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Abstract: Coastal wetlands are dynamic ecosystems that exist along a landscape continuum that can
range from freshwater forested wetlands to tidal marsh to mudflat communities. Climate-driven
stressors, such as sea-level rise, can cause shifts among these communities, resulting in changes to
ecological functions and services. While a growing body of research has characterized the landscape-
scale impacts of individual climate-driven stressors, little is known about how multiple stressors and
their potential interactions will affect ecological functioning of these ecosystems. How will coastal
wetlands respond to discrete climate disturbances, such as hurricane sediment deposition events,
under future conditions of elevated atmospheric CO2? Will these responses vary among the different
wetland communities? We conducted experimental greenhouse manipulations to simulate sediment
deposition from a land-falling hurricane under future elevated atmospheric CO2 concentrations
(720 ppm CO2). We measured responses of net primary production, decomposition, and elevation
change in mesocosms representing four communities along a coastal wetland landscape gradient:
freshwater forested wetland, forest/marsh mix, marsh, and mudflat. When Schoenoplectus americanus
was present, above- and belowground biomass production was highest, decomposition rates were
lowest, and wetland elevation gain was greatest, regardless of CO2 and sediment deposition treat-
ments. Sediment addition initially increased elevation capital in all communities, but post-deposition
rates of elevation gain were lower than in mesocosms without added sediment. Together these results
indicate that encroachment of oligohaline marshes into freshwater forested wetlands can enhance be-
lowground biomass accumulation and resilience to sea-level rise, and these plant-mediated ecosystem
services will be augmented by periodic sediment pulses from storms and restoration efforts.

Keywords: climate change; coastal wetlands; multiple stressors; elevated CO2; hurricanes; sediment
deposition; wetland elevation change; marsh encroachment; biomass production; cellulose decomposition;
mesocosm experiment

1. Introduction

Coastal wetlands are valuable ecosystems that enhance coastal resilience [1,2] and
reduce greenhouse gas emissions through carbon sequestration [3–5]. Because coastal
wetlands provide these and numerous other critical services [6,7], it is imperative to under-
stand how these ecosystems will function under future climate conditions. Existing at the
terrestrial–aquatic interface, coastal wetlands are naturally resilient ecosystems that have
been sculpted by dynamic climate and flooding conditions for millennia [8,9]. Low-lying
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coastal wetlands must keep pace with changes in sea level or become submerged. Wetlands
adjust to rising sea levels through a positive hydrogeomorphic feedback mechanism that
achieves optimal wetland elevation and flooding through processes that control mineral
sediment and organic matter accumulation [10–12], leading to enhanced coastal habitat
stability and soil carbon sequestration [13–15]. However, excessive flooding that surpasses
a critical elevation threshold can disrupt the hydrogeomorphic feedback, leading to an
ecosystem shift or collapse [16–18].

Coastal freshwater forested wetlands occur at the upper limit of the tidal range and
are vulnerable to hydrologic alterations, including saltwater intrusion [19]. Sea-level
rise can cause shifts in plant community composition along a continuum ranging from
freshwater forested wetland to unvegetated mudflat [20], potentially altering ecosystem
function [21,22]. Conservation and management of these low-lying ecosystems requires an
understanding of how future climate conditions can affect wetland resilience to sea-level
rise and how it may vary along this coastal wetland landscape continuum (Figure 1).
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freshwater forested wetland to (2) transitional mixed forest/marsh, to (3) marsh, to (4) mudflat. Ex-
perimental manipulations (elevated CO2 and sediment deposition) simulated future hurricane sed-
iment deposition events in a CO2-enriched environment. 
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Figure 1. Conceptual experimental design. Organic matter inputs through net primary production
(NPP) counter-balance organic matter exports through decomposition resulting in net elevation
surplus or deficit in four wetland communities along a landscape-scale transition (clockwise) from
(1) freshwater forested wetland to (2) transitional mixed forest/marsh, to (3) marsh, to (4) mudflat.
Experimental manipulations (elevated CO2 and sediment deposition) simulated future hurricane
sediment deposition events in a CO2-enriched environment.

The most recent IPCC report (IPCC AR6) makes it clear that increasing greenhouse
gas emissions, including atmospheric CO2, will cause faster warming with cascading
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impacts across the globe [23]. In addition to driving global warming, elevated atmospheric
CO2 concentrations can directly impact coastal wetland ecosystem function. For example,
enriched atmospheric CO2 can stimulate primary production and biomass contributions to
soil volume, contributing to elevation gains [24,25]. Effects of elevated atmospheric CO2 on
decomposition in coastal wetlands are less clear [26–28] but have the potential to modify
elevation change dynamics by altering the net balance of organic matter gains and losses
(Figure 1).

Global warming will accelerate sea-level rise, causing more frequent and severe
coastal flooding and erosion [23]. Climate extremes are also predicted to increase, with the
possibility of larger, more intense hurricanes making landfall in coastal regions [29]. While
extreme precipitation associated with more intense hurricanes can have devastating impacts
on coastal wetlands [30,31], these ecosystems have adapted to regular storm events, which
play a critical role in ecosystem function [32]. For example, hurricanes deposit significant
amounts of sediment through storm surge [33–35], which can provide immediate elevation
gains (elevation capital) and stimulate processes that control wetland elevation gain [36,37].

Although the impacts of individual drivers, such as atmospheric CO2 and sediment
deposition, are becoming clearer, less is known about the interactive effects of these factors
on coastal wetland elevation change. Therefore, the complexity of possible climate futures
requires that we investigate multiple drivers together, rather than in isolation, if we hope to
have insight into the future of coastal wetlands in a changing environment. The overall aim
of this study was to gain a better understanding of how sediment inputs from hurricanes
might affect coastal wetland resilience in a future with elevated atmospheric CO2. Will
sediment addition and CO2 enrichment separately or interactively affect plant production–
decomposition processes and biogenic contributions to wetland elevation change? Does
sediment addition alter post-storm elevation trajectories by stimulating belowground root
production or microbial decay? Do elevation responses differ depending on vegetation
type? To answer these questions, we conducted a greenhouse mesocosm study to exam-
ine responses of Nyssa biflora (swamp tupelo) and Schoenoplectus americanus (American
bulrush) to simulated hurricane sedimentation under current and future atmospheric
CO2 concentrations.

2. Results

Aboveground biomass production was generally highest in the mixed and marsh
communities, and high production rates in the mixed community were dominated by the
marsh species Schoenoplectus americanus (Table 1, Figure 2). Production of the forest species
Nyssa biflora was lower in the mixed community with S. americanus than when grown alone
in the forest mesocosms. The addition of elevated CO2 and sediment deposition treatments
had no effect on this pattern, with the exception of the forested community, which was
stimulated by these treatments (p = 0.052; Figure 2B). With both elevated CO2 and sediment
deposition treatments together, N. biflora biomass production in the forest mesocosms was
similar to S. americanus production in the mixed and marsh communities.

Generally, among all four communities (averaged across CO2 and sediment treat-
ments), the marsh and mixed communities had the highest belowground biomass produc-
tion rates, lowest decomposition rates, and highest surface elevation change rates compared
to the forest and mudflat communities (Table 2, Figure 3). While some CO2 and sediment
treatment effects were dependent upon wetland community, there were no significant
interactions between elevated CO2 and sediment deposition on belowground production,
decomposition, or surface elevation change (Table 2).

Although elevated CO2 did not alter belowground biomass production or surface
elevation change (Figure 4A,C), there were significant effects on decomposition in the mixed
community (Figure 4B). Under ambient CO2 conditions, mixed and marsh communities
had similar decay rates, and both communities had lower rates of decay compared to the
forest and mudflat communities. Under elevated CO2 conditions, however, decay rates in
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the mixed community were more similar to the forest and mudflat communities, and decay
rates in the marsh were significantly lower than any other community.

Table 1. ANOVA summary table reporting F- and p-values for main effects and interactions for
aboveground primary productivity. Significant values in bold. Significant levels: *** p < 0.001.

Treatment Aboveground Biomass Production

F-Value p-Value

Species 139.416 <0.0001 ***
Community 83.826 <0.0001 ***

CO2 1.216 0.276
Sediment 3.612 0.063

Species × Community 213.463 <0.0001 ***
Species × CO2 1.202 0.278

Species × Sediment 1.355 0.25
Community × CO2 1.107 0.355

Community × Sediment 0.736 0.536
CO2 × Sediment 2.196 0.145

Species × Community × CO2 1.156 0.336
Species × Community × Sediment 1.957 0.133

Species × CO2 × Sediment 3.365 0.073
Community × CO2 × Sediment 2.585 0.064

Species × Community × CO2 × Sediment 2.768 0.052
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Figure 2. Annual aboveground biomass production of Nyssa biflora (circles) and Schoenoplectus
americanus (triangles) by community and CO2 (ambient: black, elevated: magenta). (A) No sediment
deposition. (B) Sediment deposition. Response variable values are model-based estimated marginal
means using Satterthwaite approximation. Brackets represent 95% confidence intervals, p = 0.052 for
full interaction: Species × Community × CO2 × Sediment.

Table 2. ANOVA summary table reporting F- and p-values for main effects and interactions for each
of the response variables, belowground primary production, decomposition, and surface elevation
change. Significant values in bold. Significance levels: ** p < 0.01, *** p < 0.001.

Treatment Belowground Biomass Production Decomposition Surface Elevation Change

F-Value p-Value F-Value p-Value F-Value p-Value

Community 15.012 <0.0001 *** 96.465 <0.0001 *** 108.633 <0.0001 ***
CO2 1.445 0.232 0.276 0.652 5.433 0.145

Sediment 3.848 0.052 30.22 <0.0001 *** 12.505 0.001 **
Community × CO2 0.447 0.72 5.759 0.001 ** 1.34 0.273

Community × Sediment 1.762 0.158 24.68 <0.0001 *** 0.787 0.507
CO2 × Sediment 1.295 0.257 0.267 0.605 0.986 0.326

Community × CO2 × Sediment 1.503 0.218 1.244 0.292 0.283 0.837

Sediment deposition had no significant effect on belowground biomass production
(Figure 5A). In contrast, sediment deposition stimulated decomposition, but only in the
mudflat community (Figure 5B). In all communities, elevation change rates were posi-
tive (gaining elevation); however, sediment addition diminished post-deposition rates
of wetland elevation gain (Figure 5C). Despite a direct increase in elevation immediately
following the deposition of sediment (Figure 6B), the rate of elevation gain in the wetlands
receiving sediment was slower than the rate of elevation gain without sediment deposition
(Figures 5C and 6B).
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Figure 4. Effects of elevated atmospheric CO2 and community interactions, where significant, on all
response variables: (A) belowground biomass production, (B) decomposition, (C) surface elevation
change rate. Response variable values are model-based estimated marginal means using Satterthwaite
approximation. Brackets represent 95% confidence intervals; letters represent significant differences
determined by Tukey’s (p < 0.05) post hoc comparisons.
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Figure 5. Sediment deposition effects and community interaction, where significant, on all response
variables: (A) belowground biomass production, (B) decomposition, (C) surface elevation change
rate. Surface elevation change rates represent the period following the sediment deposition event
(after day 35, Figure 6B). Response variable values are model-based estimated marginal means using
Satterthwaite approximation. Brackets represent 95% confidence intervals; letters represent significant
differences determined by Tukey’s (p < 0.05) post hoc comparisons.
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(black) and elevated (red) CO2 treatments and (B) no sediment (black) and with sediment (blue)
deposition treatments. Data points represent average surface elevation relative to baseline across all
communities; brackets represent standard errors. Sediment was added on day 35 (black vertical line).

3. Discussion

Coastal wetlands adjust to rising sea levels through mineral sediment and organic
matter accumulation [12,16,38]. In wetlands where vertical land building is dominated by
organic matter accumulation, i.e., where mineral sediment is limited [39–42], changes in the
competing processes of organic matter production and decomposition can have significant
effects on net wetland elevation change and sustainability [43,44].

Along the coastal wetland landscape continuum, shifts in plant community composi-
tion can lead to changes in primary production [45], decomposition [46], and soil organic
matter accumulation [47,48]. Following salinity intrusion from sea-level rise, storm events,
and drought, the transition from coastal freshwater forested wetland to oligohaline marsh
is characterized by declining tree densities, reduced basal area, and lower litterfall rates [49].
In the current study, tree biomass (N. biflora) was higher in the forest community compared
to tree biomass in the transitional mixed community (N. biflora + S. americanus). Since
salinity was not manipulated in the current study, these results indicate that other factors
beyond salinity may affect forest regeneration in these transitional communities. The
diminished production of N. biflora biomass in the presence of S. americanus suggests that
S. americanus, which had significantly higher biomass production, is a better competitor,
with lower resource requirements than N. biflora [50,51]. The competitive displacement by
S. americanus can lead to changes in aboveground production that have implications for
carbon cycling. Because woody aboveground biomass in forests is retained over longer
periods of time, compared to herbaceous aboveground biomass in marshes, encroachment
of S. americanus into freshwater forested wetlands could impact the rate of carbon turnover
and export from the ecosystem [52,53].

Additionally, mesocosms that contained S. americanus (mixed and marsh communities)
had the highest rates of belowground production, the lowest decay rates, and the highest
rates of surface elevation change. This pattern matches that observed in the field. For ex-
ample, some tidal freshwater forested wetlands along the Southeastern U.S. Atlantic coasts
have lower rates of surface elevation change compared to oligohaline herbaceous marshes
closer to the marine tidal source [54]. Herbaceous marshes can also have significantly
higher rates of belowground biomass production compared to the tidal freshwater forested
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wetlands [55], illustrating the importance of belowground productivity in maintaining
wetland elevation [56,57], and highlighting the role of plant-mediated changes in ecological
function. These results suggest that the conversion from freshwater forested wetland to
oligohaline marsh will lead to more resilient wetland communities with a greater capacity
to adjust to rising sea levels [58].

CO2-induced shifts in plant community composition can have an overwhelming im-
pact on both wetland productivity [59] and decomposition [60], illustrating the important
role of plant community dynamics in mediating future environmental conditions. Gen-
erally, decay rates were highest in the mudflat mesocosms compared to the vegetated
mesocosms, which may be due to changes in nutrient availability and subsequent microbial
activity [61] in the absence of vascular plants. This trend was moderated by elevated CO2
concentrations, which stimulated decay rates; however, this effect was only observed in
the mixed community. Although CO2-induced changes in litter composition can influence
decay rates [26,62], the use of a standardized carbon substrate in the current study isolated
only those effects associated with changes in the hydro-edaphic environment and microbial
community [63], both of which can be shaped by the functional traits of different plant
communities as they respond to elevated CO2. For example, exposure to elevated CO2
can alter oxygen and carbon availability through increased root exudates [28] and root
turnover [64], which can affect microbial activity and decay [65–68]. While root exudates
were not directly measured, results from the current study provide evidence of a CO2 effect
on labile carbon decay that is not related to changes in plant litter composition.

Direct stimulation of biomass production by elevated atmospheric CO2 has been well
documented in coastal wetlands, especially those dominated by C3 species [69]. In the
current study, we did not observe significant effects of elevated atmospheric CO2 on net an-
nual above- or belowground biomass production in the C3-dominated S. americanus marsh
or the mixed communities and only a minor effect on N. biflora aboveground production.
While the lack of response by the C3-dominated communities was surprising, reports of
CO2 enhancement of plant production are inconsistent throughout the literature [70]. Other
studies have shown that the CO2-fertilization effect can vary depending on a multitude
of factors including resource availability [71–74] and edaphic conditions [24,75,76]. For
example, biomass of a C3 mangrove (Avicennia germinans) was increased by elevated CO2
treatment only when grown alone under high nitrogen availability [71]. In the current
study, biomass production of N. biflora was stimulated by elevated CO2 treatments only
when sediment was added to the mesocosms. Sediments deposited during storm events
or restoration efforts have been shown to stimulate above- and belowground production
in coastal wetlands by ameliorating flooding stress and nutrient deficiency [77–79]. Other
work has found that CO2 enrichment effects on primary production typically occur when
water use efficiency and nutrient availability are optimal [70]. The addition of sediment to
mesocosms may have increased nutrient availability, which aided the response of N. biflora
to CO2.

Landfalling hurricanes can deposit significant volumes of sediment in coastal wet-
lands [33,34]. In regions where natural tidal or riverine flooding is restricted, hurricanes
and winter storms are a primary source of sediment [80] that can increase elevation capital
and stimulate belowground production [36]. Both field and greenhouse experiments have
shown that sediment subsidies can ameliorate the negative effects of sea-level rise by
improving hydro-edaphic conditions that support greater plant productivity and wetland
elevation gain over time [37,79,81,82]. However, sediment addition to mesocosms did not
have a direct effect on belowground biomass production (Figure 5A), although sediment
treatments did stimulate decay in the mudflat, likely through adding nutrient-rich sedi-
ments [61,81], and the greatest impact of sediment deposition was on elevation capital and
subsequent elevation change trajectories (Figure 5C). As expected, sediment addition to
mesocosms initially raised soil elevations, as occurs in the field, but subsequent rates of
elevation gain were lower than in mesocosms without sediment. Similarly, in a manipula-
tive field experiment that quantified the effect of sediment subsidies to wetland elevation
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change, the authors of [83] observed initial increases followed by a decline in wetland
elevation that was associated with compaction of the underlying native soil. Over 2.5 years,
wetlands treated with 2.3–20.3 cm of sediment subsided to pre-treatment elevations that
were equivalent to the natural reference marshes. Similarly, compaction and decay may
account for the slower elevation gains in mesocosms with added sediment.

4. Methods
4.1. Experimental Design

To investigate the effects of multiple drivers on ecosystem function along the coastal
wetland landscape continuum, we simulated hurricane disturbance by adding sediment to
four vegetation combinations in mesocosms (described below) exposed to ambient and ele-
vated concentrations of CO2. The mesocosm study was conducted in the Wetland Elevated
CO2 Experimental Facility at the U.S. Geological Survey (USGS), Wetland and Aquatic
Research Center, in Lafayette, LA, USA. Treatments were applied using a split-plot with
factorial subplots design consisting of (1) two CO2 treatments (ambient, ≈380 ppm; ele-
vated, ≈720 ppm) applied at the whole-plot level, (2) four vegetation combinations (forest;
marsh; forest/marsh mixture; mudflat) applied at the subplot level, and (3) two sediment
treatments (sediment deposition; no sediment) applied at the subplot level. Each green-
house (n = 4) contained two experimental units per community × sediment combination
(n = 16) for a grand total of 64 mesocosms (Figure S1).

4.2. Mesocosm Design

Wetland community treatments (mesocosms) contained Nyssa biflora Walter seedlings,
a C3 species, in the forest mesocosms; Schoenoplectus americanus (Pers.) Volkart ex Schinz
and R. Keller, a C3 sedge, in the marsh mesocosms; and a combination of N. biflora and S.
americanus in the mixed mesocosms. The fourth community, the mudflat, did not contain
any vascular plants, and all mesocosms contained the same native soil from a S. americanus
marsh. Nyssa biflora is a native tree species distributed throughout the Eastern United States,
including the Atlantic and Gulf Coastal Plain, the Eastern Mountains and Piedmont, the
Great Plains, and the Northcentral and Northeast regions [84]. Schoenoplectus americanus is
a native sedge species distributed across North America from the Atlantic and Gulf Coastal
Plain into the Arid West and into the western mountains, valleys, and coastal regions, as
well as in the Caribbean [84]. Marsh sods dominated by S. americanus were collected from
Big Branch National Wildlife Refuge, Louisiana, USA, in May 2012, before peak growing
season, near the forest–marsh ecotone (Figure S2). Following collection, sods were cut
to a depth of 20 cm and placed in 5-gallon buckets that contained a 5 cm thick bottom
layer of pea gravel to improve drainage. To prepare the mesocosms for planting, all S.
americanus vegetation was clipped to the soil surface. To ensure the complete elimination of
S. americanus vegetation from the forest and mudflat mesocosms, those mesocosms were
then flooded to a depth of five centimeters and re-clipped until no resprouting occurred
(around two weeks). In the marsh and mixed mesocosms, flooding was not imposed,
and S. americanus vegetation was allowed to re-grow. Nyssa biflora seeds were collected
from a coastal freshwater forest in Georgetown, South Carolina, USA, and shipped to the
USGS facility where they were germinated in commercial potting soil under ambient CO2
(non-enriched) conditions and allowed to grow for four months. Single N. biflora seedlings
were transplanted to the forest and mixed mesocosms (Figure S1).

4.3. Experimental Conditions

Half the number of mesocosms (n = 32) were subjected to atmospheric CO2 concentra-
tions of ≈380 ppm (ambient CO2 during study period, 2012–2014) and half to ≈720 ppm
CO2 (elevated CO2). Ambient and elevated CO2 treatments were applied to the whole plot,
i.e., the greenhouse (n = 2 per CO2 treatment) using an automated delivery system to ensure
continuous targeted CO2 concentrations by adding industrial-grade CO2 (supplied by Air-
gas, Lafayette, LA, USA). The automated feedback system measured CO2 concentrations
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using a dual-beam, steady-state infrared gas analyzer (Gascard II, Edinburgh Instruments,
Ltd., Livingston, UK) that regulated automated flow meters for each greenhouse (Cole-
Parmer Instrument Company, Vernon Hills, IL, USA) (see [71] for details). Mesocosms were
acclimated in ambient and elevated CO2 greenhouses, separately, for 10 weeks prior to
sediment treatment.

Following the passage of Hurricane Isaac over the collection site (29 August 2012) [85],
root-free and rhizome-free sediment was collected from the tidal creek adjacent to the
marsh sod collection site and mixed with water to achieve a slurry of 70% water and
30% sediment by volume. To mimic hurricane sediment deposition, the sediment slurry
was added to half the number of mesocosms (n = 32) to increase the soil surface by five
centimeters (accounting for initial compaction after one week).

Mesocosms were flooded with freshwater to the soil surface and maintained at this
depth throughout the study duration to mimic the relatively static flooding regime com-
monly observed in freshwater forests undergoing transition to oligohaline marsh in coastal
Louisiana. To maintain plant vigor, a nutrient solution was applied to all mesocosms
twice per month that provided mmol L–1 of N (0.005) as NH4Cl; P and K (0.00125) as
KH2PO4; S (0.0025) as MgSO4; Ca (0.00625) as CaCl; Fe (0.00125) as FeEDTA solution; and
micronutrients B, Cu, Mn, Mo, and Zn (0.00125) as H3BO3, CuSO4•5H2O, MnCl2•4H2O,
H2MoO4•H2O, and ZnSO4•7H2O, respectively.

4.4. Data Collection

Data collection began in September 2012 and concluded in September 2014. Above-
and belowground production was measured for herbaceous (S. americanus) and woody
(N. biflora) species. Schoenoplectus americanus aboveground production was measured by
harvesting all dead material from the mesocosms monthly and all live and dead material
from a final harvest at the end of the study period [24]. Harvested aboveground material
was dried to a constant mass at 60 ◦C and weighed, and the cumulative biomass produced
over time was used to estimate a rate of aboveground primary production (g m−2 y−1).
Litterfall from N. biflora seedlings was monitored weekly, and dead leaves were collected
upon abscission. At the end of the two-year study, N. biflora saplings were harvested prior
to seasonal leaf senescence and separated into components (leaf, stem, roots). All harvested
material was dried to a constant mass at 60 ◦C and weighed. The cumulative biomass
produced over time was used to estimate a rate of aboveground primary production
(g m−2 y−1).

Belowground biomass production was estimated using ingrowth bags [86], which
integrates the net production, turnover, and decomposition of roots and rhizomes over
time. Root ingrowth was measured in two separate one-year deployments over the course
of the study. In each annual deployment, one root ingrowth bag (5 × 20 cm), constructed
of 2.5 mm plastic woven mesh and containing Sphagnum peat, was placed in a randomly
selected quadrant of each mesocosm. The ingrowth bags remained in the soil for one
year, after which they were harvested, and roots and rhizomes were separated from the
sphagnum peat. Roots were not separated by species, and belowground biomass values
are reported at the community level. Belowground biomass was dried to a constant mass
at 60 ◦C and weighed, and the cumulative biomass produced over one year was used to
estimate a rate of belowground primary production (g m−2 y−1). Although these methods
may over- or underestimate above- and belowground production, they provide a relative
measure of the response to treatments.

Belowground cellulose decay was measured using the cotton strip technique [87].
Unprimed heavy canvas (12 oz duck, style #548; Tara Materials, Inc., Lawrenceville, GA,
USA) comprised of 100% cotton (98% holocellulose) was cut into 10 cm wide by 30 cm long
strips and placed vertically into the soil to a depth of 20 cm in each mesocosm. Two cotton
strips were installed in each mesocosm quarterly after all vegetation, elevation, and physic-
ochemical measurements were made. One cotton strip, serving as a reference control, was
removed immediately after installation, and the second cotton strip (test strip) remained in
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the mesocosms until the cotton strips decayed by at least 50% [88]. To ensure a minimum
of 50% decay, cotton strips deployed at lower soil temperatures remained in the soil for
longer (e.g., 21 days during the winter event) than cotton strips deployed at higher soil
temperatures (e.g., 7 days during the summer event). The length of deployment was
determined following the temperature × time relationship quantified by [88,89]. Upon
retrieval, cotton strips were rinsed with deionized water, air-dried, and cut horizontally
into 2 cm sub-strips that were measured for tensile strength with a tensiometer (Mecmesin
model, Dillon Quality Plus, Inc., Camarillo, CA, USA). Cellulose decay was estimated as
cotton strip tensile strength loss per day (CTSL d−1) calculated as

% CTSL d−1 = [(1 − T/R) × 100]/t, (1)

where T is the force (N) required to tear the test strips, R is the force (N) required to tear the
reference strips, and t is time (days) in the soil.

Soil surface elevation was measured quarterly with a miniature surface elevation
table mini-SET [24] designed after the rod-SET used in a field setting [90]. The mini-SET
consisted of a removable measuring arm that was attached to the edge of the mesocosm
in one of two positions. Fiberglass pins were lowered from the measuring arm to the soil
surface. The change in distance from the arm to the soil surface over time corresponded to
the change in surface elevation. Elevation change was expressed as the difference between
base elevation measured at the initial sampling event and each subsequent sampling event.
For each experimental unit (mesocosm), 11 pin-level surface elevation change values from
two positions (n = 22), over a period of two years following sediment addition, were used
to estimate a rate of surface elevation change.

4.5. Data Analysis

All analyses were carried out in R [91]. We used linear mixed effects models (R package
“lmerTest” [92]) and type III analysis of variance (ANOVA) to quantify the relationship
between species, community, CO2, and sediment deposition treatments and aboveground
biomass production (Equation (2)) and the relationship between community, CO2, and
sediment deposition treatments and each of the three response variables (i.e., belowground
biomass production, decomposition, surface elevation change) (Equation (3)), where the
mesocosm is the experimental unit for both models. For surface elevation change, we first
conducted a linear regression to calculate the mesocosm-level rate of elevation change and
then used the resulting slopes as a dependent variable in the linear mixed effects models and
ANOVA. For post hoc analysis, we estimated marginal means (R package “emmeans” [93]),
a variation of least square means. We used the Satterthwaite approximation for degrees of
freedom in all analyses, and the Tukey method for p-value adjustment.

Aboveground biomass production ~ species × community × CO2 × sediment + (1|pot) + (1|GH), (2)

where species is the individual plant species (N. biflora, S. americanus), community is the
plant community (forest; marsh; forest/marsh mix; mudflat), CO2 is the CO2 treatment
(ambient; elevated), sediment is the sediment treatment (deposition; no deposition), and
random factors are greenhouse (GH) and mesocosm (pot).

Response ~ community × CO2 × sediment + (1|GH), (3)

where Response is the dependent variable (belowground biomass production in g m−2 y−1;
decomposition rate in % CTSL d−1; or slope of surface elevation change), community is
the plant community (forest; marsh; forest/marsh mix; mudflat), CO2 is the CO2 treatment
(ambient; elevated), sediment is the sediment treatment (deposition; no deposition), and
GH is the greenhouse included as a random factor.

All data presented here is available in Stagg et al. (2022) [49].
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5. Conclusions

As climate and land-use change cause vegetation shifts in coastal wetland plant com-
munities, the conversion of freshwater forested wetland to oligohaline marsh can facilitate
changes in biomass production, decomposition, and soil surface elevation that are primarily
regulated by the dominant herbaceous marsh species S. americanus. When S. americanus was
present, above- and belowground biomass production was highest, decomposition rates
were lowest, and wetland elevation gain was greatest, and this pattern was maintained
regardless of CO2 and sediment deposition treatments. Sediment deposition facilitated
CO2-enhanced production of N. biflora, but tree production rates still did not surpass the
marsh production rates. Sediment deposition initially increased elevation capital in all
communities, but subsequent rates of elevation gain were lower than in mesocosms without
added sediment. Together these results indicate that encroachment of oligohaline marshes
into freshwater forested wetlands can enhance belowground biomass accumulation and
resilience to sea-level rise (Figure S3), and these plant-mediated ecosystem services can
be augmented by periodic sediment pulses from storms and restoration efforts. However,
the persistence of a storm layer will depend on post-deposition erosion and bioturbation,
as well as the initial thickness and texture of the sediment [36]. Thus, recurring sediment
subsidies may be necessary to maintain these benefits over long-term periods of sea-level
rise [94].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants11091259/s1, Figure S1: Experimental design and setup,
and data collection timeline; Figure S2: Location of marsh sod collection. Marsh sods dominated by
Schoenoplectus americanus were collected from Big Branch National Wildlife Refuge, Louisiana, USA
in May 2012 before peak growing season, near the forest-marsh ecotone. Louisiana wetland data
provided by USFWS National Wetlands Inventory [95]; Figure S3: Effect of landscape-scale transition
from freshwater forested wetland to oligohaline marsh on belowground production (right y-axis)
and surface elevation change (left y-axis).
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