiting internode elongation, is reduced. On the other hand, OsEIL1
also binds to the promoter regions of SNORKEL1 and SNORKEL2, triggering the expression of other
downstream genes.

TFs positively or negatively regulate salt tolerance, and 80 TFs are upregulated under
salt stress. For example, the TFs OsDREB2A, OsCOIN, OsbZIP71, OsMYB2, and OsbZIP23
can lead to various changes in rice, including an accumulation of antioxidants and osmo-
protectants and increased Na+ and K+ transporter activity [187]. Overexpressing these
salt-responsive TFs enables efficient osmotic regulation, minimal oxidative damage, and
increased seedling survival rates in rice [171,188]. Among the negative regulatory TFs,
OsWRKY13 delays the growth and development of plants by inhibiting the expression of the
salt-responsive genes SNAC1 and ERD1 [189]. Overexpressing OsWRKY45-2 resulted in a
significant decrease in the survival rate of rice plants under salt stress, which was caused by
the repressed expression of genes, such as SNAC1, DREB1B, NCED4, and Rab16D, suggest-
ing that OsWRKY45-2 may be a transcriptional repressor of these genes. The regulation of
OsWRKY45-2 expression by OsWRKY13 indicated that these two TFs might work together
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in the same pathway to regulate rice salt tolerance jointly. In addition, rice plants displayed
obvious chlorosis and dryness after overexpressing the TFs OsABI5 and OsABI5 [190,191].
These studies indicate that these TFs regulate the expression of different types of genes in
rice through various pathways in response to salt stress. Cis-acting elements are the binding
sites of TFs, and they can regulate the accurate initiation and transcription efficiency of
gene transcription by binding TFs. Many cis-acting elements have been found in rice, and
their specific functions have been verified with the corresponding salt-responsive TFs. For
example, the promoters of most ABA-inducible genes in rice contain the ABA-responsive
element ABRE (ACGTGGC), which regulates their expression under salt stress by recruiting
zinc finger TFs, such as OsBZ8 and OsABI5 [192]. ABRE was initially discovered in the rice
rab16B promoter, and the binding of OsBZ8 and OsABI5 to ABRE was confirmed by a gel
electrophoresis mobility shift and yeast one-hybrid assays, respectively. The presence of the
cis-element DRE in the ABA-responsive gene OsbZIP23 and of ABRE in the OsNAC6 and
ZFP179 genes indicate a crosstalk between ABA-dependent and -independent signaling
pathways [193]. In addition, the cis-element AH2 (CAAT (C/G) ATTG) interacts with the
salt stress-related TF Oshox22 to improve rice salt tolerance [194]. In addition to the various
cis-acting elements identified above, similar-acting elements are found in the promoters of
salt-responsive genes. For example, in rice, the promoter of the C3HC4 ring finger gene
contains cis-elements that are induced by salinity and other abiotic stresses [195]. At the
same time, several cis-elements related to rice salt tolerance have been identified from
different gene interaction networks [196]. All of these cis-elements may be involved in
regulating salt-responsive gene expression.

In rice, several genes have been identified as having a role in sensing and transducing
salt stress signals and an ability to enhance salt tolerance. Under high-salt conditions,
overexpressing the protein kinase SAPK4 can increase the seed germination rate, maintain
intracellular ion balance, and improve photosynthesis and growth parameters by upregulat-
ing the H+-ATPase genes, NHX1 and OsCLC1 [96]. Overexpressing the calcium-dependent
protein kinase OsCPK12 resulted in enhanced salt tolerance due to reduced H2O2 accumu-
lation in leaves and increased root biomass [197]. The MAPK gene OsMAPK44 reduces
plant damage induced by salt stress by maintaining a stable ion concentration in plant
cells [97]. In addition, transgenic rice plants that were overexpressing another MAPK gene,
OsMAPK33, displayed a reduced accumulation of harmful substances in cells and K+/Na+

ratio through the expression of ion transport-related genes or downstream salt-responsive
positive regulators in the MAPK pathway [198]. OsSRK1 encodes a typical S-type receptor
kinase, and its overexpression induces the expression of OsMyb4, OsDREB1A, ZOS3, and
OsWRKY08 to improve rice salt tolerance [199]. Under salt stress, G protein, small G pro-
tein, and channel protein levels increase, triggering the expression of salt tolerance-related
genes [200].

Transgenic plants overexpressing OVP1 can increase the activities of tonoplast py-
rophosphatase and ATPase, providing a proton driving force for the antiporter MHX
and sequestering Na+ in the vacuole, reducing the damage of Na+ to the cytoplasm, and
improving rice salt tolerance [201]. SKC1 (OsHKT8), a member of the OsHKT family,
is a Na+-specific transporter related to Na+ long-distance transport and regulates the
above-ground Na+/K+ balance in rice under salt stress [202]. CDPKs directly bind to
Ca2+, mediate calcium signal channels, and regulate ABA synthesis and response to salt
stress [203]. Overexpressing OsLOL5 increases rice salt tolerance and enhances the expres-
sions of the oxidative stress-related genes OsAPX2, OsCAT, OsCu/Zn-SOD, and OsRGRC2,
indicating that OsLOL5 may enhance ROS scavenging to improve rice salt tolerance [98]. In
rice, the zinc finger protein DST is downregulated under salt stress, resulting in the down-
regulated expression of ROS-scavenging genes such as catalase and peroxidase and leading
to the accumulation of H2O2, stomatal closure, reduced water loss, and Na+ entrance, thus
improving the plant’s salt stress tolerance [91].

Osmoprotectant accumulation is critical for alleviating the intracellular osmotic imbal-
ance in plants under salt stress. In rice, the trehalose pathway genes, OsTPP1 and OsTPS1,



Plants 2023, 12, 2019 15 of 37

the proline biosynthesis pathway gene OsP5CS, and the glycine betaine biosynthesis gene
OsCMO promote the overall growth rate of rice, attaining a high-salt tolerance [204,205].
Similarly, under salt stress, high light conditions and CO2 enrichment can enhance the
expression of OsBADH1 [99]. These two conditions can affect the photosynthetic efficiency
of plants, and OsBADH1 may protect the photosynthetic reaction from salt stress through
various mechanisms. Therefore, the biosynthesis and expression of osmoprotectant-related
genes are crucial for rice salt stress tolerance.

Homeostasis is essential in determining whether plants can overcome salt stress
damage. For example, some protein transport receptors, such as ion pumps or ion channels,
maintain the K+/Na+ ion balance in rice under salt stress. Overexpressing several ion
balance-related genes, such as OsKAT1, OsHAK5, and OsVP1, can enhance salt tolerance,
mainly by increasing the growth rate, photosynthesis, and root biomass. In addition, as a
chloride channel-encoding gene, OsCLC1 is upregulated under salt stress and maintains
yeast growth under salt stress [100–102,206]. The decreased expression of OsTPS1 results
in Ca2+ deposition, limiting Na+ entry into the apoplast [207]. Therefore, three genes,
OsCNGC1, OsCAX, and OsTPS1, may negatively regulate rice salt tolerance.

In addition, the genes associated with ROS are involved in regulating salt tolerance in
rice. Transgenic rice overexpressing OsECS, OsVTE1, and OsMSRA4.1 displayed high-salt
tolerance [208,209]. Under salt stress, the exogenous expression of the rice dehydroascor-
bate reductase gene DHAR increases the germination and seedling growth rate of transgenic
Arabidopsis by accumulating high levels of ascorbic acid [210]. In addition, overexpressing
the cytoplasmic peroxidase genes, OsAPXa and OsAPXb, improves salt tolerance [211].

Under salt stress, the ectopic expression of the HSP genes OsHsp17.0 and OsHsp23.7 can
improve cell membrane stability, germination ability, free proline content, and seedling sur-
vival rate while effectively preventing electrolyte leakage and reducing MDA content [212].
In addition, overexpressing the cyclophilin gene OsCYP2 confers a high photochemical
efficiency, reduced MDA levels, and increased antioxidant enzyme activity in rice under
high-salt conditions, suggesting a key role for this gene in salt stress signaling pathways.
The expression of OsRab16A under high-salinity conditions can lead to rapid rice growth,
the accumulation of osmotic substances, enhanced antioxidant capacity, and the balance
of trace elements [213]. In Arabidopsis, overexpressing OsLEA3-2 increased the seed ger-
mination rate under salt stress, presumably acting as a molecular chaperone to maintain
enzyme activity during dehydration and effectively preventing destructive protein ag-
gregation [214]. In summary, HSPs and molecular chaperone genes can improve rice salt
tolerance by maintaining the stability of protein properties and structures. Most impor-
tantly, the roles of sodium transporters in regulating ion homeostasis and the salt stress
response require further attention.

2.5. Osmotic Stress

When plants are subjected to low temperatures, drought, and salinity, the concentra-
tion of the ion transport changes, leading to an increase in a cell’s permeability to water.
This causes the accumulation of many small organic molecules, such as sugars, proline, and
betaine, which have osmoprotective effects. Furthermore, there is an increase in the concen-
tration of ABA, which triggers a series of physiological and biochemical reactions, leading
to changes in the protein composition [215,216]. To maintain an osmotic pressure balance,
plants regulate ion absorption and compartmentation, facilitate water intake, enhance
antioxidant defense systems, and alter photosynthetic pathways while permeabilizing
the biosynthesis of compatible solutes. Thus, some cellular responses arise from primary
stress signals, while others arise primarily from secondary signals. Drought stress and salt
stress have independent and some common signal transduction mechanisms. In addition,
cold stress reduces the root’s water uptake in rice, but prolonged exposure to low root
temperatures induces a gradual increase in the root’s osmotic hydraulic conductivity [217].
To avoid osmotic stress, plant cells reduce the intracellular water potential and maintain
intracellular water through osmotic adjustment, thereby ensuring the normal physiological
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activities of plant cells. Substances involved in osmotic regulation are called osmotic regu-
lators, mainly including inorganic ions, such as Na+, K +, Cl-, and small organic molecules,
such as polyols (mannose), nitrogen-containing compounds (proline and betaine), sugars,
organic acids (malic acid), and their derivatives. Proline is the most water-soluble amino
acid, and its functions include being an intracellular osmotic regulator, reducing agent, en-
ergy source, hydroxyl radical scavenger, intracellular enzyme protection agent, N-element
storage substance, and regulator of redox potential. When rice seedlings are subjected
to osmotic stress, the proline content in leaves and roots is significantly involved in cell
osmotic regulation [218].

δ-Pyrroline-5-carboxylate synthase (P5CS) is the rate-limiting enzyme that catalyzes
the first two steps in proline biosynthesis from glutamate, and is regulated by the transcrip-
tional level of P5CS [219]. Overexpression of the gene OsP5CS1 can significantly increase
the proline content and improve the osmotic tolerance, thereby reducing the oxidative
damage of rice under salt stress [103]. The wheat gene Ta-UnP regulates the expression
of P5CS, and the overexpression of Ta-UnP in rice can highly induce the expression of
OsP5CS1, resulting in increased proline content, and improving the osmotic and salt stress
tolerance of rice [220]. The wheat gene TaPUB15 encodes a U-box E3 ubiquitin ligase, which
is highly expressed in seedling roots and induced by salt stress. The overexpression of
wheat TaPUB15 in rice can significantly increase the transcription level of OsP5CS1, and at
the same time, the transgenic lines have more roots and an improved salt tolerance [221].
The Alfin-like (AL) family is a group of small plant-specific TFs involved in abiotic stresses
in dicotyledons. In an early study, it was found that an AL gene in rice was associated with
the grain yield under drought stress. It was also found that Hap1 of OsAL7.1 and Hap7 of
OsAL11 were favorable haplotypes of seed weight and germination under osmotic stress.
Additionally, during the germination stage, the osal7.1 and osal11 mutants have larger seeds
and are more susceptible to mannitol and abscisic acid. In contrast, the overexpression of
OsAL7.1 and OsAL11 reduced the stress tolerance at the adult stage [222]. Wang et al. [104]
used the CRISPR/Cas9 system to obtain a mutant of the inorganic pyrophosphatase OsPPa6
gene. In the mutant, inorganic phosphorus, ATP, chlorophyll, sucrose, starch, net pho-
tosynthetic rate, soluble sugar, and proline were significantly reduced, while the MDA,
osmotic potential, and Na+/K+ ratio significantly increased, indicating that the OsPPa6
gene is an important osmoregulatory factor in rice. Calcium-binding proteins are important
in signal transduction for growth and stress response. In rice, OsCCD1, a novel small
calcium-binding protein with a centrin-like domain, was characterized. OsCCD1 binds
Ca2+, and its expression is induced by osmotic and salt stress and positively regulates
tolerance to these stresses through involvement with genes such as OsDREB2B, OsAPX1,
and OsP5CS (Figure 2B). It was observed that osmotic and salt stress dramatically increased
the expression of OsCCD1 via the calcium-mediated ABA signal [105].

Annexin is a multi-gene family of calcium-dependent phospholipid-binding proteins
that are found in plants and other organisms. In plants, annexins play various roles such as
membrane trafficking, abiotic stress responses, and signal transduction [223]. Interestingly,
it was found that OsANN10, a putative annexin gene in rice, negatively regulated plant re-
sponses to osmotic stress. Knocking down OsANN10 significantly decreased the content of
H2O2 by increasing POD and CAT activities, suggesting a negative regulation of OsANN10
in protecting the cell membrane against oxidative damage via scavenging ROS under
osmotic stress [106]. Proteins that regulate cell wall polysaccharide synthesis play a crucial
role in osmotic stress tolerance in plants. During osmotic stress, these proteins control the
deposition and reorientation of cell wall components, which helps maintain cell integrity
and prevent water loss. In a study, the role of the protein OsCSLD4, involved in regulating
cell wall polysaccharide synthesis was evaluated in response to osmotic stress. The study
shows that OsCSLD4 plays a positive role in osmotic stress tolerance in rice by regulating
the ABA content. This study also conducted a transcriptomic analysis to investigate the
genes involved in the response to osmotic stress and their regulation by OsCSLD4. The
findings suggest that OsCSLD4 plays a crucial role in regulating the expression of genes



Plants 2023, 12, 2019 17 of 37

involved in ABA biosynthesis and signaling pathways, which are essential for the response
to osmotic stress [107].

The balance between hormonal signaling and osmotic stress tolerance in plants plays
a crucial role in promoting plant growth and development and regulating stomatal closure
and the accumulation of compatible solutes. It was found that the OsGA2ox8 is induced
by various abiotic stresses and phytohormones, and its overexpression enhances osmotic
stress tolerance in rice by increasing osmotic regulators and antioxidants. It was observed
that OsGA20ox8 is preferentially expressed in shoots and roots under osmotic stress and
is also involved in regulating genes that are associated with anthocyanin and flavonoid
biosynthesis, as well as JA and ABA biosynthesis pathways [224]. Recently, OsNF-YA3, a
rice TF, was found to regulate this GA and ABA balance by activating GA biosynthetic genes
and enhancing GA content while repressing the ABA response to stabilize plant growth
and osmotic stress tolerance. It was observed that OsNF-YA3 negatively regulates plant
osmotic stress tolerance by binding to the promoters of ABA catabolic genes (OsABA8ox1
and OsABA8ox3) and reducing ABA levels. The activity of OsNF-YA3 is inhibited by the
DELLA protein SLR1, and OSMOTIC STRESS/ABA-ACTIVATED PROTEIN KINASE 9 also
interacts with OsNF-YA3 and mediates its degradation [225]. The specific roles of type 2C
protein phosphatases (PP2Cs) in rice abiotic stress tolerance are not well understood. In
rice, 90 PP2C genes have been predicted, but very few members have been functionally
characterized [226]. In a previous study, the function of OsPP65 in osmotic and salt
stress tolerance in rice was investigated. It was observed that OsPP65 is expressed in rice
seedlings and leaves and induced by multiple stresses. The knockout of OsPP65 increased
osmotic and salt stress tolerance in rice plants through independent regulation of JA and
ABA signaling pathways. Metabolomics analysis indicated modulation of raffinose family
oligosaccharide metabolism pathway in rice. OsPP65 is a potential target for improving
rice stress tolerance using gene editing [108].

In rice, the HSP90 family gene, OsHSP50.2, was found to be ubiquitously expressed,
and its expression was induced by heat and osmotic stress treatments. The OsHSP50.2
overexpression lines showed reduced water loss and enhanced or improved tolerance to
osmotic and drought stresses. Overexpression lines exhibited significantly lower levels and
less electrolyte leakage but higher SOD activity. It was also observed that the OsHSP50.2-
overexpressing plants accumulated a significantly higher proline content and improved
osmotic adjustment to drought stress damage [227]. In Arabidopsis, a hyperosmolality
senser, OSCA1 (osmolality-sensing ion channel 1), was identified. The homolog of OSCA1
from rice (OsOSCA1.2), consisting of 11 transmembrane (TM) helices and a cytosolic soluble
domain that has homology to RNA recognition proteins, also mediates hyperosmolality
sensing, transport pathway gating, and balances the intracellular Ca2+ concentration. The
TM domain is similar to the TMEM16 family and has a unique structure with extended
helical arms. These arms may detect tension on the lipid bilayer caused by turgor pressure
and open a transport pathway, thus enhancing osmotic stress tolerance [109]. Receptor-like
cytoplasmic kinases (RLCKs) are mainly involved in growth regulation and pathogen
responses in plants; however, their role in abiotic stress tolerance remains elusive. A study
found that OsRLCK241 is not only induced by salt and drought stresses but also by ROS
detoxification by accumulating more compatible osmolytes and enhancing the activities of
ROS scavengers to alleviate the osmotic stress evoked by drought and stress [228]. The rice
plants have evolved various mechanisms to tolerate osmotic stress, including the regulation
of gene expression, the synthesis of compatible solutes, and hormonal regulation. However,
knowledge about the complex signaling pathways involved in osmotic stress responses
in rice, as well as the interactions between different stress response pathways, is still very
limited compared to other stresses.

2.6. Submergence Stress

Submergence or flooding can affect oxygen, CO2, light, and nutrient uptake, thus
inhibiting photosynthesis, accelerating energy consumption, and causing plant growth
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atrophy or death [229,230]. To adapt to excess water conditions, rice has developed special-
ized anatomical and morphological traits, such as aerenchyma, radial oxygen loss barriers,
adventitious roots, and the ability to form a leaf gas film. In addition, plants produce
ventilated tissues and ethylene to facilitate gas exchanges and the programmed cell death
of cortical and epidermal cells [231,232]. Moreover, the mechanical force generated by the
growth of adventitious roots regulates epidermal cell death [233]. However, these strate-
gies are insufficient for survival under continuous and complete submergence, resulting
in stunted growth or complete death because of photosynthesis inhibition and the fast
consumption of energy reserves. The submergence conditions rapidly trigger GA accumu-
lation, resulting in rapid internode elongation [234]. When submerged, rice plants can form
a protective wall around their roots called a radial oxygen loss (ROL) barrier from the root
base to the root tip and outside the aerenchyma to prevent oxygen loss that has reached
the roots [235]. Gene expression and mutant analyses suggested that suberin is the main
component of the ROL barrier in rice roots, but the detailed mechanism of barrier formation
remains to be clarified [236,237]. To overcome prolonged submergence, some Asian rice
varieties have developed additional traits, such as aerobic germination, quiescence of leaf
elongation in response to flash floods, and internode elongation under periodic flooding.
Some rice cultivars tolerate submergence for ~15 days by restricting the consumption of
carbohydrates, degradation of chlorophyll, and elongation growth [110,238].

Rice adaptation to submergence stress includes submergence escape and tolerance,
which are controlled by SNORKEL (SK) and SUBMERGENCE-1 (Sub1), respectively, be-
longing to the ETHYLENE RESPONSIVE FACTOR (ERF) class of TF genes [234,238]. The
functional analysis of ERF-type TF genes revealed their involvement in controlling various
physiological and morphological responses under submergence conditions.

When rice germinates under anaerobic conditions, radicle elongation is suppressed, while
the coleoptile elongates and exposes its tip to the water surface to secure oxygen [239,240].
During anaerobic germination, the expression of the amylase alcohol dehydrogenase (ADH)
genes is induced, leading to stored starch decomposition and ethanol fermentation to
secure energy for elongation and promote anaerobic respiration. In rice, OsTPP7 (trehalose6-
phosphate phosphatase 7) is involved in anaerobic respiration, promoting energy supply to the
coleoptile by increasing the metabolism of trehalose 6-phosphate (T6P) in the embryo [241].

Submergence-tolerant rice exhibits growth atrophy, which is beneficial to reduce en-
ergy consumption and ensure rice survival for several weeks under flooding stress and
sufficient energy under continuous submergence. A major QTL (Sub1) on chromosome
9 of the submergence-tolerant indica cultivar ‘FR13A’ explains 70% of the phenotypic vari-
ation [242]. The Sub1 region of submergence-tolerant varieties contains clusters of three
similar genes, SUB1A, SUB1B, and SUB1C, encoding ERF-like TFs, among which SUB1A is
the most studied. SUB1B and SUB1C are invariably present in the Sub1 region of all the rice
accessions analyzed. Comprehensive genetic studies revealed that SUB1A introgression
with SUB1B and SUB1C confers a robust tolerance to submergence without affecting rice
grain yield and quality [110,238,243,244]. In addition, SUB1A is present in a limited number
of indica and aus cultivars, whereas SUB1B and SUB1C are found in all rice accessions [238].
SUB1A reduces energy consumption by negatively regulating the expression of genes that
encode enzymes that degrade starch and sucrose and positively regulating ADH and pyru-
vate under submergence conditions [110]. In addition, SUB1A inhibits ethylene synthesis
and the expression of cell wall loosening and expansion proteins under flooding stress,
maintaining high chlorophyll a and b contents (Figure 2C). Through magnetic resonance,
metabolites controlled by SUB1A under flooding stress were analyzed. As a result, SUB1A
was involved in carbohydrate consumption, amino acid accumulation, and aerial part elon-
gation [245]. In rice, two ERF multigenic SUBMERGENCE-1 (SUB1) and SNORKEL (SK)
loci govern the quiescence versus escape antithetical adaptive responses [110,234,238,246].
The detailed molecular and physiological studies of SUB1A and SK genes indicated that
these ERF VII genes respond to submergence through the same hormonal pathways and
regulate antithetical growth. SUB1A and SKs display higher transcriptional accumulation
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in response to ethylene under submerged conditions [110,234]. SUB1A positively regulates
adaptability to flash flooding, as plants are re-exposed to atmospheric oxygen and post-anoxic injury
because of oxidative stress [247]. In addition, SUB1A improves oxidative stress tolerance
by regulating gene-encoding enzymes related to ROS detoxification [248]. Interestingly,
SUB1A induces the transcription and protein accumulation of SLR1 (slender rice1), a sup-
pressor of GA signaling, causing elongation suppression in submerged conditions [246].
Rice plants that are sensitive to flooding lack the genomic region containing the SUB1A
gene or have mutations that cause amino acid substitutions in the Sub1A protein [238]. The
amino acid residue involved in this mutation is essential for the phosphorylation of Sub1A
by MPK3, an MAP kinase [249]. Phosphorylated Sub1A induces the transcription of MPK3,
forming a positive feedback loop, and the transcription of ERF66 and ERF67. Those genes
induce the transcription of genes that contribute to flood tolerance, such as ADH [250].

Two key genes, SNORKEL1 and SNORKEL2, were cloned and studied. As a result, the
study indicated that they respond to flooding stress by encoding response factors involved
in ethylene signaling [251]. Under submergence, ethylene accumulates in rice and induces
the expression of SNORKEL1 and SNORKEL2, finally promoting internode elongation
through GA. An attempt was made to identify the genetic factors for floating rice; they
were identified on chromosomes 1, 3, and 12 [252–255]. A subsequent linkage analysis,
using ‘Taichung No. 65’ (non-floating rice) and ‘C9285’ (floating rice from Bangladesh),
revealed that the QTL located on chromosome 12 was the same ethylene responsive gene
as SUB1A. SNORKEL1 and SNORKEL2 were identified in the genomic region deleted in
non-floating rice. The OsEIL1 protein is stabilized in response to ethylene and regulates
downstream gene expression [111]. In floating rice, the expression of SNORKEL1/2 is
induced by the OsEIL1 protein stabilized by ethylene accumulation under deep-water stim-
ulation, thus promoting internode elongation through the expression of downstream genes.
Interestingly, SNORKEL1/2 belongs to the same subgroup of the ERF family as SUB1A
and ERF66/67 [234,250]. Elucidating the detailed signaling mechanisms downstream of
SNORKEL1/2 may provide a molecular evolutionary answer to explain why similar TFs
function differently in flood adaptation.

To search for new factors that are involved in floating rice, a GWAS was performed on
68 rice cultivars collected from various Asian countries with various floating rice qualities
and different internodal lengths [256]. As a result, a region on chromosome 1 was strongly
correlated with the internode length. A high-density linkage analysis was performed, and
GA20oxidase2 and SD1 (GA 20 oxidase 2; SEMIDWARF1) involved in GA synthesis were
identified in the region controlling internode length in floating rice. Comparing different
high-floating rice cultivars revealed 17 polymorphic mutations in the promoter and intron
regions commonly found in rice [257]. The SD1 allele, SD1DW, containing these mutations
significantly affected floating rice in the presence of SNORKEL1/2. SD1DW produces
the active GA hormone, GA4, rather than GA1, which has a stronger effect on internode
elongation. Later, it was found that OsEIL1 directly binds to a specific region of the SD1DW
promoter, revealing that SD1DW is under the control of OsEIL1 and SNORKEL1/2 [258].

Using GA-dependent internode elongation as an index, another gene, ACCELERATOR
OF INTERNODE ELONGATION 1 (ACE1), was identified as being induced by GA in a
deep-water environment and ultimately inducing internode elongation. However, overex-
pressing ACE1 alone does not result in internode elongation; initiating internode elongation
in floating rice requires ACE1 and independent GA signals. Another QTL, DEC1, encod-
ing a C2H2 zinc finger-type TF and regulating GA-dependent internode elongation, was
identified on chromosome 12. Overexpressing DEC1 inhibited internode elongation, while
dec1 mutants displayed internode elongation. DEC1 was expressed near the inter-meristem,
where cell division was activated in the dec1 mutant. In floating rice, GA administration
and deep-water conditions decreased the expression of DEC1, suggesting that this decrease
leads to the release of cell division inhibition during internode elongation. Five ACE1-like
(ACL) sequences are found in rice, and overexpressing ACL1 induces internode elongation
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when administered with GA. ACE1 has lost its function in rice, while ACL1 retained it; its
expression is induced during reproductive growth [112].

3. Utilization of Integrative Omics Analyses to Identify Potential Candidate Genes
Associated with Abiotic Stress

Recent advances in transcriptomic, proteomic, and metabolomic technologies now
offer opportunities for candidate gene identification for subsequent utilization in plant
breeding and potential improvements in global food security. The efficacy of breeding for
increased environmental stress tolerance could be significantly improved through candi-
date gene identification and their utilization in marker-assisted selection. Several candidate
genes underlying rice abiotic stress tolerance have been identified using functional ge-
nomics platforms. This section describes some examples from the literature about such
candidate genes. Several stress responsive key genes, proteins, and metabolites have been
uncovered through integrative omics studies and can be functionally characterized to
utilize in breeding programs (Table 2).

3.1. Transcriptomic Data

The RNA-seq analyses upgraded our knowledge of gene expression in rice under
different environmental conditions. Recently, RNA-seq has become more advanced, with
increased detection sensitivity and sequencing depth. To date, transcriptome analysis
has identified candidate genes linked to several abiotic stress responses in rice plants. A
transcriptome study identified several DEGs for chilling stress, and by combining QTL
fine-mapping and functional identification, the co-localized DEGs may provide insights
for elucidating the mechanism of chilling tolerance and the basis for gene cloning. The
study identified 154 highly expressed genes encoding oxidoreductases, thioredoxins, and
glutathione S-transferases, among others. These genes help maintain cell redox homeostasis
and promote chilling tolerance. Some stress-responsive genes encoding death-associated
protein kinase 1, calcium homeostasis regulator CHoR1, four LRR-containing proteins, and
four F-box domain-containing proteins were also part of this group. Another group of
27 genes, including 2 genes encoding short-chain dehydrogenase/reductase family pro-
teins, 6 genes encoding TFs, and 3 stress-responsive genes encoding senescence-associated
protein DIN1, polygalacturonase inhibitor 1, and hairpin-induced protein 1, were identi-
fied, indicating their positive role in chilling stress responsiveness. Several genes with a
negative role in redox regulation, metabolism, stress response, and transport were iden-
tified, including genes encoding peroxidases, wall-associated kinase 3, oxidoreductases,
and receptor-like kinase ARK1AS. Interestingly, two HSPs, an HSF, a photosystem II D2
protein, and a set of protein kinase domain-containing proteins were also discovered.
Although HSPs and HSFs are known for their role in heat shock response in plants and
other organisms, their function in chilling stress responsiveness in plants remains to be
analyzed [259].

In an integrated transcriptome-based study of heat-resistant and -tolerant indica rice
varieties, three candidate genes were reported as essential for high-temperature stress toler-
ance at the seedling stage. First, the study identified genes related to ROS (OsCML4), plant
hormone signal transduction, metabolic pathways, cysteine and methionine metabolism
pathways (LOC_Os01g09450, LOC_Os03g59040, and LOC_Os12g42980), stomatal conduc-
tance (LOC_Os03g59040), and survival rate (LOC_Os02g12890) under heat stress. Finally,
LOC_Os01g09450, LOC_Os03g59040, and LOC_Os12g42980 were potential candidate genes
for high-temperature stress tolerance in seedlings [260]. Another study utilized GWAS and
a transcriptome analysis and identified 11 genes that were associated with the rice heat
stress response by examining the SNP variation and gene expression. LOC_Os03g16460
encodes a putative uncharacterized protein, and LOC_Os05g07050 encodes a putative pre-
mRNA processing splicing factor 8. By analyzing the 221 rice accessions, seven mutation
sites classified into five categories and three mutation sites classified into two categories
were found for LOC_Os03g16460 and LOC_Os05g07050, respectively. Amino acid changes
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were observed in the encoded proteins due to these mutations. For LOC_Os03g16460,
plants with mutations at all seven sites displayed the highest heat tolerance, whereas plants
carrying a single mutation displayed a relatively low heat tolerance—a low survival rate.
Similarly, for LOC_Os03g16460, plants with a single mutation were less tolerant to heat than
plants with all three mutations. Interestingly, plants with more mutation sites displayed
higher heat tolerance in indica rice accessions, whereas fewer mutation sites in japonica
accessions tended to have lower heat tolerance [261].

Subsequently, several heat-responsive genes mainly involved in stress response, trans-
port, transcriptional regulation, protein binding, and antioxidant activities were identi-
fied through transcriptomic analyses. The time-dependent expression pattern of genes
under heat stress included several heat shock TFs (Hsf) and Hsp candidate genes. Hsf
(Os02g0527300, Os03g0133000, and Os06g0662200), Hsp (Os03g0218500, Os03g0224700,
and Os04g0107900), glycolysis (Os01g0160100, Os05g0187100, and Os05g0524400), and
ubiquitin–proteasome system (Os03g0116700, Os05g0160200, and Os06g0173100) gene
expression was generally enhanced under heat stress, whereas genes related to specific sec-
ondary metabolisms (Os06g0656500, Os08g0498400, and Os09g0492700) and light reaction
(Os01g0720500, Os01g0938100, and Os07g0105600) were repressed by heat stress [262]. It is
worth mentioning that the whole transcriptome identified 37 novel heat-responsive genes,
including many TFs. Remarkably, only 22 out of the 37 genes were heat-responsive and
part of a tissue-independent general response; they were also identified in another RNA-
seq study. In addition, 46 genes representing HSFs (OsHSFA2f and HSFB2c), molecular
chaperones, and co-chaperone families were highly regulated during anthesis under heat
stress. Interestingly, a small HSP (LOC_Os02g52150) was also highly upregulated in the
transcriptomic data [263]. Another transcriptomic investigation suggested 589 candidate
genes related to heat stress responses in rice seedlings. Six heat stress-responsive genes
were identified that are associated with a broad range of abiotic stress responses, such as
drought, salt, cold, and submergence. These genes are potential candidates for fighting
combined stresses. In addition, OsNAC6/SNAC2 (Os03g60080) was upregulated under
heat and drought stress, indicating a strong correlation between the two. Furthermore,
five HSP10/CPN10 and thirteen HSP20 genes were associated with prolonged heat stress
responses, but none of the HSP10/CPN10 or HSP20 genes were associated with an early
heat response. Among them, eight HSP20 genes were significantly upregulated in response
to multiple abiotic stresses, especially heat and drought. On the other hand, HSP10/CPN10
were not stimulated by other abiotic stresses. These findings suggest that the HSP20 fam-
ily proteins have evolved to cope with multiple abiotic stress challenges and prolonged
heat stress, whereas the HSP10/CPN10 family is specialized to overcome prolonged heat
stress [264]. In addition to heat stress, several transcriptome studies have been utilized and
successfully identified candidate genes involved in other stresses.

Another transcriptome analysis was performed on 4-week-old rice seedling roots
subjected to drought stress for two and three days. As a result, 1098 genes were upregulated
in response to 3-day drought stress, which caused severe damage to root development after
recovery, unlike the 2-day stress. Interestingly, 68% of candidate genes were not identified
in previous transcriptomic studies. Further bioinformatics analysis revealed that RING-box
E3 ligases in the ubiquitin–proteasome pathways are significantly stimulated by drought.
Finally, the study analyzed the functions of 66 candidate genes and found 29 genes directly
involved in drought tolerance. The identified genes were involved in metabolic pathways,
protein modification, and protein degradation [265]. In the transcriptomic study, several
NAC (CUC, NAM, and ATAF) family genes were upregulated under salt stress, and among
them, 14 were reported in previous studies to be associated with abiotic stress responses.
Additionally, two HD-ZIP and two MYB genes were highly upregulated, making them
candidates for salt stress tolerance in rice [266]. Under salt stress, a transcriptome study of
rice roots found that several candidate genes related to multiple stresses. A further analysis
identified 13 candidate genes that were already functionally characterized and involved in
phytohormone signaling and salt stress tolerance [267].
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Another study identified non-coding RNA—miRNAs and lncRNAs—and several can-
didate genes involved in salinity and submergence stress responses through comparative
transcriptome analyses of wild rice under different stress conditions [268]. RNA sequencing
of two contrasting recombinant inbred lines (RILs) retrieved five candidate genes, including
LOC_Os01g04430, LOC_Os01g04530, and LOC_Os03g22720 for qCL-1.1 and qCL-3.1. These
genes are responsible for different metabolic processes, and the RILs expressing these genes
were submergence-tolerant [269]. After utilizing the deep transcriptomes of rice leaves and
roots under drought, cold, and salt stresses, many upregulated and downregulated genes
specifically and commonly expressed under those stress conditions were identified. Data
mining identified the expression of key functional and regulatory genes and conserved
cis-regulatory elements in the promoter of highly presented genes involved in different
abiotic stress signaling pathways [270].

Although several transcriptome studies have reported candidate genes and TFs in-
volved in the response to abiotic stress in rice, the expression landscape of these genes at a
single-cell resolution remains poorly understood. From the perspective of transcriptomic
work, the importance of individual genes and gene sequences can be further confirmed in
genome editing experiments.

3.2. Proteomics Data

A proteomics analysis provides a broad picture of plant stress responses at the protein
level. Because of advancements in two-dimensional polyacrylamide gel electrophoresis
(2DE), protein detection and quantification, fingerprinting, and partial sequencing by
mass spectrometry, the sensitivity, and power of proteomic approaches have increased in
recent years.

Some candidate components, including a protein similar to WAK1, a putative ar-
madillo repeat-containing protein, and a protein phosphatase 2C-like protein involved in
signal transduction under cold stress—RAB2A—were identified [271]. In a proteomics
analysis of cold-treated anthers, 441 DEPs were identified, and following a bioinformatics
analysis, 30 upregulated and 4 downregulated were considered candidate genes. Most
were related to glycine-rich proteins and C2 domain proteins [272]. An iTRAQ-based
proteomics approach identified 85 proteins related to low temperature stress, enriched
mainly in transport, photosynthesis, precursor metabolism, and energy production, as well
as histones and vitamin B [273].

The proteomic analysis of rice under drought stress alone and In combination with
heat stress identified proteins favoring pollen germination. A comparative iTRAQ-based
proteomics study compared the proteomes of heat-tolerant and -sensitive rice lines at an
early milky stage. A total of 38 DEPs were identified, among which 32 were functionally
annotated in NCBI and UniProt databases. These proteins were related to the defense re-
sponse, transport, energy metabolism, signal transduction, transcript regulation, oxidation,
and biosynthesis. A further analysis identified downstream genes/proteins involved in the
high light temperature response [274]. Another proteomics study identified 54 candidate
proteins involved in high-temperature stress during the first half of the ripening period of
heat-sensitive rice lines [275].

Furthermore, two small HSPs (16.9 and 17.4 kDa) were strongly expressed under
combined stress at the protein and transcript levels. Comparing the protein and transcript
expression patterns for these two genes suggested differential gene regulation at the tran-
scriptional and translational phase in response to heat and drought stress [276]. Proteomics
analysis was performed to elucidate the molecular responses of Thai jasmine rice under
drought, and 623 DEPs were identified. After a comprehensive analysis, a candidate pro-
tein, DEAD/DEAH-box RNA helicase, was identified. It is involved in DNA repair and
was reported as a novel protein for promoting plant stress tolerance [277,278]. In another
work, iTRAQ-based proteomics identified 1221 DEPs in rice grown under control and light
conditions, and a candidate gene-encoding rice β subunit of glyceraldehyde-3-phosphate
dehydrogenase (OsGAPB) was identified and functionally characterized [279].
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In a proteomic study, the response of rice suspension cells to salt stress using the iTRAQ
technique was studied, and significant changes in the carbohydrate and energy metabolism
pathways, redox signaling pathways, auxin pathways, and biosynthetic pathways of
osmolytes were observed [280]. Another study used iTRAQ techniques to study the
proteome changes in rice under salt stress and found 56 proteins showing significantly
altered expression, 16 of which were mainly enriched in the processes of photosynthesis,
anti-oxidation, and oxidative phosphorylation, which play an important role in maintaining
energy balance and generating active oxygen under stress conditions [281]. In another
proteomic study, the rice seedlings of spotted leaf 1 (spl1) were completely submerged
for five days to initiate cell death and then exposed to air, and the samples were collected
at different time points. Finally, PBZ1, as a putative cell death marker, was identified,
which was highly inducible in spl1 [282]. In short, using proteomics to identify candidate
proteins—and genes—will help improve rice abiotic stress tolerance, which is reflected in
rice yield and quality.

3.3. Metabolomics Data

Metabolic compositional variations reflect the changes in gene expression occurring in
stress responses. Studying metabolic pathways and their interconnections in the context of
systems biology is progressively becoming common for identifying candidate genes. To
reveal the candidate genes, integrating transcriptomics, metabolomics, and proteomics, the
data provide a comprehensive understanding of the molecular mechanisms underlying
stress tolerance in rice. Stress tolerance in rice requires a fully functional metabolism
throughout the stress, but the regulation of and the link between associated metabolites
and transcripts remain largely unknown.

The comparative metabolomics analysis was performed for two subspecies of rice with
significant divergence in chilling tolerance. Finally, 9 metabolites (glutathione, putrescine,
asparagine, β-Alanine, γ-Glutamylleucine, oxalate, mannose-6-phosphate, isocitrate, and
nicotinamide mononucleotide) with obvious changes in relative abundance under chilling
treatment [283]. The metabolomics analysis analyzed heat-treated single mature pollen
grains in two contrasting rice spikelet fertility studies under heat stress. Finally, contrasting
varietal differences in phosphatidylinositol (PI) (34:3) were detected in mature pollen,
together with other 106 metabolites. The major categories were linked to lipid-related
metabolites, organic acids, amino acids, and related metabolites, carbohydrates, cell wall-
related metabolites, plant hormones, and cluster ions [284].

In rice, integrative transcriptomics and metabolomics analyses of drought-tolerant
and susceptible cultivars explored transcript and metabolic responses under drought
stress. A study found 4059 and 2677 DEGs and 69 and 47 differential metabolites under
drought and normal conditions, respectively. A correlation analysis suggested several
candidate genes based on DEGs involved in the associated metabolites’ pathways. The
upregulation of 4-hydroxycinnamic acid and ferulic acid correlated with the performance
of photosynthesis-related DEGs during the early stages of drought. The identified metabo-
lites, 4-hydroxycinnamic acid and ferulic acid, were reported to be critical for rice drought
tolerance, and the DEGs involved in the pathways of these metabolites were suggested as
promising candidate genes for improving drought tolerance [285]. The potential 46 can-
didate genes identified from a transcriptomics study were confirmed through metabolite
profiling in 21 cultivars under drought conditions. The study revealed that, during drought
stress, the levels of most metabolites had a negative correlation with the performance
parameters. However, eight metabolites showed a positive correlation, including allantoin,
galactaric acid, gluconic acid, glucose, salicylic acid glucopyranoside, and three uniden-
tified metabolites. Furthermore, 28 genes were found to have a significant correlation
between expression level and performance under drought, with predominantly negative
associations. Among those showing a significant positive correlation was a gene responsi-
ble for encoding a cytosolic fructose-1,6-bisphosphatase enzyme, which plays a key role
in regulating C-metabolism [286]. Another transcriptome and metabolome analysis of
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two contrasting genotypes under salt stress revealed the repression of genes involved in
metabolite degradation and the upregulation of genes involved in several pathways under-
lying salt tolerance. Combined analyses identified 43 candidate genes related to salt stress.
With more precise analysis, the metabolic pathways leading to the primary metabolites
examined were investigated, revealing two significant findings. Firstly, the accumulation
of metabolites induced by salt stress in the shots of both genotypes was primarily limited
to a few sugars, including glucose, fructose, and fructofuranans, as well as proline, all of
which were ABA-mediated. On the other hand, salt-induced metabolic accumulation in
the roots of both genotypes involved products of N metabolism, such as allantoin, urea,
and glutamine, and trehalose was the only sugar with a relatively high accumulation in
the roots of both genotypes. Finally, changes in gene expression led to the coordinated
accumulation of key primary metabolites in the shoots or roots of the salt-sensitive rice
line and salt-tolerant progeny, with 12 key genes identified that are related to the identified
primary metabolites [287].

Metabolic profiling demonstrated the presence of SUB1A in the crossbred line M202
(Sub1), which has a higher tolerance than wild-type M202 under deep flood conditions.
The presence of SUB1A was found to be associated with a reduction in carbohydrate
metabolism in shoot tissue, which is consistent with its role in limiting starch catalysts for
elongation growth. On the other hand, the absence of SUB1A resulted in an increase in
sucrose consumption and the accumulation of amino acids synthesized from glycolysis
intermediates and pyruvate. Alanine, produced through pyruvate metabolism, showed
the largest difference between the two contrasting varieties under submergence conditions.
However, elevated levels of glutamine, glutamate, leucine, isoleucine, threonine, and valine
were also higher in the absence of SUB1A. Additionally, the compound alanylglycine
(AlaGly) was identified and characterized, and its levels under submergence conditions
were assessed [288]. In most cases, metabolomics has been utilized to study the expression
of metabolites in response to different stresses, but very few studies have focused on
identifying candidate genes. However, it is clear from the abovementioned studies that
combining metabolomics with other omics approaches may enable the identification of the
intended candidate genes.

Table 2. List of some abiotic stress related key genes, proteins, and metabolites identified through
omics studies.

Stress Type No. of Key
Factors Functional Categories or Names of Factors References

Transcriptomics

Cold 154 Oxidoreductases, thioredoxins, glutathione S-transferases, and cell
redox homeostasis [259]

Heat

3 Plant hormone signal transduction, metabolic pathways, cysteine,
and methionine metabolism pathways [260]

11 Pre-mRNA processing splicing [261]

18 Transcriptional regulation, transport, protein binding, antioxidant,
and stress response [262]

22 Heat response, molecular chaperone, and co-chaperone [263]

Drought 29 Metabolic pathways, protein modification, and protein degradation [265]

salt 13 Phytohormone signaling and salt stress [267]

Submergence 5 Metabolic processes [269]

Proteomics

Cold stress

34 Glycine-rich proteins and C2 domain proteins [272]

85 Transport, photosynthesis, precursor metabolism, and energy
production, as well as histones and vitamin [273]
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Table 2. Cont.

Stress Type No. of Key
Factors Functional Categories or Names of Factors References

Heat 32 Defense response, transport, energy metabolism, signal transduction,
transcript regulation, oxidation, etc. [274]

Drought
2 Heat shock proteins [276]

1 DNA repair [277]

Salt
58 Carbohydrate and energy metabolism pathways, redox signaling

pathways, auxin pathways, etc. [280]

16 Photosynthesis, anti-oxidation, and oxidative phosphorylation [281]

Submergence 1 Programmed cell death [282]

Metabolomics

Cold 9 Glutathione, putrescine, asparagine, β-Alanine, γ-Glutamylleucine,
oxalate, mannose-6-phosphate, etc. [283]

Heat 109 Lipid-related metabolites, organic acids, amino acids and related
metabolites, carbohydrates, etc. [284]

Drought
2 Metabolites, 4-hydroxycinnamic acid, and ferulic acid [285]

8 Allantoin, galactaric and gluconic acid, glucose and salicylic acid
glucopyranoside, etc. [286]

Salt 16 Fructofuranose, fructose, glucose, proline, urea, and allantoin [287]

Submergence 1 Alanylglycine [288]

4. Conclusions and Perspectives

The molecular mechanism of response to abiotic stress has gradually become more
precise in rice. In recent years, researchers have conducted many studies on the signal
transduction and gene expression regulatory pathways during the response to major
abiotic stresses, and many hormones’ and TFs’ roles in plant stress tolerance have also
been revealed. However, most of the research progress at this stage focuses on discovering
unknown TFs, editing promoter binding sites, and working on the biochemical level. New
research directions, tools, and practices must be developed. The current research has
identified many TFs that bind to cis-acting elements of target gene promoters to activate
the expression of specific downstream genes. In rice, the binding sites of these TFs have
been analyzed, and their binding mechanism has been studied in detail. However, further
research on multiple TFs synergistically acting as negative feedback regulators during
stress signaling is necessary. In addition, the research conducted on the exploration of
alternative approaches such as epigenetic modifications or small RNA regulations is still
very limited. So far, many studies have shown that epigenetic regulation is involved in the
response process of plant abiotic stress, and this new understanding has also introduced
new research content and directions for epigenetic research. Epigenetic regulation under
abiotic stress is a dynamic process, so it is very difficult to study the epigenetic mechanisms
of plants under stress. There are still research gaps to reveal the outcomes of epimutations
of cloned genes and their regulatory networks related to abiotic stress responses and
epigenetic information. The epigenetic modifiers and specific epigenetic modification sites
of stress responses and the corresponding stress-response target genes have not been fully
understood. Under abiotic stress, the interaction between epigenetic regulation and plant
endogenous hormones at different levels needs to be further studied. A series of epigenetic
regulatory factors have been identified to participate in plant abiotic stress responses;
how to apply them to crop breeding and improve agricultural production needs to be
further explored.
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Big data analysis and a variety of new methods are helpful to quickly find key players
for broad-spectrum stress tolerance and can be further cloned to study their regulatory
mechanisms. Analysis of the structure of key proteins, especially receptor proteins, and
identification of important protein domains and key amino acid sites facilitate target designs
for gene editing and other technical means. In addition, revealing the mechanism of plant
abiotic stress responses requires comprehensively utilizing genomics, transcriptomics, and
proteomics methods at the molecular level. Identifying a novel gene network that can
sense stresses, transduce signals, and activate TFs and downstream genes directly related
to stress tolerance will effectively support conventional and molecular breeding programs
and genetic engineering strategies. Co-expression networks are an attractive framework for
gene interaction analysis and offer various applications, from functional gene annotation
to the comparison of co-expression networks across species. This approach will further
contribute to the elucidation of important biological processes and provide a valuable
predictive tool for modern molecular breeding and crop engineering strategies. At the
cytological level, with the rapid development of microscopy techniques, cryo-transmission
electron microscopy or high-resolution fluorescence microscopy to observe changes in plant
cell membranes, organelles, and cytoskeletons will help better understand and analyze the
cellular responses to different abiotic stresses. In short, cutting-edge technologies, such as
whole genome sequencing platforms, high-throughput integrative omics techniques and
resources, targeted genome editing technologies, and synthetic techniques, are growing
and require utilizing basic research in advanced breeding methodologies. These latest
improvements in precision breeding and data analytics, combined with stress-tolerant
plants, can produce rice for the global market and achieve global food targets.
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