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Abstract: Quinoa constitutes among the tolerant plants to the challenging and harmful abiotic
environmental factors. Quinoa was selected as among the model crops destined for bio-saline
agriculture that could contribute to the staple food security for an ever-growing worldwide population
under various climate change scenarios. The auxin response factors (ARFs) constitute the main
contributors in the plant adaptation to severe environmental conditions. Thus, the determination
of the ARF-binding sites represents the major step that could provide promising insights helping in
plant breeding programs and improving agronomic traits. Hence, determining the ARF-binding sites
is a challenging task, particularly in species with large genome sizes. In this report, we present a data
fusion approach based on Dempster–Shafer evidence theory and fuzzy set theory to predict the ARF-
binding sites. We then performed an “In-silico” identification of the ARF-binding sites in Chenopodium
quinoa. The characterization of some known pathways implicated in the auxin signaling in other
higher plants confirms our prediction reliability. Furthermore, several pathways with no or little
available information about their functions were identified to play important roles in the adaptation
of quinoa to environmental conditions. The predictive auxin response genes associated with the
detected ARF-binding sites may certainly help to explore the biological roles of some unknown genes
newly identified in quinoa.

Keywords: data fusion; machine learning; evidence theory; ARF-binding sites; Chenopodium quinoa

1. Introduction

Natural systems, food security, and agricultural production have been adversely af-
fected by devastating environmental changes [1]. Thus, the enrichment of our knowledge
of plant systems will provide effective solutions and leading strategies for future plant
yield improvement and breeding programs [2]. Particularly, quinoa constitutes among the
tolerant plants to the challenging and harmful abiotic environmental factors [3]. Thanks to
its nutritional characteristics and tolerance capacity to various environmental stress condi-
tions, quinoa has become an attractive laboratory material for scientists and researchers
worldwide. Hence, quinoa was selected as among the model crops destined for biosaline
agriculture that could contribute to the staple food security for an ever-growing worldwide
population under various climate change scenarios [4]. In these regards, the Food and
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Agricultural Organization of the United Nations (FAO) declared 2013 as the international
quinoa year to shed light on this crop as it is an essential staple food rich in proteins and
fibres which needs more attention to be paid and further research activities to be performed
to well understand and better decipher its valuable potential in fighting starvation problems
to ensure and consolidate a promising nutritional value for the human beings [5].

The severe environmental conditions and the climate changes variability accentuate the
effects of numerous stresses on plants [1]. So far, to cope with the surrounding continuously
changing environment, plants respond by significant rearrangements at the transcriptomic
level and modulation in the expression level of a large number of stress-related genes. Thus,
plant hormones have been reported as well to be involved in plant adaptation to different
biotic and abiotic stress factors [6,7]. Notably, auxin plays a critical and pivotal role in
improving plant tolerance by controlling the expression of many stresses’ responsive genes.
Auxin signaling involves the activation or repression of gene expression by a specific class
of ARF proteins that binds to the ARF-binding sites known as Auxin Response Elements,
AuxREs [8,9]. The ARF-binding sites are the main contributors to the auxin response
diversity. Thus, the knowledge and determination of the ARF-binding sites represent a key
and significant step to understanding well and accurately determining the molecular basis
of the auxin action, which could provide insights helping in plant breeding programs and
thereby in the amelioration of certain agronomic traits. Therefore, inferring the presence of
ARF-binding sites in the regulatory regions is essential both for functional and evolutionary
analyses [9]. Thus, determining the ARF-binding sites constitutes a challenging task,
particularly in species with large genome sizes.

Afterwards, a promising and powerful approach was used to determine the genome-
wide ARF-binding site’s location. This approach has been extensively approved to be
achieved through various experimental techniques, including ChIP-Chip [10,11], ChIP-
Seq [12,13], and ChIP-Pet [14]. However, these experiments are time-consuming and
require huge financial resources and support; additionally, their given results remain
relative and depend on the conditions adopted and/or being used during the experimental
procedure [15]. Nevertheless, a complementary and alternative approach mainly based on
computational methods has recently emerged, which allows fast and efficient identification
of the ARF-binding sites [16,17]. Hence, the computational prediction of the binding sites
remains a pivotal goal in bioinformatics with great priority and interest.

Most of the computational methods have used the TGTC-containing consensus core
sequences as a tool to detect the ARF-binding sites [9,18]. Furthermore, other employed
methods are mainly based on the position weight matrices (PWMs) describing the sequence
preference for the transcription factor [19]. Unfortunately, the predictions using merely the
consensus motifs or PWMs often generate a large number of false positives. This makes
the detection of the binding site spurious sometimes and inaccurate. Accordingly, some
unavoidable challenges and substantial limitations should be considered and considered
since there are often several false positive events that could be generated and/or detected.
In addition, many variants of DNA-binding sequences exist and can be recognized by
the ARF TFs. Therefore, a number of computational approaches have been proposed to
overcome these limitations and constraints to improve the prediction of the ARF-binding
sites [20].

In the same trend, several recent reports have used various machine learning ap-
proaches, including the support vector machine, SVM [21], random forest [22,23], deep
learning [24], and convolutional neural network, CNN [25]. These methods employ mostly
different lines of evidence for the prediction of the ARF-binding site, such as sequence con-
servation, gene ontology (GO), and location of the binding sites [20]. Some other methods
have used the distance and number of the nearest histone modifications [26]. Other groups
based on DNA use three-dimensional (3D) structural information to describe the binding
specificities [27,28]. Nevertheless, certain models could predict the binding sites based on
the ChIP-Seq data once available [26]. Many other methods relied on gene expression data
to predict the binding sites [28–30].
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With the increasing number of evidence sources for ARF-binding events, the adoption
of computational methods for integrating these various data sources can further improve
the prediction of TF binding [31]. Recently, substantial progress has been made and yielded
new valuable insights concerning the ARF-binding activity. Thus, the ARF-binding site
varies sequences, repeat numbers, spacing, and orientation, contributing to the binding
specificity and affinities of the different ARF family members [32–36]. Hence, a combination
of this genomic information with other data sets, such as gene expression, may improve the
prediction of the ARF-binding events. Plants respond to different environmental stresses
by regulating stress-responsive gene expression [37–39].

In this study, we present a data fusion approach-based DS evidence theory and fuzzy
set theory [40]. Thus, we combined the predictive data extracted from two techniques
frequently used in the detection of the binding sites. These two are the detection of
overrepresented motifs and the linear discriminant analysis (LDA). From each method, we
extracted several features and combined them with an orthogonal sum of the DST rule.
The specific features of the ARF-binding sites are also integrated to further improve their
prediction accuracy and reliability. Then, we evaluated our predictions using ChIP-Seq
data from Zea mays. Subsequently, we performed an “In-silico” identification of the ARF-
binding sites in Chenopodium quinoa. Quinoa (Chenopodium quinoa Willd.) is a halophytic
pseudo-cereal crop that originated from the Andean region of South America [41]. It is an
allotetraploid (2n = 4x = 36) with an estimated genome size of approximately 1.5 Gbp [42].
It is a more nutritious grain than any other major cereal [43–45].

2. Results
2.1. Modelling Approach

In this study, we perform a data fusion approach based on Dempster–Shafer the-
ory and fuzzy set theory to predict ARF-binding sites. Thus, we combined different
extracted features.

To meet our requirements, two hypotheses were considered herein, which are the fol-
lowing: “the motif can be an ARF-binding site” or “the motif can’t be an ARF-binding site”.

In terms of the DS evidence theory, we are located in the case where the frame of
discernment is constructed with two single hypotheses, H1 and H2, then a single composite
one (H3), unifying the two other hypotheses as mentioned in the following formula:
H3 = H1 U H2 (union of H1 and H2), where H3 represents the ignorance indeed. The
modelling of our method follows six major steps to represent the confidence in the detection
of the ARF-binding site.

Step 1: Features determination.
Step 2: Construction of feature space.
Step 3: Determination of confidence regions.
Step 4: Modelling hypotheses.
Step 5: Fuzzification.
Step 6: Dempster–Shafer combination.

2.1.1. Features Determination

The first step consists of extracting the different features that can be selected from
each studied method. From the first method (detection of overrepresented motifs), we
have extracted four features which are position (P), significance score (Sc), occurrence
(O), and density (D). The position represents the initial feature that must be determined
for each motif of the database that we enclosed. Thus, several regulatory elements have
been identified in the 5 ′UTR regions [46,47]. In fact, we have chosen to use the position
relative to the start codon ATG. However, the significance score (Sc) has been calculated
using the Weeder algorithm as previously performed by [48]. The occurrence indicates
the total number of the detected motifs (core sequences) in a whole genome. The density
feature has been defined as the ARF-binding sites rate in the promoter of auxin responsive
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genes. In this context, we have selected the auxin response genes with twofold changes
(FC) expression from the microarray data [49].

For the second method, an LDA has been performed using Z-curve features [50] and
the GC% as potentially the discriminative features. Hence, the LDA represents among the
most important supervised linear dimensional reduction techniques [51]. The Z-curve is a
unique 3D representative curve of a DNA sequence (Equations (1)–(3)). Notably, the three
Z-curve features used here are:

x1 = (a1 + g1) − (c1 + t1) (1)

y1 = (a1 + c1) − (g1 + t1) (2)

z1 = (a1 + t1) − (g1 + c1) (3)

2.1.2. Construction of Feature Space

In the following section, the training motifs have been divided into positive and
negative training sets to construct a discriminative prediction model. These motifs are
studied in the feature space, which helps to investigate the link between the selected features
and the type of the considered motifs. Thereby, three learning graphs have been created
(Figures 1–3). These learning graphs represent the distribution of training motifs according
to their calculated features. We have chosen to study independently the knowledge and
insights acquired from, on one hand, the position and significance score (Figure 1) and,
on the other hand, those provided by the Occurrence and Density (Figure 2) in order to
distinguish as much as possible, the ARF-binding sites from the false positive’s events. For
the LDA, we have used the Z-curve feature and the GC%. Function 1 and function 2 are the
first and the second discriminant functions, respectively. The first function maximizes the
differences between groups on that function. The second function maximizes differences in
that function. So, the third learning graph depicts the distribution of the different types of
motifs in function 1 versus function 2 feature space (Figure 3).
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Figure 1. Feature space of the position and significance score representing the training sets distribu-
tion of the ARF-binding sites (red color) and false positives (blue color). Three fuzzy sets and their
corresponding membership degree functions (µSc(i) and P(j)). The latter parameters were defined for
each feature (position and score) and found to yield nine regions. The boundaries of the different sets
were determined through a learning step as much as possible to define the discriminative regions.
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Figure 2. Feature space of the occurrence and density defining the training sets distribution of
the ARF-binding sites (rx cq ed color) and false positives (blue color). Three fuzzy sets and their
corresponding membership degree functions (µO(i) and D(j)). µO(i) and D(j) were defined for the
occurrence and density, respectively, yielding twelve regions. The boundaries of the different sets
were determined through a learning step as much as we could to find the discriminative regions.
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Figure 3. Feature space of the two first discriminative functions linear discriminant analysis of the
represented training sets distribution of the ARF-binding sites (red color) and false positives (blue
color). Three fuzzy sets and their corresponding membership degree functions (µF1(i) and F2(j)) were
defined for each feature, yielding nine regions. The different sets of boundaries were determined
through a learning step as much as possible to delimit discriminative regions.
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The first graph corresponds to the area of uncertainty that contains all types of reg-
ulatory elements. Thus, they are not discriminative features, as many ARF-binding sites
were found in a very common region. Therefore, the interpretation of feature space rel-
ative to the two other features (occurrence and density) improves the TF classification
and helps segregate or differentiate the ARF-binding sites, especially those found in the
common region.

2.1.3. Confidence Regions

Generally, the constructed learning graphs did not provide clear discrimination of the
ARF-binding sites from the false positive hits. Indeed, for the sake of clarity, each graph
was sub-divided into different areas called confidence regions that would be enriched by
the ARF-binding sites. Each confidence region was defined according to the percentage of
ARF-binding sites included. Mostly, this percentage varies from one region to another, and
the graph partitioning was as illustrated in Figures 1–3.

2.1.4. Modelling Hypotheses

In order to perform automated detection processing for the ARF-binding sites, a
confidence level should be automatically assigned for each unknown detected motif that
can be placed on the graph. To achieve that, we have defined a gradual doubt through a set
of four propositions:

- P1(Hi, Hj): Total ignorance
- P2(Hi, Hj): Low preference for the Hi hypothesis but high doubt between Hi and Hj
- P3(Hi, Hj): Strong preference for the Hi hypothesis but low doubt between Hi and Hj
- P4(Hi): Total confidence in the Hi hypothesis, no doubt

Table 1 shows the seven cases representing the various preference degrees that enable
expressing the hesitation between the two hypotheses (H1 and H2).

Table 1. Seven possibilities for the various preference degrees expressing the hesitation between the
two hypotheses, H1 and H2.

Proposition m(H1) (AuxRE) m(H2) (Pas AuxRE) m(H1 U H2) (Ignorance)

P1(H1, H2) 0 0 1
P2(H1, H2) 0.33 0 0.67
P3(H1, H2) 0.67 0 0.33

P4(H1) 1 0 0
P2(H2, H1) 0 0.33 0.67
P3(H2, H1) 0 0.67 0.33

P4(H2) 0 1 0

Thereafter, all propositions are interpreted in a numerical form for which the infor-
mation sources can provide evidence by using elementary mass values. The preference
levels from P1 to P4 are modeled by a gradual mass value and are equal to 0, 0.33, 0.67,
and 1, respectively [52]. P4 represents the hypothesis with total confidence and no doubt
that the detected motif is an ARF-binding site. In the absence of doubt, the mass value
assigned is equal to 1. The mass value corresponds to the total doubt equals zero. The
transformation of doubt into a quantitative mass value was provided in detail in Table 1.
Afterwards, a proposition was assigned to each confidence region from the previous analy-
sis of the learning graphs based on the percentages of ARF-binding sites already existing in
each region.

2.1.5. Fuzzification

In the previous sections, we applied a discrete representation to define the regions
of the learning graphs. This representation assigns different classifications for the close
motifs from both the boundaries sides. However, the boundaries between regions were not
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well defined, and the transition from one region to another remains tricky and ambiguous.
Thus, to further describe this fuzziness aspect in the learning graphs when using the mass
functions, we suggest incorporating the theory of fuzzy logic. Accordingly, a gradual,
continuous, and smooth transition between regions can be achieved using the membership
function concept. Therefore, we have defined the fuzzy sets for each measured feature.
For instance, for the feature significance score (Sc), four distinct sets (small, average, high,
and very high) were defined and recognized. Thus, a smooth transition from one region
to another can merely occur. During the learning stage, such a detected motif could be
weighted by its membership degrees to different fuzzy sets and characterized by a mass
value according to the doubt level for the hypothesis related to its corresponding region.

For each detected motif, three masses were calculated according to Equations (4)–(6) be-
low, corresponding to the three learning graphs (Figures 1–3). They are given, respectively,
as follows:

m(O ∈ S/Sc&P) = ∑i=3,j=3
i=1,j=1 µSc(i)(x)× µp(j)(y)×mRij(O ∈ S/Sc&P) (4)

m(O ∈ S/O&D) = ∑i=3,j=4
i=1,j=1 µO(i)(x)× µD(j)(y)×mRij(O ∈ S/O&D) (5)

m(O ∈ S/ f 1& f 2) = ∑i=3,j=3
i=1,j=1 µ f 1(i)(x)× µ f 2(j)(y)×mRij(O ∈ S/ f 1& f 2) (6)

where S represents any sub-set of the hypotheses, mRij(O ∈ S/Sc&P), mRij(O ∈ S/O&D) ,
and mRij(O ∈ S/ f 1& f 2) designates the mass corresponding to the region Rij of the signifi-
cance score/position graph, Occurrence/Density graph, and f 1/f 2 graph, respectively.

2.1.6. Dempster–Shafer Combination

Subsequently, the data fusion step consists of a combination of the confidence levels
deduced from the two methods of detection. Firstly, we must combine the two masses
of method 1 (Equations (4) and (5)). Thus, the mass function was obtained by fusing the
two masses from the two learning graphs of method 1 by using the orthogonal sum of DS
evidence:

m1(O ∈ S) = m(O ∈ S/Sc&P)⊕m(O ∈ S/O&D) (7)

Then, the final mass function (mfusion) (Equation (8)) was defined by fusing the two
masses m1(O ∈ S) (Equation (7)) and m(O ∈ S/ f 1& f 2) (Equation (6)) as shown in the
following equation:

m f usion(O ∈ S) = m1(O ∈ S)⊕m(O ∈ S/ f 1& f 2) (8)

Thus, this approach integrates many specific features of the ARF-binding sites, such
as sequence conservation, cut counts in a 200 bp window around the site, location relative
to the transcription starting sites, and motif orientation and spacing. The number of motifs
repeats and their spacing represents a very characteristic and major feature for the ARF-
binding sites. In this regard, Galli and co-workers have demonstrated that the ARFs bind
more frequently with high affinity to the sites containing multiple TGTC core sequences
in Zea mays [32]. The same authors found that most of the peaks containing two or more
TGTCs (55–86%) and/or the peaks with higher TGTC motif numbers showed stronger
peak signal intensity [32]. Conversely, the randomly selected genomic regions contain a
much lower percentage of fragments with two or more TGTC motifs and a much higher
proportion of instances with zero or only a single TGTC core sequence [32]. Additionally,
motif orientation and spacing are both important features in the ARF-specific binding sites.
Overall, 90% of total peaks reveal less than 50 intervening nucleotides for all orientations,
while 29~46% showed spacing of fewer than 20 nucleotides [32,34]. These findings are
like previous studies performed on Arabidopsis thaliana [53,54]. The integration of these
important features reduces the prediction space and the potential of false positive rates,
thereby promoting prediction reliability and precision.
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2.2. Evaluation of Data Fusion Approach on the Experimental Data

In order to assess the predictive accuracy of our methodology, we constructed gold-
standard datasets for six ARFs which are ARF4, ARF13, ARF14, ARF18, ARF35, and ARF39.
The ChIP-Seq data from Zea mays was used to evaluate and/or test the performance of
the data fusion method for identifying the ARF-binding sites. These ARFs members were
chosen because they are available in a narrow peak format with peak summit values.
Therefore, we used the middle 100 bases of each peak to ensure including enough sequence
length in identifying the ARF-binding sites while minimizing the false detections. All
ChIP-Seq peaks of the ARFs are taken (considered) as positive binding events. The positive
sequences correspond to 50 bases from each side of the maximum signal for each ChIP-Seq
peak. The control set contains randomly generated, non-overlapping peaks harboring the
same mean peak width as the positive ones (peaks).

The receiver operation characteristic curve (ROC) can be performed by plotting the true
positive rate against the false positive one (rate) at different thresholds. Thus, we mainly
considered the area under the ROC curve (AUC) to assess the aggregated classification
performance. Figure 4 and Table 2 display the ROC curves and AUC values, respectively,
for the six evaluated ARFs members. The data fusion-based algorithm could discriminate
the ChIP-Seq peaks from the control sequences for the whole evaluated ARFs to some
extent (degree), as evidenced by the fact that the AUC scores of all the ARFs members
surpassed the random expectation of 0.5.
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Figure 4. The receiver operating characteristic (ROC) curves of ARF-binding sites predicted using
our data fusion method. The ARF members (4, 13, 14, 18, 35, and 39) were depicted by the alphabetic
letters from (A–F), respectively. The true positive rate was evaluated as follows: TPR = TP/(TP + FN)
and the false positive one FPR = TN/(TN + FP). The reference lines are displayed in green color for
all the ARFs members.
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Table 2. Area under the receiver operator characteristic (ROC) curve (AUC) and average Area Under
the Precision-Recall curve (AUPR) for six evaluated ARFs: ARF4, ARF14, ARF35, ARF39, ARF13,
and ARF18.

ARF ARF4 ARF14 ARF35 ARF39 ARF13 ARF18

AUC 0.859 0.733 0.927 0.874 0.858 0.897

Data fusion Matrix scan Fimo
AUPR 0.91 0.8 0.78

In order to investigate the influence of the combination by data fusion approach, we
presented in the boxplots of Figure 5 the average AUC for the 6 studied ARFs members
before and after combination using specific features such as the number of motifs repeats
and their spacing. Notably, the comparison of the AUC values obviously shows that the
data fusion method greatly outperforms the other prediction methods (Figure 5). This
reveals the utility of our proposed methodology for the recognition of the ARF-binding
sites. Hence, our results depicted in Figure 5 clearly show that using the combination of
specific features substantially reduced the number of false positives. Thus, the average
AUC of our used method ranged from 0.85 to 0.93, and this reflects the high efficiency
of this method and the low rate of spurious combination events generated during our
implemented method.
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Figure 5. Boxplot of the average AUC of 6 different ARFs members studied herein before and
after combination using specific features of ARF-binding. Data fusion method is a combination of
method_1 and method_2. Method_1 represents the prediction using overrepresented motifs, and
method_2 corresponds to the prediction based on linear discriminant analysis (LDA).

2.3. Comparison of Our Approach to Other Methods

In order to evaluate the performance of the data fusion approach for identifying the
ARF-binding sites, we compared our methodology with other TFs site prediction software,
such as Fimo, as well as Matrix scan. For example, we obtained ChIP-Seq data for the
ARF39 and compared the performances and reliabilities of the programs to detect the true
positive ARF-binding sites using ROC curves (Figure 6). The area under the curve (AUC)
was calculated for each program as well as area under precision recall curve (AUPR). The
AUPR evaluates the classification performance in terms of precision and recall.
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ARF-binding sites prediction quality.

In comparison to the evaluated tools using ARF39 ChIP-Seq data, our method, repre-
sented by the higher curve close to the top left corner, shows the best fit (high efficiency)
to predict with high accuracy the true positive ARF sites (Figure 6; blue color curve). Our
model also achieves higher overall AUC than all the other previously tested methods (Fimo,
Matrix scan). As well, the AUPR comparison (Table 2) clearly indicates that our model
performs well in terms of the area under the precision-recall curve. This reveals that our
model exhibits better performance for the AUPR if compared to Fimo and Matrix scan.

To evaluate our model, we have compared our prediction to previously published
detected auxin binding sites in quinoa. A valuable recent study by Yu et al. identified four
auxin-responsive elements in the promoter of AUR62002523, AUR62002810, AUR62004953,
and AUR62004956 genes. Our analysis also identified with a high score these AuxRE as
ARF-binding sites. The high scores are explained by the fact that the studied genes by Yu
et al. are Auxin Response Protein (AUX/IAA) since our model takes into consideration the
genes’ expression levels in response to auxin.

Another recent study by Zhu et al. identified several cis-acting elements associated
with auxin in the promoter region of the quinoa SRS genes. The authors highlight the
importance of Cis-acting elements in plant defense against various biotic and abiotic
stresses. Auxin response elements have been particularly detected in the promoters of three
CqSRS gene family members, which are CqSRS 4 (AUR62007636), CqSRS 5 (AUR62007664),
and CqSRS 8 (AUR62016794). These AuxRe are likewise identified as ARF-binding sites by
our model. All studied cis elements are detected par data fusion model. In addition, some
other motifs are also identified as ARF-binding sites. As an example, we detect a second
reverse motif at the −354 bp position of the AUR62004956 gene. The spacing between the
detected motifs is about thirty bp [55,56].

2.4. Functional Annotation of ARF-Binding Sites in Chenopodium quinoa

To further explore the gene function and gain more insights into the biological path-
ways implicated in the auxin response in quinoa, we conducted the GO enrichment and
KEGG analysis to illustrate the auxin-responsive genes harboring potential ARF-binding
sites in their promoters’ regions (Table S1). To unravel the major auxin response pro-
cesses, three top biological pathways from the enriched analysis were selected for further
investigation. In terms of GO enrichment, we found that the proteins showing signif-
icantly enriched expression were involved in three top pathways of the biological pro-
cess of ARF4 (nitrogen compound metabolic process, tRNA processing, and DNA repair;
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Figure 7A; Table S2), ARF13 (IMP salvage, (1→3)-beta-D-glucan biosynthetic process and
endoplasmic reticulum to Golgi vesicle-mediated transport; Figure S1A; Table S2) and
ARF14 (telomere maintenance, DNA repair, and rRNA methylation; Figure S2A; Table S2),
ARF18 (regulation of DNA replication, DNA damage checkpoint, and chromosome or-
ganization; Figure S3A; Table S2), ARF35 (regulation of DNA replication, DNA dam-
age checkpoint, and chromosome organization; Figure S4A; Table S2) and ARF39 (aer-
obic respiration, asparaginyl-tRNA amino-acylation, and microtubule-based movement;
Figure 8A; Table S2). For the other pathways, complete and detailed descriptions are given
in Table S2.

The KEGG analysis reveals that various metabolic pathways were enriched regarding
the up-regulated genes by elevated CO2. These pathways include starch and sucrose
metabolism, Fatty acid biosynthesis, Nitrogen metabolism, Seleno-compound metabolism,
Amino-acyl-tRNA biosynthesis, and Carotenoid biosynthesis (Figures 7B, 8B and S1B–S4B;
Table S3). For the other pathways, complete and detailed descriptions are given in Table S3.Plants 2022, 11, x FOR PEER REVIEW 14 of 23 
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Plants 2023, 12, 71 12 of 18
Plants 2022, 11, x FOR PEER REVIEW 15 of 23 
 

 

 
Figure 8. GO and KEGG analyses performed on the ARF39. (A), GO analysis displaying the top 20 
enriched pathways for the biological process, cellular component, and molecular function. (B), 
KEGG analysis displaying the top 20 enriched metabolic pathways based on the ARF39 gate. 

3. Discussion 
In this study, we developed a new algorithm for the prediction of ARF-binding sites 

by combining a set of genomic features extracted from two basic methods (overrepre-
sented motifs and LDA). To achieve that, we attempted to extract the features from the 
existing ARFs ChIP-Seq data based on the two chosen methods, and we built up the model 
by applying a data fusion approach. The supervised learning model step constitutes an 
important and pivotal task of the work. We then extensively evaluated the transferability 
using this algorithm and found that the learned model was well accomplished in predict-
ing the ARF-binding sites with high accuracy and reliability. 

Figure 8. GO and KEGG analyses performed on the ARF39. (A), GO analysis displaying the top 20
enriched pathways for the biological process, cellular component, and molecular function. (B), KEGG
analysis displaying the top 20 enriched metabolic pathways based on the ARF39 gate.

3. Discussion

In this study, we developed a new algorithm for the prediction of ARF-binding sites
by combining a set of genomic features extracted from two basic methods (overrepresented
motifs and LDA). To achieve that, we attempted to extract the features from the existing
ARFs ChIP-Seq data based on the two chosen methods, and we built up the model by
applying a data fusion approach. The supervised learning model step constitutes an
important and pivotal task of the work. We then extensively evaluated the transferability
using this algorithm and found that the learned model was well accomplished in predicting
the ARF-binding sites with high accuracy and reliability.

Quinoa (Chenopodium quinoa Willd.) is a pseudo cereal of the Amaranthaceae family,
which originates from the Andean region and can adapt to different edaphic and climatic
conditions. Both quinoa seeds and leaves are edible parts of the plant; however, the seeds
are considered most in terms of economic and scientific aspects. It is a seed crop with high
nutritional value since seeds are rich in proteins, lipids, fiber, vitamins, and minerals and
have a remarkable balance of essential amino acids. Moreover, due to the absence of gluten,
quinoa constitutes a suitable diet for celiac patients or gluten-related disorders [57]. Thus,
the nutritional value of quinoa seeds has been reported to meet, and even exceed, that
recommended by the World Health Organization, WHO [58]. Furthermore, the quinoa
plant is resistant to various environmental stresses, including cold [59], salt [60], and
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drought [61]. Very likely, for these reasons, quinoa has been called since a while the “golden
grain” [57].

In the same trend, the GO enrichment reveals that the various pathways were enriched
regarding the list of genes containing the predictive ARF-binding sites in their promoters.
Some pathways are known to be involved in the auxin signaling and response in other
plants, such as Arabidopsis [62], rice [63], and tea [64]. These results corroborate our
prediction reliability based on the data fusion approach and potentially suggest the impli-
cation of these pathways in auxin response in Chenopodium quinoa as well. For instance, the
myosin complex pathway was highly enriched in the following ARFs: ARF4, ARF13, and
ARF39 (Figure 7, Figure 8 and Figure S1A). In line with our findings, a recent work also
suggested that the myosin XIs could play a significant role in the auxin regulation network
in Arabidopsis thaliana [62]. Hence, the myosin XIs were found to be involved in mediating
and orchestrating (in a concerting manner) the root organogenesis via their effects on the
polar distribution of auxin responses and on the cell division process [62].

Besides, another interesting significantly enriched pathway was related to the tRNA
amino-acylation and processing. In line with our findings, recently, Chen and co-workers
have found that the tRNA modification plays an essential role in auxin signaling in rice
plants in response to a moderately high temperature of about 35 ◦C [63]. Our results
confirm and agree with this funding and suggest the implication of tRNA processing in
the auxin signalling output in quinoa under heat-stress conditions. Furthermore, the GO
enrichment exhibits that the nitrogen compound metabolic process was enriched regarding
the genes containing ARF4 binding sites in their promoters (Figure 7A). In the same trend,
a recently published study reported that the lateral root formation could be induced by a
low nitrogen (N)concentration via auxin biosynthesis and accumulation in tea plants [64].
In this regard, our results strongly also suggested the implication of the ARF4 family in
this process (lateral root formation under low N) in quinoa.

Some other pathways were highly enriched in the predicted auxin-responsive genes
but have no or less information about their functional annotations and relation to auxin
response. Thus, our results proposed that these pathways play crucial or prominent roles
in the auxin signaling and adaptation of quinoa to changing environmental conditions.
Among these pathways, the kinesin complex was significantly enriched in the list of all
the studied ARFs response genes (ARF4, ARF13, ARF14, ARF18, ARF35, and ARF39)
(Figure 7A, Figure 8A and Figures S1A–S4A). This suggests a potentially prominent role
of kinesin in the auxin signaling process. The (1→3)-beta-D-glucan biosynthetic process
was also enriched in the ARF13 gene list. This (1→3)-beta-D-glucan is highly represented
in monocotyledons and known to be involved in plants’ response to oxidative and heat
stresses [65–67]. Our analyses suggest thus the involvement of this pathway in quinoa adap-
tation to oxidative and heat stresses by implying the ARF13 auxin signaling (Figure S1A).
Hence, various pathways were enriched regarding the list of genes containing the predic-
tive ARF-binding sites in their promoters, including telomere maintenance, DNA repair,
asparaginyl-tRNA amino-acylation, and chloroplast movements (Table S2). These different
pathways were extensively reported to be implicated in the Chenopodium quinoa tolerance
to adverse environmental factors, such as salinity [3,68,69], drought [70], or their combined
effect [71,72]. Eventually, this funding may help scientists to better understand and identify
the crucial molecular mechanisms of the auxin action and to further uncover how the auxin
signaling pathway could involve, in the quinoa plant, against different abiotic stresses
such as salinity since it (quinoa) has earlier been widely used as a model crop for under-
standing the salt-tolerance in halophytes [4]. In addition, the predictive auxin response
genes with the detected ARF-binding sites could help explore the molecular functions
and the biological roles of some unknown genes in quinoa since its genome has still not
yet sequenced till date, which makes it tough and delicate to decipher its deep genomic
functions with precision. One of the main advantages of Dempster–Shafer theory (DST) is
that we can utilize it to generate a degree of belief by taking all the evidence into account.
This evidence can be obtained from different sources. Merge several types of information
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specific to ARF-binding sites to reduce false positives significantly. However, it still needs to
be improved by introducing other parameters like digital genomic footprinting or DNase-I
hypersensitivity score [73]. Further directions will be the development of algorithms by
fusion more specific and recently investigated to predict ARF-binding sites.

4. Material and Methods
4.1. Training Set

A set of validated ARF-binding sites was collected from the published data online and
ChIP-Seq data for six of the Zea mays ARF-binding sites regions from the gene expression
omnibus (GEO) under the accession number GSE111857 [32,34].

The data were available in narrow peak format with peak max values. We extracted
the binding peaks for each dataset with a length of 100 bp centering on the summit of the
originally called binding peaks. We divided our dataset into training and test sets. The
whole genomes dataset and upstream sequences of Zea mays and Chenopodium quinoa were
downloaded from phytozome (www.phytozome.org (accessed on 18 September 2019)) and
used for all our analysis below.

A Linear discriminant analysis (LDA) was performed using SPSS (v. 16.0, statisti-
cal package for the social sciences, Chicago, IL, USA). The microarray data of the pri-
mary response to auxin in Arabidopsis was taken from the Genevestigator database
(https://genevestigator.com/gv/ (accessed on 18 November 2019)) [74].

4.2. Algorithm Implementation

The main algorithm was implemented under the R software environment language
version R-3.5.3. All computations were performed on a single CPU Intel Core i7 computer
running at 2.8 GHz, with 8 GB main memory. The source code is available upon request.

In order to assess the predictive accuracy of our methodology, we constructed gold-
standard datasets for six ARFs which are ARF4, ARF13, ARF14, ARF18, ARF35, and ARF39.

4.3. Evaluation of Data Fusion Approach

The ChIP-Seq data from Zea mays was used to evaluate and test the performance of
the data fusion method for identifying the ARF-binding sites. The gold-standard data set
was constructed based on ChIP-Seq data of the given ARFs currently under investigation.
These ARFs members were chosen because they are available in a narrow peak format
with peak summit values. Therefore, we used the middle 100 bases of each peak to ensure
including enough sequence length in identifying the ARF-binding sites while minimizing
the false detections. All ChIP-Seq peaks of the ARFs are considered positive binding events.
The positive sequences correspond to 50 bases from each side of the maximum signal for
each ChIP-Seq peak. The control set contains randomly generated, non-overlapping peaks
harboring the same mean peak width as the positive ones.

Thus, we mainly considered the area under the ROC curve (AUC) to estimate the
aggregated classification performance. The receiver operation characteristic curve (ROC)
and average Area Under the Precision-Recall curve (AUPR) can be performed by plotting
the true positive rate against the false positive one at different thresholds.

4.4. Functional Annotation

To further explore the gene function and gain more insights about the biological
pathways implicated in the auxin response in quinoa, we conducted the GO enrichment
and KEGG analysis to illustrate the auxin-responsive genes containing potential ARF-
binding sites in their promoters’ regions.

A multi-omics data analysis tool, OmicsBean (http://www.omicsbean.cn (accesssed
on 1 July 2020)), dedicated to integrating the gene ontology (GO) enrichment and Kyoto
encyclopedia of genes and genomes (KEGG) pathway analysis, was employed to investigate
the obtained gens lists (Table S2). A p-value < 0.05 (Fisher’s exact test) was considered as
the threshold to determine the significant enrichments for the GO and KEGG pathways.

www.phytozome.org
https://genevestigator.com/gv/
http://www.omicsbean.cn
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5. Conclusions

In this article, we present a new data fusion approach based on DS evidence theory and
fuzzy set theory to predict the ARF-binding sites in quinoa. To achieve that, we developed
a new algorithm for the prediction of ARF-binding sites by combining a set of genomic
features extracted from two basic methods (overrepresented motifs and LDA). Thus, we
found that the learned model was well accomplished in predicting with high accuracy
and reliability these ARFs. Afterwards, we performed an “In-silico” identification of the
ARF-binding sites in Chenopodium quinoa. The GO enrichment corroborates that various
biological pathways were enriched regarding the list of genes containing the predictive
ARF-binding sites in their promoters. These pathways were identified to play important
roles in the auxin signaling and adaptation of quinoa to severe environmental conditions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants12010071/s1, Figure S1: GO and KEGG analyses performed
on the ARF13. A, GO analysis displaying the top 20 enriched pathways for the biological process,
cellular component and the molecular function. B, KEGG analysis displaying the top 20 enriched
metabolic pathways based on the ARF13 gate; Figure S2: GO and KEGG analyses performed on the
ARF14. A, GO analysis displaying the top 20 enriched pathways for the biological process, cellular
component and the molecular function. B, KEGG analysis displaying the top 20 enriched metabolic
pathways based on the ARF14 gate; Figure S3: GO and KEGG analyses performed on the ARF18. A,
GO analysis displaying the top 20 enriched pathways for the biological process, cellular component
and the molecular function. B, KEGG analysis displaying the top 20 enriched metabolic pathways
based on the ARF18 gate; Figure S4: GO and KEGG analyses performed on the ARF35. A, GO
analysis displaying the top 20 enriched pathways for the biological process, cellular component and
the molecular function. B, KEGG analysis displaying the top 20 enriched metabolic pathways based
on the ARF35 gate; Table S1: List of putative auxin response genes containing ARF-binding sites in
their promoters regions predicted by data fusion approach; Table S2: Enriced biological pathways
based on gene ontology (GO) analysis in Chenopodium quinoa; Table S3: Enriced biological pathways
based on Kyoto encyclopedia of genes and genomes (KEGG) analysis in Chenopodium quinoa.
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