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Abstract: Leaf area index (LAI) indicates the leaf area per ground surface area occupied by a crop. 

Various methods are used to measure LAI, which is unitless and varies according to species and 

environmental conditions. This experiment was carried out in three different nitrogen ranges (con-

trol, 120 kg N ha−1, and 300 kg N ha−1) + PK nutrient levels, with five replications used for leaf area 

measurement on seven different maize hybrids. Hybrids had different moisture, protein, oil, and 

starch contents. N (1, 2) + PK treatments had a desirable effect on protein, starch, and yield. P0217 

LAI had a minimal response at these fertiliser levels. LAI for Sushi peaked at different dates between 

control and fertiliser treatments. This result showed that Sushi has an excellent capacity for LAI. 

LAI values on 15 June 2020 showed minimum average values for all hybrids, and it had a maximum 

average values on 23 July 2020. LAI had maximum performance between the average values treat-

ments in Sushi, Armagnac, Loupiac, and DKC4792 on 15 June 2020. This study also provides in-

sights for examining variably applied N doses using crop sensors and UAV remote-sensing plat-

forms. 
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1. Introduction 

Maize is used to feed people and animals. The component percentages of maize are 

66.70% starch, 10% protein, 4.8% oil, 8.5% fibre, 3% sugar, and 7% ash [1]. The LAI plant 

canopy analyser is used to perform plant photometric measurements and estimate plant 

biomass for precision crop production. Nitrogen affects the leaf area index, and examining 

its level can help predict crop output. The leaf area index contributes to climate modelling, 

field-level yield estimation, and crop yield prognosis. Remote sensing support signifi-

cantly contributes to estimating LAI at local, district, and global scales [2]. One of the most 

important variables required to estimate crop production and global climate testing is the 

leaf area index (LAI) [3]. The quantitative measure of foliage density is shown by the leaf 

area index, which helps in monitoring the different stages of development [4]. Genotype, 

climate and soil factors affect the leaf area index [5,6]. At a foliage density of 300 kg N ha−1, 

a leaf area index of 5.1 was measured [7]. There was a significant correlation between LAI 

and yield (r = 0.91 **), as well as regression [7]. Hammad et al. [8] found that the highest 

value (5.06) was measured at a foliage density of 250 kg N/ha in their experiment. In ad-

dition to maize grain yield and its components, the development stages of maize slow 

down with low N supply. Moreover, reduced N decreases harvest index and leaf area-

Citation: Szabó, A.;  

Mousavi, S.M.N.; Bojtor, C.;  

Ragán, P.; Nagy, J.; Vad, A. and Illes 

A. Analysis of Nutrient-Specific  

Response of Maize Hybrids in  

Relation to Leaf Area Index (LAI) 

and Remote Sensing. Plants 2022, 11, 

1197. https://doi.org/10.3390/ 

plants11091197 

Academic Editors: Ruizhi Xie, Si 

Shen and Baizhao Ren 

Received: 13 April 2022 

Accepted: 26 April 2022  

Published: 28 April 2022 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2022 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 



Plants 2022, 11, 1197 2 of 14 
 

 

index values [9]. Biomass can be determined based on leaf area and is influenced by the 

plant population and nutrient supply [10]. In addition to grain yield, nitrogen stress also 

reduces kernel number [11]. A high N (225 kg ha−1) contributed to reaching an LAI of 4.05 

at the silking stage. There is a significant positive correlation between LAI and yield. Ap-

plication of 225 kg ha−1 N increased the thousand-kernel weight, leaf area index, amount 

of assimilates, and grain filling period [12]. Hokmalipour et al. [13] state that the applica-

tion of nitrogen had a positive effect on the chlorophyll content, leaf area index, leaf dry 

weight, and grain yield of maize hybrids. According to Sharanabasappa and Basa-

vanneppa [14], significantly high grain yield (8023 kg ha−1) was achieved with 225: 112.5: 

56.25 NPK kg ha−1 doses, with the best yield component values and higher leaf area index 

corresponding at this NPK level. Exploring LAI is fundamental both in space and time for 

agricultural applications, such as when estimating yields and monitoring growth rates 

[15,16]. Elings [17] examined LAI differences at three nutrient levels. An LAI of 3.6 was 

obtained at a nitrogen dose of 150 kg ha−1, but this did not differ significantly from the LAI 

at a nitrogen dose of 120 kg ha−1. Furthermore, there was no significant difference between 

the 120 and 90 kg ha−1 N doses. However, a significant difference was found between 150 

kg ha−1 and 90 kg ha−1 (p < 0.05). Higher leaf area index was measurable due to the higher 

N dose [18]. The interception of light by the leaves, their transpiration, and the determi-

nation of the accumulation of dry matter are important in order to perform an appropriate 

simulation, as they affect the development and production of the plant [19–21]. The LAI 

model starts with slower growth, followed by faster growth, until the maximum LAI is 

achieved as the plant leaves senescence and the plant reaches physiological maturity, after 

which the LAI decreases [22]. LAI increases from the closed plant stock stage to the stem 

elongation stage to the 12 leaves stage and peaks during the silking period and has an 

effect on dry matter accumulation [23]. Leaf area is affected by nitrogen supply [24]. One 

study showed that there were significant differences in grain yield between 0 kg ha−1 N 

and 225 kg N ha−1 treatments (p < 0.05) [25]. With continuous growth of the plant stock, 

the leaf area index also increases. There was a significant difference at 90 and 225 kg ha−1 

N compared to the control treatment. At the end of the vegetation period, the LAI was 4.5 

for 90 kg ha−1 N and 5.5 for 225 kg ha−1 N, with less than 3 LAI for the nitrogen-deficient 

control [26]. There is a linear relationship between LAI and nitrogen supply [27]. Increased 

LAI leads increased maize dry matter production [28]. One experiment showed that leaf 

area index influences the components of the crop during dry matter accumulation [29]. 

Another experiment showed correlation between percentage decrease in leaf area and de-

crease in grain yield [30]. A lower leaf area index accompanied nitrogen deficiency, with 

lower grain yields [11]. By increasing N while keeping PK constant, the examined hybrids 

were more resistant to environmental stress; additionally, the protein content increased, 

especially during the wet season [31]. Similarly, based on the results of Horváth et al., [32] 

found that, in addition to the optimal amount of fertiliser, the application time of the fer-

tiliser determines the yield of hybrids. In drought conditions, nitrogen was most effective 

at 150 kg ha−1 N (V6 phenophase) for Sushi and 120 kg ha−1 N (V6 phenophase) for Fornad. 

There has been a breakthrough in precision agriculture. The use of satellite data is wide-

spread, and is implemented in mapping cropland [33], estimating nitrogen requirements 

for plants [34], monitoring health status, and predicting crop yields [35]. Using NDVI 

measurements for corn biomass and grain yield can help farmers make in-season agricul-

tural management decisions. Indirect measures of spectral reflectance and leaf area index 

were used to estimate forage biomass and grain yield in Virginia [36]. Analysis and eval-

uation of the dynamic changes and heterogeneity of canopy cover and NDVI were aided 

by properties extracted from unmanned aerial vehicle high throughput phenotypic plat-

form (UAV-HTPPs) images of plots populated by different genotypes [37]. The vegetation 

index was correlated with the yield. NDVI is the normalized vegetation index, and the 

enhanced vegetation index is EVI [38]. NDVI can be calculated using Equation (1) [39]: 
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���� =  
ρnir − ρred 

ρnir+ρred
 (1)

UAVs have the ability to measure NDVI, and NDVI dynamics during the growth 

phase can be analysed [40,41]. One test using a UAV found an NDVI range from 0.14–0.88 

[42]. UAV-acquired NDVI data can be used to produce yield maps [43]. UAV imaging 

data has high correlation with NVDI (r2 = 0.89), which makes it suitable for estimating 

chlorophyll content, which helps monitor crop production [44]. In the R1 phase, a corre-

lation of 0.72 was found between NDVI based on UAV image data and maize grain yields 

ranging from 1.9–4.6 t/ha [45]. There is a close relationship between UAV data, NDVI, and 

crop biophysical variables. Statistical analysis found r2 = 0.95 between UAV, NDVI, and 

LAI. This close relationship supports the fact that the remote sensing using UAVs is reli-

able for estimating LAI and percent canopy cover [46]. A close correlation (r2 = 0.601–

0.809) between NDVI and fertilizer levels for both rice and wheat has also been identified 

[38]. 

2. Results 

The performed variance analysis showed that hybrids have significant variations in 

moisture, protein, oil, and starch. NPK fertiliser treatments had a significant effect on pro-

tein, starch, and yield. The sampling date had no significant effect on the examined pa-

rameters. LAI had a significant effect on moisture in this study. However, LAI did not 

have a significant effect on protein, oil, starch, or yield (Table 1). 

Table 1. Variance analysis of LAI on yield parameters. 

Parameters Source df F-Value p Value 

Moisture 

Hybrid 6 16.49 0.000 

NPK 2 0.30 0.740 

Sampling Date 3 0.90 0.443 

LAI 225 1.59 0.005 

Protein 

Hybrid 6 16.63 0.000 

NPK 2 64.92 0.000 

Sampling Date 3 0.98 0.405 

LAI 225 0.96 0.593 

Oil 

Hybrid 6 9.83 0.000 

NPK 2 1.11 0.335 

Sampling Date 3 0.28 0.843 

LAI 225 0.81 0.896 

Starch 

Hybrid 6 29.64 0.000 

NPK 2 8.22 0.000 

Sampling Date 3 0.61 0.609 

LAI 225 0.97 0.585 

Yield 

Hybrid 6 1.89 0.089 

NPK 2 26.59 0.000 

Sampling Date 3 0.93 0.431 

LAI 225 1.01 0.493 

The performed factor analysis showed that the first factor includes N(1, 2) + PK levels, 

protein, LAI, and yield. These parameters covered 37 percent of all data, i.e., these param-

eters have a joint effect. However, in the biplot, protein and LAI had a negative effect on 

N(1, 2) + PK and yield. A positive effect was observed between yield and N(1, 2) + PK 

treatments, protein, and LAI. The second factor includes moisture and starch, covering 27 

percent of all data. Moisture and starch had a negative effect on the first factor and positive 

on the second factor, i.e., they had positive effects based on the biplot. The third factor 

includes oil and hybrids, covering 17 percent of the total data (Table 2, Figure 1). 
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Table 2. Factor analysis on yield parameters. 

Variable Factor1 Factor2 Factor3 Factor4 Factor5 Communality 

NPK 0.904 0.157 −0.056 −0.062 0.189 0.884 

hybrid 0.159 −0.749 0.481 −0.077 −0.131 0.840 

LAI 0.667 −0.090 0.057 0.563 −0.454 0.980 

Moisture 0.053 0.812 0.032 −0.321 −0.435 0.955 

Protein 0.927 −0.024 −0.070 −0.253 0.061 0.933 

Oil −0.154 −0.010 −0.898 0.271 0.031 0.904 

Starch −0.264 0.582 0.574 0.410 0.247 0.969 

Yield 0.876 0.193 0.015 0.108 0.217 0.863 

Variance 3.0096 1.6302 1.3792 0.7475 0.5614 7.3278 

% Var 0.376 0.204 0.172 0.093 0.070 0.916 

 

Figure 1. Factor analysis biplot on yield parameters. 

Regression analysis showed significant effects on yield, starch, oil, protein, and mois-

ture. Yield and protein were affected by LAI with N(1, 2) + PK. Maximum oil and starch 

were obtained by reducing N(1, 2) + PK fertiliser levels. Reducing LAI increased grain 

moisture. Regression analysis showed variations in yield, starch, oil, protein, and mois-

ture between species were minor (Table 3). 

Table 3. Regression analysis on yield parameters. 

 F-Value p-Value Regression Equation 

Yield 185.72 0.000 Yield = 5868 + 0.01391 NPK − 0.1111 hybrid − 0.1332 sampling date + 1.943 LAI 

Starch 5.90 0.000 Starch = 133 − 0.000880 NPK − 0.0498 hybrid − 0.00154 sampling date + 0.0224 LAI 

Oil 13.56 0.000 Oil = 109.7 − 0.000332 NPK − 0.02859 hybrid − 0.00242 sampling date + 0.0353 LAI 

Protein 208.46 0.000 Protein = 403 + 0.003314 NPK + 0.01192 hybrid − 0.00904 sampling date + 0.1319 LAI 

Moisture 20.13 0.000 Moisture = −207 + 0.000893 NPK − 0.07302 hybrid + 0.00511 sampling date − 0.0745 LAI 

Fertiliser was shown to have the maximum effect on LAI in Sushi and Loupiac at 300 

kg ha−1 N. Lesser gains were found in SY Minerva, Fornad, Armagnac, and DKC4792 at 

300 kg ha−1 N and Fornad, Sushi, Loupiac, DKC4792 at 120 kg ha−1 N. SY Minerva had the 

same performance at 120 kg ha−1 N as P0217 at 300 kg ha−1 N. Correspondingly, P0217 at 

120 kg ha−1 N had low performance in terms of LAI. All hybrids had the same LAI at the 

control level except for Sushi, which was higher (Figure 2). 
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Figure 2. Interaction effect of N(1, 2) + PK on LAI between hybrids. Treatments with the 

same letter are not significantly different. 

Interaction sampling time in N(1, 2) + PK in hybrids showed that the minimum LAI 

was on 15 June 2020, and the maximum was on 23 July 2020. Maximum LAI was measured 

in Fornad at 300 kg ha−1 N on 15 June 2020. Sushi showed maximum LAI at the 300 kg ha−1 

N on 25 June 2020, Loupiac showed maximum LAI performance at the 300 kg ha−1 N on 

13 July 2020, and Fornad and DKC4792 showed maximum LAI performance at the 300 kg 

ha−1 N on 23 July 2020. LAI showed maximum performance in Sushi, Armagnac, Loupiac, 

and DKC4792 on 15 June 2020. Fornad and Sushi hybrids had a top performance on 25 

June 2020, Sushi and Loupiac had a maximum performance on 13 July 2020, and SY Mi-

nerva and Loupiac had a complete performance on 23 July 2020 on 120 kg ha−1 Ns. LAI 

had a complete performance in DKC4792 on 15 June 2020; Sushi had a maximum perfor-

mance on 25 June 2020; Armagnac had a maximum performance on 13 July 2020; Loupiac 

had a maximum performance on 23 July 2020 on the control fertiliser treatment (Figure 3). 

 

Figure 3. Interaction sampling time in N(1, 2) + PK on LAI between hybrids. 

BNDVI, ENDVI, GNDVI, BNDVI*ENDVI, GNDVI*ENDVI and 

BNDVI*GNDVI*ENDVI had no significant effects on oil or starch. BNDVI, ENDVI, 

GNDVI, BNDVI*ENDVI, GNDVI*ENDVI and BNDVI*GNDVI*ENDVI had significant ef-

fect on yield and protein (Table 4, Figures 4–6). 
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Table 4. Regression analysis on vegetation index values and parameters. 

Parameters r r2 Significance 

BNDVI–yield 0.265744238 0.07062 ** 

BNDVI–oil 0.092422941 0.008542 NS 

BNDVI–protein 0.3591657 0.129 *** 

BNDVI–starch 0.145567854 0.02119 NS 

ENDVI–yield 0.723187389 0.523 *** 

ENDVI–oil 0.079906195 −0.006385 NS 

ENDVI–protein 0.688694417 0.4743 *** 

ENDVI–starch 0.099599197 −0.00992 NS 

GNDVI–yield 0.617413962 0.3812 *** 

GNDVI–oil 0.083486526 −0.00697 NS 

GNDVI–protein 0.462709412 0.2141 *** 

GNDVI–starch 0.110136279 0.01213 NS 

BNDVI*ENDVI~yield 0.629046898 0.3957 *** 

BNDVI*ENDVI~oil 0.044888751 −0.002015 NS 

BNDVI*ENDVI~protein 0.629364759 0.3961 *** 

BNDVI*ENDVI~starch 0.059472683 −0.003537 NS 

GNDVI*ENDVI~yield 0.259826865 0.06751 ** 

GNDVI*ENDVI~oil 0.106957936 0.01144 NS 

GNDVI*ENDVI~protein 0.36 0.1296 *** 

GNDVI*ENDVI~starch 0.131529464 0.0173 NS 

BNDVI*GNDVI*ENDVI~yield 0.272836948 0.07444 ** 

BNDVI*GNDVI*ENDVI~oil 0.099342841 0.009869 NS 

BNDVI*GNDVI*ENDVI~protein 0.364142829 0.1326 *** 

BNDVI*GNDVI*ENDVI~starch 0.128257553 0.01645 NS 

Significant codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’, NS: non-significant. 

 

Figure 4. Yieldvalues on the drone map. 
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Figure 5. Yield parameter values on the drone map. 

 

Figure 6. Vegetation index values on the drone map. 

The parameters were based on Least Significant Difference test (LSD). Analysis 

showed that yield was highest for SY Minerva and lowest for P0217 and Armagnac. 

DKC4792, Sushi, Fornad, and Loupiac had similar yields. Sushi and P0217 also had similar 

yields. Loupiac, Armagnac, and DKC4792 had similar oil content. Protein was highest in 

SY Minerva and lowest in P0217. Fornad, Loupiac, and P0217 had similar protein content. 

Sushi had the lowest starch content. Regarding vegetation indices, BNDVI was highest for 

Fornad and lowest for SY Minerva. Fornad and Loupiac had similar BNDVIs. DKC4792, 

Sushi, and Armagnac also had similar BNDVIs. P0217 had the highest GNDVI. DKC4792, 

Loupiac, Armagnac, and Sushi had similar GNDVIs (Table 5). 

Table 5. LSD test on parameters. 

Hybrid Yield Group Hybrid BNDVI Group 

SY Minerva 10.886453 a Fornad 0.1387226 a 

DKC4792 10.681877 ab P0217 0.1375380 ab 

Sushi 10.232131 abc Loupiac 0.1368377 ab 

Fornad 10.111388 abc DKC4792 0.1367105 abc 

Loupiac 9.825149 bc Sushi 0.1355918 bc 

P0217 9.393235 c Armagnac 0.1355891 bc 

Armagnac 9.343470 c SY Minerva 0.1341214 c 

Hybrid Oil Group Hybrid ENDVI Group 

Sushi 3.190833 a Fornad 0.06731359 a 

P0217 3.117500 a Loupiac 0.06690510 a 
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Fornad 3.087500 ab DKC4792 0.06676005 ab 

SY Minerva 2.934167 bc Sushi 0.06655601 ab 

Loupiac 2.908333 c Armagnac 0.06627764 ab 

Armagnac 2.835000 c P0217 0.06438019 b 

DKC4792 2.834167 c SY Minerva 0.06187965 c 

Hybrid Protein Group Hybrid GNDVI Group 

SY Minerva 6.093333 a P0217 0.1602840 a 

Sushi 6.023333 ab SY Minerva 0.1578918 ab 

Armagnac 5.945833 b Fornad 0.1564729 b 

Loupiac 5.697500 c DKC4792 0.1529463 c 

DKC4792 5.665000 c Loupiac 0.1529081 c 

Fornad 5.530833 d Armagnac 0.1514125 c 

P0217 5.384167 e Sushi 0.1507901 c 

Hybrid Starch Group     

Fornad 66.06917 a     

Loupiac 65.99750 a     

P0217 65.93167 a     

SY Minerva 65.55750 b     

DKC4792 65.40917 bc     

Armagnac 65.20333 c     

Sushi 64.55750 d       

Treatments with the same letter are not significantly different. 

Statistical analysis showed differences between nitrogen levels. Yield, protein, and 

GNDVI were highest at 150 kg ha−1 N. Starch was highest at 60 kg ha−1 N. ENDVI was 

highest at 0 kg ha−1 N (Table 6). 

Table 6. LSD test on nitrogen levels. 

Parameters 
Nitrogen 

Level 
 Group 

Yield 

0 5.357643 b 

60 11.871939 a 

150 12.973433 a 

Protein 

0 5.165000 c 

60 5.748571 b 

150 6.375000 a 

Starch 

0 65.52500 ab 

60 65.73821 a 

150 65.33357 b 

ENDVI 

0 0.07021143 a 

60 0.06441199 b 

150 0.06255039 b 

GNDVI 

0 0.1463726 b 

60 0.1567136 a 

150 0.1609305 a 

Treatments with the same letter are not significantly different. 

3. Discussion 

LAI is important for determining the percentage of solar radiation absorbed by each 

plant, which affects plant growth and final dry matter yield. The growth and differentia-

tion of vegetative and reproductive organs occurs during the growing season. These pro-

cesses determine biomass production and distribution, and, most importantly, the crea-

tion of economically important crops [47]. Therefore, yield formation should consider all 

factors and processes associated with total biomass production and its economically im-

portant component, usually grain yield. A great deal of biological and agronomic 
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information exists about each of factors maximizing foliage size and/or activity. Under-

standing the interrelationships between all factors and considering the response of a com-

plex vegetation production system to changes in any of the elements is essential for suc-

cessful farming [48]. The result showed that hybrid maize varieties had differences in 

moisture, protein, oil, and starch. N(1, 2) + PK treatments had a desirable effect on protein, 

starch and yield. Sampling time did not have any effect on the examined parameters, but 

LAI had various correlations with moisture in this study. Factor analysis showed that N(1, 

2) + PK and yield were positively correlated, i.e., increasing N(1, 2) + PK increases yield. 

LAI had an effect on yield, N(1, 2) + PK, and protein. LAI can influence protein and yield, 

i.e., N(1, 2) + PK and LAI had the highest effect on maize performance. The result of LAI 

showed that maize hybrids had a different capacity of LAI at different fertiliser levels. 

Fertiliser levels can affect LAI, but it depends on the capacity of the maize hybrid. This 

study showed that 120 kg ha−1 N to 300 kg ha−1 N resulted in the same LAI for P0217. 

Therefore, P0217 LAI responds minimally to variations in fertiliser level. Sushi LAI was 

maximum at different times for control vs. fertiliser treatments. This shows that Sushi has 

an excellent capacity for LAI. Fertiliser can improve LAI in maize hybrids. Increasing the 

amount of nitrogen fertiliser causes a high leaf area index. Other researchers have re-

ported similar results on the positive effect of nitrogen fertiliser on maize and wheat [6,49–

54]. Nitrogen had positive effects on green bean plants, improving the plant’s physical 

performance by increasing the leaf area index. Since the maximum leaf area index occurs 

at the time of flowering, the higher the leaf area, the more solar radiation the plant can use 

and the more photosynthetic material it produces. Finally, LAI affects the seeds in the 

stem and the grain yield [55]. Leaf area index (LAI) is one of the most important indicators 

of plant growth and crop yield. Therefore, monitoring this index’s spatial and temporal 

distribution in agricultural fields can indicate how to apply farm management strategies 

such as irrigation and uniform water distribution. The amount of nitrogen is one of the 

practical factors influencing leaf-surface development of each plant, and, consequently, 

the development of plant shading in maize. Increasing the size and longevity of each ves-

sel increases the leaf area index [56]. Plants develop greater leaf area with more nitrogen. 

The increase in leaf area index can be attributed to the rise in the green area of the plant, 

which determines the photosynthetic capacity of the plant [57]. In general, a high leaf area 

index due to more nitrogen application is due to the positive effect of this element on leaf 

size and longevity [58]. With increasing soil nitrogen, leaf area index expansion increases, 

while light penetration into the canopy and light consumption efficiency also increase. 

Therefore, crop growth rate, leaf area index, and grain yield increase [26]. Nitrogen is one 

of the essential agronomic factors that significantly affects growth indices. Selecting the 

appropriate amount of nitrogen fertiliser can achieve a balanced combination of growth 

indices in the plant and improve crop yield [58]. In some cases, experimental results con-

firm the positive relationship between LAI and grain yield, but in other cases reject it. LAI 

is partly due to the presence of green fibres active in photosynthesis in organs other than 

the leaves, which may not be considered when estimating LAI. The maize spike provides 

a significant portion of photosynthetic material, and the whole active surface of photosyn-

thesis takes on a different dimension [59–63]. The results showed that there was a differ-

ence between hybrids. SY Minerva had the highest yield. Sushi and P0217 had the highest 

oil content. SY Minerva had the highest protein. For vegetation indices, Fornad had the 

highest BNDVI and ENDVI, and P0217 had the highest GNDVI. Based on LSD, different 

nitrogen doses affected yield, yield parameters, and vegetation indices. Karki [64] ob-

served significant effects due to genotype and nutrient level on NDVI at different growth 

stages. A positive and strong correlation was found between NDVI and grain yield. In 

their study, for plant N uptake at the V10–V12 and V6–V12 stages, GNDVI and CIgreen 

demonstrated the importance of red-edge vegetation indices for estimating summer 

maize N status. This study also provided insights for in-season variable-rate N manage-

ment using commercial active crop sensors and newly launched satellite remote-sensing 

platforms with red-edge bands [65]. 
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4. Materials and Methods 

The experimental plants were seven maize (Zea mays L.) hybrids with different FAO 

numbers and groups of maturity. The experiment was carried out at the Látókép Experi-

ment Site of the University of Debrecen (47° 33′ N, 21° 26′ E; 111 m asl). The experimental 

station was located in high-quality calciferous chernozem soil, with width top (80 cm) A 

layer. The average organic matter in the plots was 2.13% in the top 30 cm. The pH content 

decreased slightly with increasing nitrogen levels. The average soil pH was slightly acid 

(5.80) (Table 7). 

Table 7. Soil parameters in this experiment. 

Fertilisa-

tion Lev-

els 

pH (KCl 

1:2,5) 
KA 

Salt Content 

[m/m%] 

CaCO3 

[m/m%] 

Organic Mat-

ter [m/m%] 

Nitrogen 

[mg/kg] 

Magnesium 

[mg/kg] 

Potassium 

Oxide 

[mg/kg] 

Phosphorus 

Pentoxide 

[mg/kg] 

0 6.15 38.56 <0.02 <0.1 2.16 1.17 362.30 185.28 52.90 

1 5.70 40.28 <0.02 <0.1 2.23 2.30 346.15 277.44 146.65 

2 5.57 36.81 <0.02 <0.1 2.02 2.11 359.00 277.02 129.12 

Notes: pH (KCL), potassium chloride soluble pH; KA, Arany’s plasticity index. Fertilisation levels: 

0: control, 1: 120 kg ha−1, 2: 300 kg ha−1. 

The experiment was established in 1983 and has been continuing with unchanged 

parameters for 38 years using the same nutrient replenishment scheme, location, soil till-

age, and agrotechnical support. The experiments were carried out in two different nitro-

gen ranges (120 kg N ha−1, 300 kg N ha−1), and phosphorus and potassium were applied 

to each plot in the form of the same autumn basic fertiliser (P2O5: 184 kg ha−1, K2O: 216 kg 

ha−1); the total negative control has been used for measurements without artificial and 

organic nutrient replenishment for 38 years. The measurements were carried out in the 

2020 season. 

Soil tillage was carried out with winter ploughing on 25 October 20219, and second-

ary tillage with preparation of the seed bed was carried out on 9 April 2020. The sowing 

date was 17 April 2020, with 73.000 plant ha−1 density and 6 cm sowing depth. Herbicide 

treatment containing 345 g l−1 tembotrione, 68 g l−1, thiencarbazone-methyl, and 134 g l−1 

isoxadifen-ethyl was applied in a dose of 0,3 l ha−1 on 18 May 2020. Mechanical weed con-

trol was applied on 27 May 2020. The harvest date was 23 October 2020, the harvesting 

process was done with a plot size harvester (Sampo SR2010, Sampo Rosenlew, Finland). 

The yield quality parameters (protein, starch, oil, and moisture content) were measured 

on the plot-level with near-infrared transmittance (NIT) technology (Perten DA 7250, 

PerkinElmer Ltd., Waltham, MA, USA). 

The experiment was a two-factor field experiment with a strip-plot design and four 

replications, allowing for appropriate statistical evaluation. Five replications were used 

for leaf area measurement (LAI). Five measurements were taken per row in each plot. The 

first measurement was next to the left row, then three measurements were distributed 

proportionally in the row, and the fourth measurement was taken on the right, after which 

the values were averaged. Leaf area measurements were carried out with the SS1 SunScan 

Canopy Analysis System (Delta-T Devices Ltd., Cambridge, UK) The SS1 SunScan can 

measure the difference between two plots in the same sampling time. The same ELADP 

value was used at the time of measurement and at treatment. Sampling was performed 4 

times during the growing season. Sampling times were based on heat sums and pheno-

logical phases—1st sampling (15 June 2020): 6 leaves −321.7 °C heat sum; 2nd sampling 

(25 June 2020): 10 leaves −493.1 °C heat sum; 3rd sampling (13 July 2020): 14 leaves −758.4 

°C heat sum; 4th sampling (23 July 2020): silking −896.1 °C heat sum. 

Based on the manufacturer’s recommendation for hybrid breeders, the tested hybrids 

have the following parameters: DKC4792 (7) has a fast water release ability and drought 

tolerance; P0217 (1) is drought tolerant; SY Minerva (2) is characterised by a strong and 

stable stem; Fornad (3) has a good nutrient management; the initial vigour of Sushi (4) 
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reached the maximum score on a scale of 9. Armagnac (5) has better-than-average adapt-

ability to sowing date, as it responds to delayed sowing with relatively less yield loss than 

other hybrids in similar maturity groups. Finally, Loupiac (6) has above-average grain 

weight, and its thousand-kernel weight reaches 400 g. The examined hybrids account for 

a remarkable part of Hungarian and European maize farming. 

The year 2020 showed great similarity to 2016, especially in terms of the distribution 

of precipitation conditions. In both years, a severe rainfall deficit in the spring was fol-

lowed by outstanding monthly amounts for the three months of summer. As a result of 

the average or slightly positive precipitation anomaly in the autumn, the amount of pre-

cipitation during the entire growing season was significantly higher than in 2016, result-

ing in a surplus of nearly 180 mm. Regarding air temperature, a significant negative tem-

perature anomaly in May was obvious, which, coupled with the lack of spring precipita-

tion, had a negative effect on plant development during the sowing and germination pe-

riod. As for the summer months, June and July were average or slightly cooler than aver-

age, while August was clearly warmer than average, a trend that continued into autumn. 

The abundant rainfall around the flowering period and the moderately high temperature 

conditions at this critical stage of development probably contributed to the development 

of a good crop (Figure 7). 

 

Figure 7. Average rainfall and temperature values in 2020 and the last 10 years, Látókép  

CropProduction Experiment Site, University of Debrecen. 

ANOVA is a statistical test to determine the difference between the means of two or 

more independent statistical populations. In other words, variance analysis is used to 

compare two or more groups to see if there are significant differences. Factor analysis is 

used to decrease many variables into fewer factors. This method extracts the highest com-

mon variance from all variables and puts them into a standard score. We can use this score 

to estimate all variables for further analysis. Linear regression creates a linear model be-

tween the “Response” variable and one or more “Explanatory” variables. Regression is 

often used to discover a linear relationship between variables. In this case, it is assumed 

that one or more descriptive variables whose value is independent of the other variables 

or under the researcher’s control can effectively predict the response variable, whose 

value does not depend on the explanatory variables under the control of the researcher. 

The purpose of regression analysis is to identify the linear model of this relationship. 
Factor analysis is one of the multivariate methods in which independent and dependent 

variables are not considered. This method is considered an interdependent technique, and 

all variables are interdependent. Factor analysis plays an important role in identifying 

latent variables or the same factors through observed variables. 
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The corn experiment was recorded with a DJI Phantom 4 Agro drone. The flight alti-

tude was 40 m with a spatial resolution of 1.75 cm/pixel. The ortho photo was created 

from the raw images using WebODM. The drone is equipped with a colour-filtered NGB 

camera so it captures images in NIR, green, and blue channels. The following vegetation 

indices were created from the 10.06.2020 images: 

BNDVI = (N − B)/(N + B) 

GNDVI = (N − G)/(N + G) 

ENDVI = ((N + G)−(2 × B))/((N + G) + (2 × B)). 

A mask was created from the BNDVI record of the dataset for values above 0.09 and 

used to cut the GNDVI and ENDVI records. The experimental plots were digitized, and 

then plot-level vegetation index values free of soil disturbance were obtained in shape 

format using the Quantum GIS Zonal Statistics module. 

The attribute table of the shape format was used to create the numerical database for 

statistical analysis. From this, a strip-plot analysis of variance was carried out, followed 

by a post hoc least significant difference (LSD) test for comparison of means. 

Linear and multilinear regression was used to investigate the relationship between 

vegetation indices, yield results, and quality parameters from UAV NGB images. 

5. Conclusions 

Grain yield increased with increasing crop growth rate, but with LAI, grain yield 

increased only to a certain extent, after which increasing LAI did not significantly affect 

grain yield. Sushi had maximum LAI on different dates for the control and fertiliser treat-

ments. This showed that Sushi had an excellent capacity for LAI. LAI values on 15 June 

2020 showed minimum average values for all hybrids, and it had a maximum average 

values on 23 July 2020. LAI had maximum performance between the average values treat-

ments in Sushi, Armagnac, Loupiac, and DKC4792 on 15 June 2020. This study also pro-

vides insights for examining variably applied N doses using crop sensors and UAV re-

mote-sensing platforms. 
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