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Abstract: Peucedanum franchetii is a famous folk medicinal plant in China. However, the taxonomy of
the P. franchetii has not been sufficiently resolved. Due to similar morphological features between
P. franchetii and Ligusticopsis members, the World Flora Online (WFO) Plant List suggested that this
species transformed into the genus Ligusticopsis and merged with Ligusticopsis likiangensis. However,
both species are obviously diverse in leaf shape, bracts, and bracteoles. To check the taxonomic
position of P. franchetii, we newly sequenced and assembled the plastome of P. franchetii and compared
it with nine other plastomes of the genus Ligusticopsis. Ten plastomes were highly conserved and
similar in gene order, codon bias, RNA editing sites, IR borders, and SSRs. Nevertheless, 10 mutation
hotspot regions (infA, rps8, matK, ndhF, rps15, psbA-trnH, rps2-rpoC2, psbA-trnK, ycf2-trnL, and ccsA-
ndhD) were still detected. In addition, both phylogenetic analyses based on plastome data and ITS
sequences robustly supported that P. franchetii was not clustered with members of Peucedanum but
nested in Ligusticopsis. P. franchetii was sister to L. likiangensis in the ITS topology but clustered with
L. capillacea in the plastome tree. These findings implied that P. franchetii should be transferred to
genus Ligusticopsis and not merged with L. likiangensis, but as an independent species, which was
further verified by morphological evidences. Therefore, transferring P. franchetii under the genus
Ligusticopsis as an independent species was reasonable, and a new combination was presented.

Keywords: Apiaceae; Ligusticopsis; Peucedanum franchetii; new combination; plastome; phylogeny;
taxonomy

1. Introduction

The genus Peucedanum, with P. officinale L. as type species [1], is one of the largest taxo-
nomically notorious genera of the Apiaceae family and has a broad circumscription widely
distributed in Eurasia and Africa, with Europe and East Asia as the major distribution
centers [2,3]. The genus includes about 100–120 species in total, and 40 species (33 species
are endemic) occur in China [4,5]. However, the plants of this genus exhibit great diversity
in flowers, leaves, bracteoles, and mericarps [3]. Moreover, all previous molecular phyloge-
netic analysis supported that the genus Peucedanum is not monophyletic [5]. Therefore, some
authors have implemented several taxonomic changes about this genus [6–9]. Reduron et al.
confirmed that the restitution of Cervaria, Imperatoria, Oreoselinum, Pteroselinum, Thys-
selinum, Xanthoselinum, and Holandrea relied on morphological and phytochemical data [10].
Pimenov et al. suggested all members of Peucedanum should be shifted into other gen-
era, excluding 8–10 species in P. sect. Peucedanum [11]. Winter et al. [12] transformed
24 Peucedanum species into Afroligusticum C. Norman, Cynorhiza Eckl. & Zeyh., and Lefeb-
vrea A. Rich. Although numerous taxonomic treatments for Peucedanum members have been
achieved, the revision of this genus is still on the way, especially for those taxa endemic
to China.
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Peucedanum franchetii C.Y.Wu & F.T.Pu is endemic to China, growing on grassland
or calcareous hillside at an altitude of about 3000 m. Due to dorsally compressed meri-
carps with slightly prominent dorsal ribs and narrowly winged lateral ribs appearing in
P. franchetii (Figure 1), this species is deemed to be a member of the genus Peucedanum [5].
However, it is similar to the genus Ligusticopsis, which was established by Leute in 1969
with the type species Ligusticopsis rechingeriana (H.Wolff) Leute [13]. Therefore, in the world
flora plant list (http://worldfloraonline.org (accessed on 28 November 2022)), P. franchetii
was regarded as a synonym of Ligusticopsis likiangensis (H.Wolff) Lavrova & Kljuykov.
However, making detailed field investigations and collecting the material of this plant in
the type locality, we found P. franchetii was extraordinarily different from L. likiangensis
in leaf shape, bracts, and bracteoles. Therefore, we hypothesize that P. franchetii may be
not the synonym of L. likiangensis and could be an independent species. Moreover, the
phylogenetic position of P. franchetii has not been inferred so far.
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Figure 1. Illustrations of Peucedanum franchetii. (A) Habit; (B) basal leaves; (C) stem leaves; (D) umbel
with bracts and bracteoles; (E) flower; (F) young mericarp with calyx teeth; (G) dorsal of mericarp;
(H) commissural of mericarp; (I) cross-section of mericarp. Scale bars: 0.5 mm (G,H,I).

In this work, we newly sequenced the complete plastome of P. franchetii. Together
with nine previously published Ligusticopsis plastomes, we carried out a comprehensive
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comparative analysis among the ten plastomes. Then, we conducted phylogenetic analyses
based on plastome data and ITS sequences to confirm the position of P. franchetii. Finally,
combining with morphological evidence, we made a taxonomic revision for P. franchetii.

2. Materials and Methods
2.1. Taxon Sampling, DNA Extraction, and Sequencing

The fresh leaf of P. franchetii used in this experiment was collected from its natural
habitat (Figure 1) in Eryuan, Yunnan, China (type locality), and dried in silica gel. The for-
mal identification of P. franchetii plant was performed according to the Flora of China [5]. The
voucher specimens are currently stored at the herbarium of Sichuan University (Chengdu,
China) under deposition number LCK2020001. Total genomic DNA was extracted from
silica gel dried leaves, employing the modified cetyltrimethylammonium bromide (CTAB)
method [14], and carried on the Illumina NovaSeq platform at Personalbio (Shanghai,
China), applying the paired-end 150 bp reads with an average insert size of 300–400 bp.
Then, the obtained raw data were trimmed by removing adaptors and low-quality reads
using AdapterRemoval v2 (trimwindows = 5; minlength = 50) [15], and finally, we filtered
low-quality reads to gain high-quality reads with fastP v0.15.0 (-n 10 and -q 15) [16].

In addition, total DNA was also employed to amplify ITS sequence. We operated
30 µL amplification system, including 2 µL extracted total DNA, 10 µL ddH2O, 15 µL
Taq MasterMix (CWBio, Beijing, China), 1.5 µL of 10 pmol µL−1 forward primers (ITS-4:
5′-TCC TCC GCT TAT TGA TAT GC-3′), and 1.5 µL of 10 pmol µL−1 reverse primers (ITS-5:
5′-GGA AGT AAA AGT CGT AAC AAG G-3′) [17]. PCR cycling profile consisted of an
initial denaturation step at 94 ◦C for 3 min, followed by denaturation step at 94 ◦C for 45 s,
30 cycles of 45 s at 94 ◦C, annealing at 55 ◦C for 45 s and extension at 72 ◦C for 45 s, a
final extension for 7 min at 72 ◦C, and storage at 4 ◦C. All PCR products were separated,
manipulating a 1.5% (wv−1) agarose TAE gel and delegated Sangon Biotech (Shanghai,
China) for sequencing. DNAstar–SeqMan [18] was occupied to edit the newly sequenced
DNA and gain consensus sequences.

2.2. Plastome Assembly and Annotation

The plastome of P. franchetii was de novo assembled via GetOrganelle v1.6.2 soft-
ware [19] considering the plastome of Ligusticopsis brachyloba (Franch.) Leute (NC_065500)
as reference. To assess the sequencing depth and overlapping contigs, the cleaned reads
were mapped to the reference plastome by Geneious v9.0.2 [20]. The Plastid Genome Anno-
tator (PGA) was applied to annotate the plastome [21], followed by the validation of annota-
tion adopting online GeSeq tool [22] with default parameters. The plastome of L. brachyloba
(NC_065500) was also chosen as the reference to predict protein-coding genes (PCGs) and
transfer RNA (tRNA) genes and ribosomal RNA (rRNA) genes. Finally, we checked the
annotation results with BLAST and DOGMA [23] and corrected the wrong annotation in
Geneious v9.0.2 [20] manually. A detailed plastome map was drawn by the online Organel-
lar Genome DRAW tool (OGDRAW: https://chlorobox.mpimp-golm.mpg.de/geseq.html,
accessed on 1 October 2022) [24]. The newly yielded ITS sequence and plastome of
P. franchetii were submitted into the NCBI under the accession numbers OP740295 and
OP745624, respectively. Additionally, we downloaded 54 ITS sequences and 54 plastomes of
Apioideae for the phylogenetic analyses. The names of the species and GenBank accession
numbers for all samples were listed in Table S1.

2.3. Codon Usage, RNA Editing, and SSRs Analyses

To identify codon usage pattern and relative synonymous codon usage (RSCU) val-
ues [25], CodonW v1.4.2 program [26] was used to analyze the codon usage bias, and the
heatmap was depicted by TBtools [27]. To acquire the composition and characteristics of
RNA editing, 41 shared protein-coding genes for 10 plastomes were carried out through
the online PREP-Cp program with a cutoff value of 0.8, and other parameters were default
to predict RNA editing sites [28]. Simple sequence repeats (SSRs) of ten plastomes were
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calculated by MISA web (http://misaweb.ipk-gatersleben.de/, accessed on 2 October
2022) [29] tool with the following criteria: 10, 5, 4, 3, 3, and 3 repeat units for mono-, di-,
tri-, tetra-, penta-, and hexa-nucleotides, respectively.

2.4. Comparative Plastome Analyses

The expansion or contraction of the IR regions may lead to the size variation of the
plastome; the boundaries of IR regions in ten plastomes were analyzed by IRscope [30]
and manually inspected in Geneious v9.0.2 [20]. To better determine whether any specific
pattern of structural variation exists in the ten plastomes, gene arrangement comparison
was visualized by the Mauve alignment program [31] with default settings in Geneious
v9.0.2 [20]. Furthermore, the sequence identity among the ten species was detected using
mVISTA software (https://genome.lbl.gov/vista/mvista/submit.shtml, accessed on 3
October 2022) [32] with the default settings, and P. franchetii was chosen as the reference.

2.5. Identification of Divergence Hotspots

To further discern the mutation hotspot regions, the protein-coding regions, non-
coding regions, and intron regions of the ten plastomes were first extracted in Geneious
v9.0.2 [20] and aligned employing MAFFT version 7.427 [33] with default parameters. Then,
the alignments were manually adjusted. Finally, the nucleotide diversity (Pi) was calculated
for alignments with more than 200 bp in length carrying DnaSP version 5.0 [34].

2.6. Phylogenetic Analyses

To pinpoint the phylogenetic position of P. franchetii, 54 ITS and 54 complete plastome
sequences (Table S1) were employed to reconstruct the phylogenetic trees. Anthriscus
sylvestris (L.) Hoffm and Anthriscus cerefolium (L.) Hoffm were selected as outgroups ac-
cording to the results of Wen et al. [35]. Then, 54 ITS and 54 plastome sequences were
respectively aligned in Geneious prime 2021.1.1 plugin MAFFT 7.427 [33] and modified
manually. Alignments were used for maximum likelihood analyses (ML) and Bayesian
inference (BI) methods. The best-scoring ML tree was inferred adopting RAxML ver-
sion 8.2.11 [36] with the GTRGAMMAX model for each partition, and branch support was
assessed by the rapid bootstrap algorithm [37] with 1000 replicates. For BI analysis, four par-
allel Markov chain Monte Carlo (MCMC) runs were executed in MrBayes version 3.2.7 [38]
and the best-fitting substitution model (SYM + I + G) for ITS dataset and (GTR + I + G) for
plastome dataset determined by Modeltest v3.7 [39]. A total of 1,000,000 generations were
run with sampling every 500 generations, and the first 25% of samples were discarded
as burn-in and the remainder were maintained to produce the consensus tree. Results of
phylogenetic analyses were visualized and exhibited in FigTree v1.4.2 software [40] and
beautified by the online tool iTOL (https://itol.embl.de/itol.cgi, accessed on 4 October
2022) [41].

3. Results
3.1. Characteristics of Plastome

The length of the complete plastome sequence in P. franchetii was 148,281 bp and
displayed a typical quadripartite structure (Figure 2), containing one LSC region (92,298 bp)
and one SSC region (17,691 bp) separated by a pair of IR regions (19,146 bp). Moreover,
the total GC content was 37.5%. The plastome encoded 113 unique genes, and these genes
had four categories: self-replication, genes for photosynthesis, other genes, and genes of
unknown function. Among them, 15 genes harbored a single intron, and 3 genes (ycf3, clpP,
and rps12) had 2 introns (Table S2).

The study also compared P. franchetii plastome with nine Ligusticopsis plastomes. For
the ten plastomes, the overall size ranged from 147,752 bp (L. involucrata) to 148,633 bp
(L. brachyloba). They hold the same unique gene number, comprising 79 protein-coding
genes, 30 tRNA genes, and 4 rRNA genes. The overall GC content was corresponding in
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the ten plastomes (37.3–37.5%). Hence, the structure of the plastome appeared to be largely
conserved across the ten species (Table 1).

3.2. Codon Usage, RNA Editing in Protein-Coding Genes

Our study summarized the codon usage frequency of 79 protein-coding genes among
the 10 plastomes. The result demonstrated that codon usage bias was similar in them.
The 79 protein-coding genes encoded 22,632–22,553 codons. In these codons, the Leu was
encoded by the highest number of codons 2399–2410 (10.64%–10.65%), while the Cys was
the least 231–237 (1.02–1.05%) (Table S3). Figure 3 showed the relative synonymous codon
usage (RSCU) values of all protein-coding genes for the ten plastomes. The RSCU values
ranged from 0.34 to 2.00. The UAA codon possessed the highest value (RSCU = 2.0) in
the P. franchetii, L. brachyloba, L. capillacea, and L. scapiformis plastomes, while the AGC
codon possessed the smallest value (RSCU = 0.34) only in the L. involucrata plastome. The
RSCU value of codons AUG and UGG was 1.00 (Table S3). In addition, the RSCU values of
30 codons were greater than 1.00, and these codons were ended with A/U, except UUG in
ten plastomes.
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Table 1. Comparative analyses of ten plastomes. P. franchetii included.

Taxon
Length (bp) Number of Genes (Unique)

Genome LSC SSC IR Total CDS rRNA tRNA GC (%)

P. Franchetii C.Y.Wu & F.T.Pu 148,281 92,298 17,691 19,146 113 79 4 30 37.50%
L. brachyloba (Franch.) Leute 148,633 92,265 17,588 19,390 113 79 4 30 37.40%
L. capillacea (H.Wolff) Leute 147,808 91,907 17,503 19,199 113 79 4 30 37.50%

L. hispida Lavrova & Kljuykov 147,797 91,846 17,627 19,162 113 79 4 30 37.40%
L. involucrata Lavrova 147,752 91,782 17,560 19,205 113 79 4 30 37.40%

L. likiangensis (H.Wolff) Lavrova & Kljuykov 148,196 92,305 17,575 19,158 113 79 4 30 37.50%
L. scapiformis (H.Wolff) Leute 148,107 92,214 17,581 19,156 113 79 4 30 37.50%

L. rechingeriana Leute 148,525 91,813 17,654 19,529 113 79 4 30 37.30%
L. modesta (Diels) Leute 148,133 92,247 17,568 19,159 113 79 4 30 37.50%

L. wallichiana Fedde ex H.Wolff 148,594 92,281 17,567 19,373 113 79 4 30 37.40%
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This work also predicted the RNA editing sites of the ten plastomes. We found
22–23 protein-coding genes and identified 57–59 potential RNA editing sites in the
10 plastomes (Table S4, Figure 4). Among these protein-coding genes, the ndh gene had
the most editing sites (22), while other genes (atpA, ccsA, petG, psaI, psbE, psbF, rpl20, rpoA,
and rps2) only had one editing site. Among all detected RNA editing sites, the second
codon position occupied the most editing sites (43–45), followed by the first codon position
(14), but no sites detected in the third codon position (Figure 4A). Although ten plastomes
appeared to have a similar pattern of RNA editing, one specific editing site had been
picked out: petD (one site; only identified in L. involucrata) (Figure 4B). Moreover, the amino
acid conversion S to L occurred most frequently, while A to V and R to C occurred least
(Table S4).
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3.3. Simple Sequence Repeats (SSRs)

We estimated and compared the SSRs in the ten plastomes. The total number of SSRs
altered from 71 to 84, of which the LSC region had the richest repeats (46–62) and the SSC
region (9–14) had the poorest following IR regions (8–14) (Table S5, Figure 5A). Figure 5B
displayed the number of different repeat types in ten plastomes. Among these SSRs, the
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mononucleotide repeats were the maximum (36–42), followed by the dinucleotides (18–24)
and the hexanucleotide repeats, which were the minimal (0–1).
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3.4. Plastome Comparison and Hotspots Identification

In the current study, we conducted a detailed comparison of the IR boundaries among
the ten plastomes. The LSC/IRa junction was located in the ycf2 gene and expanded 576 bp
into the ycf2 gene except for L. brachyloba (585 bp). The SSC/IRa junction was located in
the intergenic spacer region between the ndhF and ycf1 gene, but expanded 72 bp into ndhF
gene in L. capillacea. The SSC/IRb junction was located in the ycf1 gene and expanded
1984–2029 bp into the ycf1 gene. The LSC/IRb junction was located between the trnL and
trnH genes, and the trnL gene was 1860–2771 bp away from LSC, while the trnH gene had
the same length (6 bp) away from the IRb borders (Figure 6).

The Mauve result demonstrated that the gene arrangement was highly conservative and,
moreover, the gene retained a similar sequence among the ten plastomes (Figures 7 and 8).

The nucleotide diversity (Pi) was calculated to analyze the sequence divergence level
of four regions across the ten plastomes. The results indicated that the divergence level
of LSC and SSC regions were higher than the IR regions (Figure 9). We also screened ten
mutation hotspot regions as candidate DNA barcodes, including five protein-coding genes
(rps8, matK, infA, ndhF, and rps15) with the Pi > 0.00344 (Figure 9A) and five non-coding
genes (psbA-trnH, rps2-rpoC2, psbA-trnK, ycf2-trnL, and ccsA-ndhD) with the Pi > 0.01950
(Figure 9B).
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3.5. Phylogenetic Analyses

We used 54 ITS sequences and 54 plastome sequences of Apioideae to conduct the
phylogenetic analyses (Table S1). Although the topological tree between the ITS and
plastome were conflicting, both demonstrate that P. franchetii was nested in the genus
Ligusticopsis. In the plastome tree, P. franchetii clustered with L. capillacea and resolved as
a sister to other Ligusticopsis taxa with high support (BS = 100%, PP = 1.00) (Figure 10A).
However, in the ITS topology, P. franchetii clustered with L. likiangensis also with high
support (BS = 92%, PP = 1.0) and resolved it as a sister to other Ligusticopsis taxa (Figure 10B).
Moreover, both phylogenetic trees also suggested that Ligusticum daucoides (Franch.) Franch
and Ligusticum oliverianum (de Boiss.) Shan are nested in the genus Ligusticopsis (Figure 10).
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4. Discussion
4.1. Plastome Characteristics

We reported the newly sequenced and assembled complete plastome of P. franchetii
and performed a comparative analysis with nine other Ligusticopsis species. The results
indicated that ten plastomes exhibited a typical quadripartite structure, which was in accor-
dance with the plastome structure of Apiaceae published previously [42–48]. Furthermore,
all plastomes were similar in genome size, gene order, and GC content. These results
demonstrated that ten plastomes were highly conserved. In addition, higher GC content
was detected in IR regions compared to the LSC and SSC regions, for which was present
four rRNA (rrn23, rrn16, rrn5, and rrn4.5) genes with high GC content (50–56.4%) in IR
regions [49,50].

4.2. Codon Usage Analyses

Codons act as a bridge between nucleic acids and proteins in spreading genetic
information [51]. Each amino acid has two or more codons and each has its preferred
codon for codon usage bias (CUB). CUB is a common phenomenon that widely exists in
organisms [52,53], and it has been hypothesized that it controls translation dynamics such
as reliability, accuracy, and protein folding [54]. Recent research has proclaimed that codon
usage greatly influences the evolution of the plastome [55,56]. In this investigation, Leu
was the more frequent amino acid and Cys was the least. The effects were consistent with
those observed in other plant plastome studies [57–61]. The most preferred codons end
with A/U (Table S3, Figure 3), which was commonly examined in previously reported
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genera of flowering plants [62–64]. We also counted RSCU values for 64 mutant codons,
30 of which had RSCU values larger than 1.00, and codons AUG and UGG had no bias
(RSCU = 1.00). These results correspond to prior plastome studies, demonstrating that
usage bias of particular codons was induced by adaptation evolution of the plastome [62].

4.3. RNA Editing Analyses

RNA editing as a post-transcriptional modification process is important for correcting
DNA mutations on the RNA level [65–67]. In the present study, the editing sites were
cytidine (C) to uridine (U) conversions in ten plastomes (Table S4), which was reported
in higher plants [43–45]. Among these RNA editing sites, changing a nucleotide at the
second position was more common than other position shifts. It corresponded to the
general characteristics of plastid gene RNA editing in higher plants [59,68–70]. Moreover, a
multitudinous number was discovered in the ndhB gene, which was line with the previous
conclusion that ndh group genes have the largest number of plastome editing sites in
flowering plants [70].

4.4. Simple Sequence Repeats (SSRs) Analyses

SSRs are usually small tandem single mononucleotide repeats, which show intraspe-
cific repeat number differences [71,72]. Owing to the characteristics of SSR’s codominant
inheritance, high reproducibility, multiallelic composition, richness, and ease of detection,
it is widely discussed in plant diversity analysis [73,74]. This work gained a total number
of (71–84) SSRs, which had coincident results among other Apiaceae in numbers [44,75].
The results also showed that the SSR loci of the LSC region appeared more usually than
in the SSC and IR regions; it may be hypothesized that it was relevant to the longer LSC
region [43]. Moreover, the mononucleotide repeats were abundant and mostly composed of
A/T motifs. The same results were reported in many other angiosperms plastomes [76,77].
However, two hexanucleotide simple sequence repeats (AATATT/AATATT) were observed
in the plastome of L. capillacea, though not in other plastomes, which could be served
as specific molecular markers to recognize this species. Such studies implied that SSRs
changed the plastome and played an important role in detecting genomic variability [58].

4.5. The IR/SC Boundaries of the Ten Plastomes

IR contraction and expansion are extremely common in plastomes of angiosperm
plants [78–81]. Here, we compared the IR/SC boundaries and found that the crossroads
and surrounding genes of four sections IRa/SSC/IRb/LSC were the same. Moreover,
the ten plastomes had same gap between the IRb/LSC junctions. These results further
justified the conservation of the ten plastomes. Our research supported this hypothesis,
demonstrating that the IR region is more conserved and that most substitutions occur in the
SSC and LSC regions. The same phenomena have been achieved in other plastid genomes
as well [82–85].

4.6. Candidate DNA Barcodes

DNA barcodes are considered as short DNA sequences with adequate variations to
identify species [86]. In plants, three variable loci (matK, rbcL, and trnH-psbA) from plastome
were extensively defined as the standard DNA barcodes. But these fragments had been
proved to be insufficient for the identification of a taxonomically complex group [87]. For
example, Liu et al. operated the rbcL gene as DNA barcodes suffered from weak solutions
among Peucedanum [43]. Therefore, additional loci are urgently needed to be developed
for specific taxa. In this study, we screened the ten most divergent loci, containing five
protein-coding genes (rps8, matK, infA, ndhF, and rps15) and five non-coding protein genes
(psbA-trnH, rps2-rpoC2, psbA-trnK, ycf2-trnL, and ccsA-ndhD) based on the complete plas-
tome. These regions could be served as potential DNA barcodes for species identification
in Ligusticopsis.
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4.7. Phylogenetic Relationships and Taxonomic Implication of P. franchetii

Although plastome is highly conserved in genome structure, gene order, and con-
tent, it shows highly variable characters. Therefore, plastome data have been applied to
generate highly resolved phylogeny in plant species, especially in taxonomically complex
groups [88–90]. In this article, we constructed the phylogenetic framework depending on
plastome data to make a definite position of P. franchetii. Furthermore, we also performed
phylogenetic analysis using ITS sequences, mainly due to the fact that chloroplast genomes
only represent maternal inheritance.

Previous phylogenetic analysis based on nrDNA ITS sequences performed by
Zhou et al. [91] confirmed that the generitype species Peucedanum officinale was distant
from Ligusticopsis (including the type species Ligusticopsis rechingeriana). Although there
was little difference between the plastome and ITS topologies, the P. franchetii fell into genus
Ligusticopsis with high support value, which suggested that P. franchetii was a member of
genus Ligusticopsis. The morphological characteristics of P. franchetii also supported the
above phylogenetic results, such as pinnate leaves, pinnate and linear coexisted bracteoles,
conspicuous calyx teeth, and numerous vittae in mericarp commissure and each furrow
(Figure 1, Table S6). All these morphological traits were in accordance with the genus Ligus-
ticopsis. Thus, P. franchetii should be transferred from genus Peucedanum to Ligusticopsis.

P. franchetii was regarded as a synonym of L. likiangensis in the World Flora plant list
(http://worldfloraonline.org, accessed on 10 December 2022). However, our results did
not support this treatment. Although P. franchetii was a sister to L. likiangensis in the ITS
topology, this species clustered with L. capilliacea in the plastome tree. Moreover, obviously
different morphological characters were detected for the both species. The absent bracts
and pinnate and linear coexisted bracteoles were observed in P. franchetii, while pinnate
and linear coexisting bracts and pinnate bracteoles were found in L. likiangensis (Table S6).
Therefore, merging P. franchetii into L. likiangensis was inappropriatem and P. franchetii
should be regarded as a dependent species of genus Ligusticopsis.

In addition, our phylogenetic tree also indicated that Ligusticum daucoides and Ligus-
ticum oliverianum nested in the genus Ligusticopsis and belonged to Selineae. Both species
were obviously distant from the type species of Ligusticum (Ligusticum scoticum L.), which
is located in Acronema Clade [91,92]. These results supported the taxonomic treatments
performed by Pimenov [93], who transferred both species into the genus Ligusticopsis. This
conclusion is consistent with the definition of Ligusticopsis based on the chloroplast genome
and morphological boundary performed by Li et al. [44]. Our results with high supports
provided additional evidence to accept the previous treatments.

4.8. Taxonomic Treatment

Ligusticopsis franchetii (C.Y.Wu & F.T.Pu) B.N.Song, C.K.Liu & X.J.He, comb. nov.
≡ Peucedanum franchetii C.Y.Wu & F.T.Pu in Wang Wentsai (ed.), Vasc. Pl. Hengduan

Mount. 1349 (1993)
Type: China. Yunnan: in pratis calcareis montis Hee-can-men, 3000 m, 3 October 1884,

Delavay 192 (isolectotype: P! P02272009; lectype P! P02272008) [93].
Descriptions: Perennial herbs, 20–30cm, pallid green, often purplish-tinged. Stems

several, hollow, puberulous above. Leaf blade long ovate, pinnate, thinly coriaceous,
abaxially strongly reticulate, white villous, margins dentate and slightly reflexed; pinnae
1–2 × 0.5–1 cm, 2–3 pairs, lateral pinnae rhombic or oblique ovate, base cuneate or truncate,
apical pinnae ovate, base cuneate, decurrent. Umbels terminal, 2–3 cm across; peduncles
elongate, straight, apex villous; bracts absent; rays 8–14, 1–2 cm, 4-angled, inner faces white
hispid, outer faces glabrous; bracteoles 8–10, pinnate and linear coexisted. Umbellules
12–16-flowered. Calyx teeth conspicuous. Petals white. Styles longer than stylopodium.
Fruit ovoid-oblong, ca. 3 × 2 mm, glabrous; dorsal ribs prominent, lateral ribs winged,
wings ca. 1 mm, ca. 1/3 width of body, thin; vittae 1–3 in each furrow, 4–8 on commissure.

http://worldfloraonline.org
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Distribution and habitat in China: Ligusticopsis franchetii is endemic to south-western
China (north-western Yunnan). It grows in alpine meadows in limestone areas, at an
elevation of 2900–4000 m.

Additional specimens examined: China—Yunnan: Lijiang County, 2900 m, 4 Septem-
ber 1992, N.H. Wang and C.N. Zhang 92027 (NAS); Dali, 3037 m, 22 August 2021, Z.X. Li
210822-2-1 (SZ); 30 October 2021, C.K. Liu LCK20211030001 (SZ).

5. Conclusions

To summarize, comparative analyses displayed that the genome structure and size,
number, gene order, GC content, RNA editing, and codon usage were extremely conser-
vative among the ten plastomes. However, ten highly variable regions (rps8, matK, infA,
ndhF, rps15, psbA-trnH, rps2-rpoC2, psbA-trnK, ycf2-trnL, and ccsA-ndhD) were identified,
which may be strong potential DNA barcodes for species identification and phylogenetic
relationship construction. Furthermore, both morphological characteristics and molecular
data robustly supported that P. franchetii should be transferred from the genus Peucedanum
to Ligusticopsis as an independent species. In a word, our result will be beneficial to future
phylogeny, taxonomy, and evolutionary studies of the genus Ligusticopsis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants12010097/s1, Table S1: DNA sequences included in phylo-
genetic analyses with GenBank accession; Table S2: List of unique genes identified in plastomes of P.
franchetii; Table S3: Codon usage and relative synonymous codon usage (RSCU) values of protein-
coding genes for the ten plastomes; Table S4: RNA editing sites analyses for the ten plastomes; Table
S5: Numbers of SSR motifs identified in the ten plastomes; Table S6: Synopsis of the morphological
data from 10 species involved in this study. Some data from type specimens and Flora of China.
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