
Citation: Rai, G.K.; Kumar, P.;

Choudhary, S.M.; Kosser, R.;

Khanday, D.M.; Choudhary, S.;

Kumar, B.; Magotra, I.; Kumar, R.R.;

Ram, C.; et al. Biomimetic Strategies

for Developing Abiotic

Stress-Tolerant Tomato Cultivars: An

Overview. Plants 2023, 12, 86.

https://doi.org/10.3390/

plants12010086

Academic Editor: Igor G. Loskutov

Received: 1 December 2022

Revised: 17 December 2022

Accepted: 20 December 2022

Published: 23 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

plants

Review

Biomimetic Strategies for Developing Abiotic Stress-Tolerant
Tomato Cultivars: An Overview
Gyanendra Kumar Rai 1 , Pradeep Kumar 2,* , Sadiya Maryam Choudhary 1, Rafia Kosser 1,
Danish Mushtaq Khanday 3 , Shallu Choudhary 4, Bupesh Kumar 3, Isha Magotra 1, Ranjit Ranjan Kumar 5 ,
Chet Ram 6, Youssef Rouphael 7 , Giandomenico Corrado 7,* and Tusar Kanti Behera 8

1 School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu,
Jammu 180009, India

2 Division of Integrated Farming System, ICAR—Central Arid Zone Research Institute, Jodhpur 342003, India
3 Division of Plant Breeding and Genetics, Sher-e-Kashmir University of Agricultural Sciences and Technology

of Jammu, Jammu 180009, India
4 Division of Entomology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu,

Jammu 180009, India
5 Division of Biochemistry, ICAR—Indian Agricultural Research Institute, New Delhi 110001, India
6 Division of Crop Improvement, ICAR—Central Institute for Arid Horticulture, Bikaner 334006, India
7 Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy
8 ICAR—Indian Institute of Vegetable Research, Jakhini (Shahanshapur), Varanasi 221305, India
* Correspondence: pradeep.kumar4@icar.gov.in (P.K.); giandomenico.corrado@unina.it (G.C.)

Abstract: The tomato is one of the most important vegetables in the world. The demand for tomatoes
is high in virtually any country, owing to their gastronomic versatility and nutritional and aromatic
value. Drought, salinity, and inadequate temperature can be major factors in diminishing yield,
affecting physiological and biochemical processes and altering various metabolic pathways, from
the aggregation of low molecular–weight substances to the transcription of specific genes. Various
biotechnological tools can be used to alter the tomato genes so that this species can more rapidly
or better adapt to abiotic stress. These approaches range from the introgression of genes coding for
specific enzymes for mitigating a prevailing stress to genetic modifications that alter specific metabolic
pathways to help tomato perceive environmental cues and/or withstand adverse conditions. In
recent years, environmental and social concerns and the high complexity of the plant response
may increase the attention of applied plant biotechnology toward biomimetic strategies, generally
defined as all the approaches that seek to develop more sustainable and acceptable strategies by
imitating nature’s time-tested solutions. In this review, we provide an overview of some of the genetic
sequences and molecules that were the objects of biotechnological intervention in tomato as examples
of approaches to achieve tolerance to abiotic factors, improving existing nature-based mechanisms
and solutions (biomimetic biotechnological approaches (BBA)). Finally, we discuss implications and
perspectives within the GMO debate, proposing that crops modified with BBA should receive less
stringent regulation.

Keywords: Solanum lycopersicum; biotechnology; drought; salinity; improvement

1. Introduction

Despite yearly fluctuations, the tomato (Solanum lycopersicum L.) remains a widely
grown vegetable and has significant nutritional and economic importance all over the
world [1]. For example, the lycopene in tomato fruits provides antioxidative and anticancer-
ous properties. Moreover, its versatility and vivid color make the tomato a favorite food in
many countries. In 2020, the area under tomato production was approximately 5.05 Mha,
with a fresh production of 186.8 Mtones [2]. The demand for tomatoes on a global scale
has increased in the last century because of their wide range of uses as raw, cooked, and
processed foods.
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Tomato yield, like many other vegetables, is limited by abiotic stress, such as cold, heat,
drought, and salinity [3,4]. The main environmental issues reducing tomato cultivation are
low-quality water, extreme temperature, an imbalance in the nutritional content of the soil
substrate, elemental toxicity, and high salinity [3,5,6]. Abiotic stress becomes highly prob-
lematic in the open field, where stresses can easily coexist. Improving the tomato’s ability
to withstand common abiotic stresses is economically more advantageous and sustainable
than the use of non-renewable chemical input or the implementation of new agronomic
measures. It is, therefore, necessary to develop resilient, high-yielding cultivars with greater
tolerance to a variety of abiotic challenges [7,8]. Classic tomato breeding has increased
yield (and its specific components), quality-related traits, and resistance to some abiotic as
well as biotic stress considerably. The application of high throughput and multidisciplinary
methodologies currently provides new tools to develop stress tolerance for crop species
with high genetic complexity and large ecological interactions like tomato [9].

It has long been established that recombinant DNA technology is a suitable approach
for breeding tomato cultivars. Developments in tomato genomics have largely favored the
identification of various genes, gene families, and metabolic pathways that are responsible
for providing the required modified adaptation to the plants to stressful environments.
Their study and modification can result in improved yield attributes under sub-optimal
environmental conditions [10–12]. In addition to being the foundation of novel cultivars,
genetically modified plants can also be useful for studying and characterizing how gene
networks for abiotic stress tolerance interact and perform under a variety of conditions [13].
In this article, we present and discuss various genes, proteins, and other molecular com-
pounds that are directly and/or indirectly linked to improved tolerance to abiotic stress,
focusing on biomimetic strategies. Broadly speaking, a biomimetic technological approach
is one that follows and improves models provided by nature. Although it is debated
whether “biomimetics” should be distinguished from “biomimicry” (interventions that
are only inspired by vs. those strictly following nature), we discuss the principles of the
mechanisms of stress response in tomato, as well as various possible interventions, under
the conceptual framework that the study of nature’s models provides inspiration to their
modifications and improvements. To address public concerns, the concepts of cisgenesis
and intragenesis have been developed as a more acceptable strategy to alter the genetic
material of a plant. Nonetheless, it is not easy to strictly define the extent of the sequence
variability of a gene or, more generally, a DNA stretch that can be considered within or
outside the gene pool of a crop species. This is further complicated considering that cisgen-
esis and intragenesis allow the use of sequences from not only the crop of interest but also
related species capable of sexual hybridization. To stimulate a discussion, in this review,
we would like to put forward that modifications of the metabolism of an organism through
DNA recombinant technology should be evaluated considering not only the sequence of
interest but also the functional modification that will be achieved. To this purpose, we refer
to the term biomimetic biotechnological approaches (BBA) to identify the improvement, but
not the redesign or (non-native) reconstruction, of systems and pathways that are already
present within a plant species and active in an organ or tissue, irrespective of the taxo-
nomical source of the DNA employed. Biomimetics is often coupled with aterials science,
mechanical engineering, and nanotechnology and, along with biomimicry, is associated
with more biodiverse agricultural systems. Therefore, the concept of BBA in plants may
facilitate the dialogue as well as the cultural exchange between scientists, stakeholders,
and citizens.

2. Abiotic Stress Resistance at the Physiological Level

Abiotic stress causes a range of changes in morphological, physio-biochemical, and
molecular processes in plants [14]. Extreme heat, salt, oxidative stress, and drought are
frequently linked and can cause cellular damage either alone or in a combined fashion.
The abiotic stresses provide extremely complex stimuli with a wide range of concurrent
but distinct characteristics. Each of them has the potential to provide the plant cell with
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a totally distinct set of environmental cues [15]. On the whole, abiotic stress leads to
changes in osmotic balance and ion distribution, which in turn affect both individual cells
and the entire plant. Ion and water homeostasis change, causing cellular disturbance,
growth arrest, and even death in the most severe cases [16]. Although plant response is one
multifaceted and holistic adjustment to the environment, three interrelated activities can
be distinguished as crucial for abiotic stress tolerance. The first activity is to stop or lessen
the damage, the second one is to restore homeostatic conditions in the new challenging
environment, and the third is to restore plant growth (i.e., recovery stage) [17]. Resistance
or tolerance must, therefore, assume some flexibility in the metabolic processes that enable
plants to survive in harsh conditions (Figure 1). The development in the understanding of
plant response to abiotic stress at various levels helps explain these complicated cellular
reactions. On a time scale, during abiotic stress, in theory, three phases can be discerned: (1)
the phase of alarm; (2) the period of defense; and (3) the phase of collapse [18]. However,
an alternative stage should also be considered, the regeneration stage [19]. This is highly
crucial and allows the retrieval of various physiological functions of the plant [20].
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Figure 1. A schematic illustration of the effects of abiotic stress at the cellular level. The tolerance of
tomato in a challenging environment requires several modifications to its cellular activities, which
are based on stress-induced gene expression, translational reprogramming, and metabolic adaptation,
often based on homeostatic mechanisms.

The stress response is integrated, incorporating several pathways, certain cellular
sections, and tissues, and it relies on a battery of signaling molecules to synchronize the
response of a specific variation at the organismal level. In response to abiotic stresses, vari-
ous pathways are activated concurrently (Figure 2). Molecular and genetic investigations
have shown that these pathways are highly complex, owing to the diversity of information
involved. As plants respond to challenges physiologically, molecularly, and cellularly, it is
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not a surprise that the transcription of several dissimilar resistance/tolerance genes is also
altered [21].
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Figure 2. Abiotic stress at the physiological level is mediated by the signal transduction pathway. The
first stage of a signal transduction pathway is signal perception, which is followed by the formation of
secondary messengers (e.g., calcium, phosphoinositides, and reactive oxygen species (ROS)). Second,
messengers promote the downstream signaling cascades that lead to the plant response against
abiotic stress.

3. Biotechnological Tools to Develop Tolerant Plants against Abiotic Stress

Biotechnological tools include several methods used for plants to develop tolerance
to abiotic stress. The genetic transformation of tomato relies highly on the tissue culture
technique [22]. Recent advances in the field of plant genetic transformation have enabled
the identification of genes that are responsible for tolerance to different environmental
stresses [23,24]. Further advancement in understanding the genomics of wild relatives
of tomatoes and other Solanaceae has facilitated their exploitation in various breeding
programs aiming to introgress genes responsible for abiotic stress resistance in cultivars.

3.1. Genetic Transformation Methods in Tomato

Multiple transformation techniques have been utilized to deliver foreign DNA se-
quences into an ample range of plant species [25]. The combination of recombinant DNA
technologies, genetic transformation, and plant tissue culture are at the core of the pro-
duction of transgenic plants in a variety of crops [26–36]. In tomato, the first genetic
transformation protocol was developed in the 1980s [37], and still today, Agrobacterium-
mediated techniques are widely employed for many tomato cultivars [38]. Transformation
mediated by the Agrobacterium is a complex process. Briefly, the efficiency of gene delivery
into tomato plants depends on various factors, such as the pre-culture of the explants,
culture media, culture density, virulence and strain of Agrobacterium, phytohormones,
type of explants, vectors, size of DNA insert, and genotype of the recipient plant [39,40].
Table 1 presents a short selection of research efforts devoted to improving the process of
tomato genetic transformation. Genetic transformation can also be obtained using A. rizo-
genes [41]. However, some detrimental phenotypes can be observed in tomato plants, such
as shortened internodes, reduced seed setting, and wrinkled leaves. A. rizogenes–mediated
transformation can be utilized for the in vitro production of compounds in tomato with
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biopharmaceutical properties. Besides indirect genetic transformations, direct methods like
particle bombardment have also been reported for tomato [42]. This method was optimized
by altering factors such as the quality and quantity of DNA, concentration of osmoticum in
the tissue culture media, firing separation, and period of particle bombardment to which
tomato explants are exposed [43].

Table 1. Investigations focused on improving the efficiency of tomato genetic transformation.

S. lycopersicum Cultivar Transformation
Method Type of Explant Transformation

Frequency (TF) References

Micro-Tom Indirect Embryonic part of the seedling 11% [41]
NA Indirect Fruits 54 to 68.0% [44]

Micro-Tom Indirect Cotyledons (embryonic part) 5.1% [45]
Hezuo 908 Indirect Hypocotyls and embryonic part 40% [40]

Roma and Rio Grande Indirect Hypocotyls and leaf disks 24% and 8%, respectively [4]
Momotaro, UC-97, and

Edkawi Indirect Hypocotyls 54 to 67% [46]

Castle Rock Direct Hypocotyls and part of
cotyledons 26.5% [47]

Cambell-28 Indirect Cotyledons 21.5% [48]
Pusa Ruby, Sioux, and Arka

Vikas Indirect Cotyledons 41.4%, 22%, and 41%,
respectively [49]

Hezuo 908 Indirect Embryonic part and Hypocotyl 40% [40]
Shalimar Indirect Shoot and Leaf NA [50]

MicroTom Indirect Leaf 19.1% [51]
NA Indirect Hypocotyls 33 to 59% [41]

Pusa Ruby and DT-93 Indirect Cotyledons higher than 37% [52]
Summer Indirect Hypocotyls and cotyledons 7% [53]

Footnote. NA: not available.

Besides the addition of a new DNA sequence or (untargeted) mutation of the tomato
genome, recent advances in recombinant DNA technology and reverse genetic approaches,
such as antisense technology, RNA interference (RNAi), and genome editing by CRISPR-
CAS9, have revolutionized functional genomics in plants. These approaches have been
utilized in tomato cultivars to delay their ripening during abiotic stress, such as extreme
temperature, by silencing the gene vis 1 [54,55].

Overall, the genetic transformation of tomato is a mature and well-established tech-
nique that is employed by numerous laboratories around the world. Although improve-
ments in regeneration and transformation efficiency are always welcome, the production of
genetically modified tomatoes should not be considered a limiting factor for biotechnologi-
cal approaches since efficient and repeatable transformation and regeneration protocols are
widely available.

3.2. Transformation Approaches Using rDNA Technologies (Genetic Engineering)

Climate change is predicted to increase the occurrence of abiotic stress, further ham-
pering the ability of plants to yield [56]. Traditional plant breeding has limitations for
creating a substantial level of tolerance against abiotic stress because it is time-consuming
and often requires a complex breeding scheme to insert multiple sources of variability from
wild relatives to a cultivated variety. Recombinant DNA (rDNA) technology–based tools
have been traditionally considered alternatives to change the genetic constitution of plants.
Different rDNA technologies have been employed to modify the tomato genome so that it
can adapt to abiotic stress. These modifications include the exploitation of regulatory genes
highly expressed during stress and coding for enzymes whose biochemical or enzymatic
activity is useful to counteract abiotic stress [57]. Various examples are reported in Table 2.
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Table 2. A selection of genes that have been utilized to improve tomato cultivars to withstand
abiotic stress.

Gene/Origin Function Expression Results References

Fe-SOD/A. thaliana Lessens the oxidative stress Upregulation

Increased ability to withstand
oxidative stress and improve

stability of photosynthetic
equipment

[58]

SIERF3b & SIERF5 Regulates transcription for stress
conditions Overexpression Enhanced tolerance to abiotic stress

and resistance to biotic stress [59]

FAD3/rape FAD7/potato Regulates the fatty acid
unsaturation of membrane lipids Upregulation

Boosted cold resistance; an increase
in the 18:3/18:2 ratio in leaves

and fruits
[60]

SlSAM1/tomato

Promotes the conversion of ATP
plus methionine to

S-adenosylmethionine, which is
necessary for the production of

ethylene and PAs

Upregulation Improved resistance to
saline-alkali stress [61]

SIGGP (LIKE)/tomato Transcription factor Expression Enhanced tolerance to abiotic and
biotic stress [62]

SIBZIP1/tomato TF, Defense protein Downregulation Regulated ABA-mediated pathway
to enhance drought tolerance [63]

SLWRKY TF, transcriptional regulation Overexpression Regulated biotic stress [64]

RcGPX5/Salvimiltiorrhiza Gluthatione biosynthesis Overexpression Tolerance to H2O2, drought and
oxidative stress [65]

CBF1/A. thaliana TF and regulates transcription Transcription/ regulation Enhanced cold tolerance [66]
MdVHA-B/apple Maintains the homeostasis of ion Upregulation Improved drought tolerance [67]

MdSOS2L1/apple
Signal-inducing proteins;

influence on ion-driving transport
mechanisms

Excessive expression Increased salt tolerance [68]

TERF1/sugarcane
Transcription factor for ethylene

response; assimilates ethylene and
osmotic stress pathways

Excessive expression Increased tolerance to drought stress,
osmotic stress caused by salt [69]

LeNHX2/tomato Transport of ions Expression in excess Salt tolerance increase [70]

CWIN (Lin7)/tomato Takes part in mechanisms related
to temperature stress Expresses at normal level Improved heat resistance in

tomato flowers [71]

mt1D/E. coli Biosynthesis of mannitol Upregulation Increased tolerance to drought, cold,
and salinity [72]

LeFAD7/tomato Role in fatty acid transcription Antisense regulation
Improved high-temperature

tolerance; trienoic fatty
acids reduced

[73]

TPSP (TPS/TPP fusion
gene)/E. coli Biosynthesis of Trehalose Upregulation Salt and drought resistance

improved [74]

SlICE1/tomato Transcription regulation Overexpression Improved tolerance to cold [75]

katE/tomato Oxidative stress (catalase) Overexpression
Upgraded resistance to

photo-oxidative stress as a result of
drought and Fungal stress

[76]

tas14/tomato Accumulates chaperone-like
proteins more effectively upregulation

Enhanced tolerance to drought and
salinity without any growth

aberrations
[77]

Glycine betaine Stress savior Supplements Chilling tolerance increased [78]
ZAT12/B. carinata Transcriptional regulation Upregulation Boosted resistance toward drought [79]

CaKR1/pepper Impact on defense machinery Expression in excess Improved salt tolerance as well as
oxidative stress [80]

ZAT12/B. carinata Transcription of C2H2 zinc finger
protein Upregulation Enhanced tolerance to heat [81]

PtADC/P. trifoliata Involved in PAs synthesis Upregulation Increased tolerance to water stress [82]

LeFAD3/tomato Transcription of fatty acid and
lipids unsaturation Transcribed in excess Augmented tolerance to salt stress [83]

TaNHX2/wheat Transport of ions; equal-ion
management Upregulation Boosted resistance to salt stress [84]

LeHSP21.5/tomato Heat shock protein Overexpression Combat with
tunicamycin-induced stress [85]

MdPIP1; 3/Apple Aquaporin protein and used to
increase fruit size Expression Increased drought tolerance [86]

OSMOTIN gene/N. Tobacum Has a higher level of proline Constitutively expression Tolerance to salt stress [87]
CodA/tomato Organic osmolyte Expression Enhanced chilling stress [88]

Genetic modifications based on sequences that encode compounds involved in stress
adaptation are given below.

3.2.1. Mannitol

Mannitol is an important polyol (sugar alcohol) produced from fructose metabolism
and serves as a scavenger of free radicals and osmoregulation. The enzyme involved in
fructose metabolism to obtain mannitol is mannitol-1-phosphate dehydrogenase, and the
corresponding gene encoding this enzyme is mt1D [89,90]. In tomato, the constitutive
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expression of a bacterial mt1D gene driven by the CaMV 35S promoter provides improved
tolerance against chilling, drought, and saline stress [72].

3.2.2. Glycine Betaine

It is an organic compound derived from the amino acid glycine, whose accumulation
in plants may occur following abiotic stress. In plants, this compound is considered an
organic osmolyte, ensuring, for instance, the regulation and preservation of the thylakoid
membrane and, thus, sustaining the photosynthetic efficiency under stress [91]. Various
studies have used biotechnological tools, such as the overexpressing of this compound,
to facilitate an increased response of plants to abiotic stress tolerance. For example, the
expression of the bacterial choline oxidase A (coda) in tomato targeted to the chloroplasts
with a transit peptide resulted in an accumulation of glycine betaine in a relatively low (0.09
to 0.30 µmol·g−1 FW) but significant (up to 86% in chloroplasts compared to unstressed
control plants) amount, sufficient to enhance tolerance to chilling at various phenological
stages, as indicated by an increased yield in stress conditions of the transgenic plants [88].

3.2.3. Glutathione

Glutathione, an important antioxidant performing multiple functions in plants, is
synthesized from amino acids (i.e., L-glutamate, cysteine, and glycine). The whole process
requires two ATP molecules and is catalyzed by two glutamate enzymes—cysteine ligase
(GCL) and glutathione synthetase (GSS). This tripeptide provides protection at cellular
and tissue levels in response to various reactive oxygen species (ROS), such as peroxides,
superoxides, and hydroxyl radicals [92]. Glutathione has an important role during induced
stress. The constitutive expression in tomato of a Se-independent glutathione peroxidase
(GPx5) from Mus musculus resulted in an increased tolerance to mechanical stress [93].
Similarly, the concurrent constitutive expression of two glyoxalase (GlyI and GlyII) from
Brassica juncea in tomato showed a reduced growth depression and membrane damage (as
indicated by the level of lipid peroxidation and hydrogen peroxide production in leaves)
following long-term exposure (3 months) to salinity (up to 800 mM NaCl) [94].

3.2.4. Osmotin

Osmotin is a 26 kDa protein, a member of the PR-5 family, which also includes
zeamatin and thaumatin. It accumulates in plants as a defense mechanism against abiotic
stress because of its prominent role in osmoregulation [95]. It has been reported that
tomatoes constitutively expressing an osmotin gene from Nicotiana tabacum have higher
levels of proline, increased chlorophyll contents, and higher water contents (under stress).
These features were considered crucial in helping tomato withstand salt stress (150 mM
NaCl for 10 days) [87]. The osmotin from N. tabacum was also used to increase pathogen
resistance in transgenic barley, while it did not have a significant impact on insect-borne
virus infections (by aphids and leafhoppers) [96]

3.2.5. Polyamines

Polyamine (PA) is a term used to indicate the wide class of organic molecules hav-
ing multiple (more than two) amino acid groups. In plants, naturally occurring, low
molecular–weight polyamines are associated with embryogenesis, organogenesis, anthesis,
fruit development, ripening, and leaf senescence, but there is also evidence of their role
in stress response [95]. The most common and abundant PAs in plants are putrescine
(a diamine) and its derivatives spermidine and spermine [97]. Tomato transformed to
constitutively express the arginine decarboxylase gene from Poncirus trifoliata (PtADC),
indirectly involved in the biosynthesis of putrescine, showed increased levels of free PAs
and improved tolerance to leaf dehydration and drought stress [98]. Tomato genetically
transformed to constitutively overexpress the tomato SlSAMS1 gene accumulated PAs and
hydrogen peroxide and had an improved alkali stress tolerance. This gene is a member of
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the S-adenosylmethionine synthetase (SAMS) family, and it is stress-inducible. These genes
catalyze the formation of SAM, which is also a precursor to PAs [99].

3.2.6. Trehalose

Trehalose is a highly soluble disaccharide made of glucose subunits, and it is present
in a wide range of organisms, including prokaryotes, algae, mosses, fungi, protozoa, and
mammals. Trehalose appears to be able to play a special function as a stress metabolite pro-
tecting the integrity of the cell against environmental stress and nutrient limitations [100].
Traditionally, trehalose has been of little importance for angisoperms, where another non-
reducing saccharide, sucrose, has a predominant role in carbon storage and transport.
Nonetheless, the discovery of gene families encoding trehalose phosphate synthases (TPSs)
and trehalose phosphatases, along with their subsequent functional characterization, indi-
cated that trehalose acts mainly as an osmoprotectant and as a signal molecule involved in
stress response. Recombinant DNA technologies have made it possible to modify genes
governing trehalose metabolism in tomato. For example, the constitutive expression of
Saccaromyces cerevisiae ScTPS1 improved tolerance against drought or salt. Nonetheless,
transgenic plants had phenotypic abnormalities and alterations in carbohydrate biosynthe-
sis [101].

3.2.7. Biosynthesis of Ethylene

Ethylene is a well-known plant hormone whose commercial derivatives are also used
to induce post-harvest tomato ripening. Because of its applied importance, there are several
studies on genetically modified tomato cultivars with altered ethylene pathways in relation
to fruit maturation. Ethylene production is typically increased in stressful environmental
conditions. Several works have demonstrated that one of the positive effects of plant
growth–promoting rhizobacteria (PGPR) is lowering the ethylene level under stress by
cleaving and deaminating aminocyclopropane-1-carboxylic acid (ACC), the precursor
of ethylene, by ACC-deaminases [102]. Tomato cultivars expressing a bacterial ACC
deaminase under constitutive and inducible promoters were more tolerant to flooding [103].

3.2.8. Aquaporins

Aquaporins (AQPs) are trans-membrane proteins that allow the movement of water
and small solutes between and within cells. Numerous studies have reported the potential
roles of aquaporins in relation to abiotic stress in plants, water use efficiency (WUE), and
solute transport in plants [104,105]. In tomato, over forty members of the AQP gene family
have been linked to abiotic stress and plant development, mainly because of their expression
pattern [106]. The overexpression of genes regulating the formation and functioning of
aquaporins, such as SlTIP;2, in tomato increased the tolerance to abiotic stress. Interestingly,
transgenic plants were more productive and had higher biomass than untransformed
controls in normal and drought conditions [107]. An AQP from apple (MdPIP1;3) was also
used to increase fruit growth rate and size mainly thanks to bigger cells, also increasing
tolerance to drought stress [86]. Similarly, the overexpression of SlPIP2;1 conferred to
tomato’s higher hydraulic conductivity and tolerance against drought stress [108,109].

3.2.9. Heat Shock Proteins

A set of relatively conserved, ubiquitous proteins, referred to as heat shock proteins,
are synthesized by virtually all organisms, including plants, in response to various en-
vironmental stresses. These proteins often serve as intracellular chaperones and, for the
establishment of protein-protein interaction, are involved in protein folding, assembly,
translocation, degradation, and transport [110]. Different genes encoding HSPs (e.g., HsfA1,
HsfA2, HsfB1, LeHSP 17.6) have been identified and delivered to tomato to facilitate the
production of HSPs, with the common aim of helping plants better adapt to stress [111,112].
Moreover, the overexpression in tomato of LeHSP21.5 diminished tunicamycin-induced
ER stress [85]. Tunicamycin is an antibiotic that inhibits protein N-glycosylation, hence,
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inducing misfolded glycoproteins, and it is experimentally used to induce the unfolded
protein response in living organisms. Furthermore, other plant chaperonins have been
employed to increase the stress resistance in tomato [113]. For example, the overexpression
of the tomato SlDnaJ20 relieved ROS accumulation by ensuring high levels of SOD and
APX activities and was associated with higher fresh weights of six-week-old plants under
heat stress [114].

3.2.10. Antioxidants

Many antioxidants have been reported in plants that act as buffers to regulate the
redox potential of cells. Among antioxidant enzymes, the most exploited in plant biotech-
nology are probably glutaredoxins, catalases, ascorbate peroxidases (APX), and superoxide
dismutases (SOD). Just to give a few examples of applications, a catalase gene (katE) from E.
coli, introduced in the chloroplast genome of tomato under the RBCS promoter, increased
catalase activity and better protected plants from oxidative stress induced by high light
intensity, drought, or low temperature, compared to the untransformed control [76]. An
ascorbate peroxidase from tomato (LetAPX) was expressed in Arabidopsis and conferred
resistance to cold (4 ◦C for up to 24 h) [115]. Genetically modified tomato cultivars express-
ing the A. thaliana Fe-SOD gene promoted the increased performance and stability of the
photosynthetic apparatus under UV stress [58].

3.2.11. Ion Transport Proteins

Cation and anion transporters comprise a large class of transmembrane proteins vital
for any organism, serving the purpose of moving ions and other small molecules within and
between cells. These proteins are fundamental for ion homeostasis and are involved in salt
stress resistance because they participate in sodium and chloride uptake, translocation, and
cellular compartmentalization [116]. Numerous investigations have reported that genes
like HAL1 and HAL5, encoding ion transport proteins in S. cerevisiae, when delivered to
tomato using recombinant DNA technology, increased the tolerance of toward salinity [117].
Similarly, the A. thaliana AtNHX1 gene inserted in the tomato genome resulted in improved
salinity tolerance [118]. In both cases, a positive effect was associated with an improved
K/Na ratio under saline conditions. The importance of K homeostasis in the tolerance
to NaCl stress was also demonstrated by overexpressing the endosomal LeNHX2 ion
transporter [70,113].

4. Genome Editing for Ameliorating Abiotic Stresses in Tomato

New research tools and techniques are now available for creating abiotic stress-tolerant
crop cultivars. The development of resistance to abiotic stress in crops through conven-
tional breeding methods (e.g., crossing between two contrasting parental plants) has some
drawbacks, such as the complex genetic base of the phenotypic features related to abiotic
stress adaptation, and significant achievements have not been obtained [119,120]. Genetic
engineering approaches based on the insertion of a transgene are restricted in certain areas
of the world. Thus, to supply to the world’s rising population, there is great hope in genome
editing tools, which are expected to revolutionize the world’s agriculture [121]. In tomato,
genome editing has been performed for different genes, and resistance to abiotic stress
has been obtained. For instance, the alteration of HyPRP1 (hybrid proline-rich protein
1) using CRISPR/CAS9 has resulted in salinity stress tolerance in mutagenized tomato
lines [122]. Similarly, cold stress tolerance in tomatoes was obtained by mutation through
CRISPR/CAS9 in the C-repeat binding factor 1 (CBF1) gene of tomato. The tomatoes
with the cbf1 mutation were more vulnerable to stress and had increased electrolyte leak-
age [123]. To establish its function in tomato drought tolerance, the CRISPR/Cas9 method
was recently utilized to create mutated strains for the tomato gene NPR1 (non-expresser of
pathogenesis-related gene 1) [124]. S1NPR1 is essential for managing drought stress, and a
variety of SlNPR1 variations may be created through genome editing to give tomato and
other crops broad-spectrum drought tolerance.
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5. Conclusions

Abiotic stress negatively influences the growth and yield of crops by disrupting
their morpho-physio-biochemical and molecular activities. However, plants have evolved
multiple counter-mechanisms. Advances in rDNA technology have made increasing the
resistance to various abiotic stresses possible [77]. These recombinant DNA technologies
are highly time-efficient compared to classic breeding and widely applicable to multiple
plant species [38]. Despite the scientific and technological efficacy of biotechnological
approaches, briefly presented in this review, there will always be constraints that can
hamper the widespread diffusion of biotech tomatoes with abiotic stress tolerance. In
different countries, this germplasm is subjected to a series of strict safety regulations, even
when compared to genotypes derived from random mutagenesis programs. Currently,
there is a strong debate on the possible legal distinction between plants obtained through
classic genetic transformation (i.e., based on the transgene insertion) and plants developed
using gene-editing approaches, such as CRISPR-CAS9. A strong argument that limits this
distinction is that, in the EU (where GMOs are extensively regulated) any “organism in
which the genetic material (DNA) has been altered in a way that does not occur naturally
by mating or natural recombination”—and coherently, also plants obtained by site-directed
mutagenesis—“are subject to the obligations laid down by the GMO Directive” (European
Court of Justice ruling of case C-528/16, 2018; https://curia.europa.eu, accessed on the 1
December 2022). Transgenic plants are the most common GMOs but not the only possible
GMOs. In the EU, GMOs can be eventually marketed only after a scientific assessment of
the risks to health and the environment. Under the current legal framework, any molecular
biology technique that induces DNA variations with a mechanism that does not occur
in nature will generate a GMO. We would like to conclude that, rather than focusing on
the technique that alters the DNA or the source of the genetic material, a less stringent
legal framework and a less complex and onerous authorization procedure can be perhaps
granted for organisms modified using BBA because this approach can better achieve the
development of modified varieties within the functional range potentially obtainable by
conventional methods or classic mutagenesis.
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