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Abstract: Grapevine virus A (GVA), the type species of the Vitivirus genus, is one of the causal agents
of the Kober stem grooving disease of the rugose wood complex and one of the most frequently
detected viruses in grapevine. There is little information on GVA gene(s) marker useful for phy-
logenetic analysis. To this aim, a total of 403 leaf samples were collected from vineyards of East
and West Azarbaijan provinces in the Northwestern provinces of Iran during 2014–2016 and tested
by DAS-ELISA and RT-PCR using ORF5-specific primers. GVA was detected in 56 symptomatic
samples, corresponding to 14% of infection, while it was not detected in asymptomatic samples.
The ORF5 (p10) protein sequence of eight Iranian isolates was compared to other vitiviruses, showing
that the most conserved region resides in the N-terminus, carrying an arginine-rich motif followed
by a zinc-finger motif. Next, to define a robust phylogenetic marker representative of the whole
genome sequence suitable for phylogenetic and evolutionary studies, phylogenetic trees based on
the full genome sequences of all the available GVA isolates and on individual genomic regions were
constructed and compared. ORF1, which encodes the RNA-dependent RNA polymerase, was found
to be the best phylogenetic marker for GVA classification and evolution studies. These results can be
used for further research on phylogenetic analyses, evolution history, epidemiology, and etiology of
rugose wood complex, and to identify control measures against GVA and other vitiviruses.

Keywords: RNA binding protein; phylogenetic marker; RF distance; protein structure; conserved region

1. Introduction

Grapevine (Vitis vinifera L.) is one of the oldest and most widely grown fruit crops
in the world. According to available data from 2018 [1], grapevine can be infected
by nearly 80 viruses belonging to different families, some with very high incidences.
Viruses can negatively affect plant vigor and longevity, and the quality and yield of the
grapevine products [2].

Grapevine virus A (GVA) is one of the causal agents of the Kober stem grooving
(KSG) disease of the rugose wood complex (RW) [3–5]. The virus is the species of the
genus Vitivirus in the subfamily Trivirinae, family Betaflexiviridae [6], and has filamentous
flexuous particles of 800 nm in length and 11–12 nm in diameter [7]. Its genome con-
sists of a positive-sense, single-stranded RNA (+ssRNA) with five open reading frames
(ORFs): ORF1 encoding the RNA dependent RNA polymerase (RdRp; 194 KDa), ORF2 en-
coding a protein with unknown functions, ORF3 encoding the movement protein (MP;
31 KDa), ORF4 encoding the coat protein (CP; 21.5 KDa), and ORF5 generating a protein of
10 kDa (p10) [8,9].
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The main symptoms of GVA infection on susceptible grapevine plants include a lower
plant vigor, leaf deformation, with yellowing and reddening, rugose wood, and stem
pitting. The virus can also affect the yield, reducing the quality and quantity of grapes [10].
In addition to infected propagating material, GVA may be transmitted semi-persistently by
different mealybugs and scales (Pseudococcus spp., Planococcus spp., Heliococcus spp.) [11].
The virus can be also transmitted by grafting and mechanical inoculation on different
experimental hosts [12].

In diagnostics and phylogenetic studies, the importance of using whole genome se-
quences was recently emphasized, but sequencing a full viral genome is time-consuming
and very expensive. Moreover, for many plant viruses around the world, such as vi-
tiviruses, whole genome sequences of many isolates within the same species are not
available. For these reasons, researchers frequently use partial sequences for phylogenetic
analyses of virus isolates. The best gene marker(s) for phylogenetic analysis should have a
strong correlation with the full genome sequences and be sufficiently informative, when
whole genome sequencing is not possible [13]. GVA isolates from different regions of the
world, including South Africa, Jordan, and America, have considerable variability in their
RdRp and CP gene sequences [14–18]. Based on sequence analysis of the complete CP
gene, four groups (I, II, III, IV) were reported [19,20]. Three (I, II, III) and four major clades
were revealed based on partial CP and RdRp sequences by [19] and other authors [20–22].
Predajna and Glasa [23] grouped GVA isolates into four phylogenetic groups based on
partial nucleotide sequences of CP and ORF5 genes. Moradi et al. [10] also generated
three groups (I, II, III) based on complete CP gene sequences. Despite these reports,
no conclusive analysis of the full genome and individual ORF levels are available for this
virus. Previous studies in Iran have revealed the presence of GVA in the grape-producing
areas of Fars, East Azarbaijan, West Azarbaijan, Kurdestan, Kohgiluyeh va Boyer-Ahmad
and Zanjan provinces. These results were obtained by ELISA and RT-PCR using specific
primers for ORF1(RdRp) and ORF4(CP), followed by complete or partial sequencing of
these genes [10,24–27]; until now, no previous analyses of the ORF5 (p10) sequence of
Iranian isolates have been reported. The p10 protein has great importance for GVA, acting
as an RNA-binding protein, containing a basic, arginine-rich motif and a typical zinc-finger
domain [9]. Moreover, it can affect the expression of symptoms in Nicotiana benthamiana
plants and suppresses RNA silencing in its mesophyll cells [17].

In order to define a robust phylogenetic marker for GVA, we collected grapevine sam-
ples from vineyards belonging to five major local cultivars, in two main grape-producing
regions of East and West Azarbaijan provinces in Northwest Iran, and compared the tree
topology of the full genome and individual five genes of this virus. In addition, we ana-
lyzed the protein sequence of the ORF5 gene product (p10) of selected GVA Iranian isolates
to collect information on the functional role of this protein.

2. Materials and Methods
2.1. Plant Material

Four hundred and three plant samples showing yellowing and reddening of leaves,
irregular ripening of berries, and tree decline were collected during summer and autumn
2014–2016 from the major six grapevine producing areas of East and West Azarbaijan
provinces (Northwest Iran), two areas accounting for nearly 70% of grape production in
this country. The samples derived from five major local grape cultivars, including Fakhri,
Garmiane Maragheh, Qizil Uzum and Keshmeshiye bidaneh (white berry), and Angore-
siyah (red berry). The collected material, including leaves, petioles, and cane scraping
from basal nodes, and midribs, was transported to the laboratory on ice and stored at
4 ◦C in air-proof plastic bags for a maximum of one week. Leaf petioles and cane scraping
samples from two symptomless grapevines of each cultivar were also collected, serving as
negative controls.
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2.2. Double Antibody Sandwich Enzyme Linked Immunosorbent Assay (DAS-ELISA)

Plant samples including well-developed mature leaves, especially petioles and veins,
were homogenized in extraction buffer (0.5 M Tris-HCl, pH 8.2, 0.8% NaCl, 2% PVP (MW
24,000), 1% PEG (MW 6000), 0.02% NaN3 and 0.05% Tween 20) at a ratio of 1:10 (w/v) and
tested for GVA by DAS-ELISA, as described by Clark and Adams [28], using the GVA
ELISA kit (Art.No.122276; Bioreba AG, Reinach, Switzerland), according to manufacturer’s
instructions. IgG and conjugate were diluted 1:1000 in coating buffer and conjugate buffer,
respectively. Negative and positive controls of the kit were also included. After 2 h,
absorbance was measured at 405 nm (A405) using the ELISA microplate reader (Expert
Plus, Hitech, Eugendorf, Austria). Each sample was analyzed in duplicate and mean
readings being at least three times higher than the average value of the negative controls
were considered as positive.

2.3. RNA Extraction and Reverse Transcription-Polymerase Chain Reaction (RT-PCR)

Total RNA was extracted from 200 mg of scraped bark tissue collected from basal nodes,
petioles, and/or midribs from ELISA-positive samples, following the silica-capture method
described by Foissac et al. [29], with small modifications. At the end, RNA was resuspended
in 20 µL sterile water. Following assessment of RNA quality and concentration using a
NanoDrop Spectrophotometer (Thermo Scientific, Waltham, MA, USA), RNA concentration
was adjusted to 20 ng/µL and samples were stored at −20 ◦C for further studies.

cDNA was synthetized by incubating for one hour at 42 ◦C a mixture composed
of 3 µL RNA, 2µL 10 X RT buffer (0.5 M Tris-HCl, 0.7 M KCl, 0.1 M MgCl2, pH 8), 1µL
dNTPs (10 mmol/µL), 1µL DTT (100 mol/µL), 0.5 µL RNase inhibitor (10 mmol/µL),
0.5 µL MMuLV reverse transcriptase (200 U/µL, Thermo Fisher Scientific, USA), and 2 µL
Reverse primer C7273(R) (5′-CATCGTCTGAGGTTTCTACTAT-3′) [30] (100 pmol/µL), in a
final volume of 20 µL.

Five µL of cDNAs was used in a PCR reaction mix containing 10 mM of each dNTPs
(Cinnagen, Iran), 1.6 mM of MgCl2, 1 U of Taq DNA polymerase (Cinnagen, Iran), 0.5 µL
of primers H7038(F) (5′-AGGTCCACGTTTGCTAAG-3′) and C7273(R) (10 pmol/µL each)
and 1 X PCR buffer. The cycling parameters were as follows; initial denaturation at 94 ◦C
for 3 min, followed by 35 cycles of 94 ◦C for 30 sec, 56 ◦C for 46 sec, and 72 ◦C for 1 min,
and a final extension step at 72 ◦C for 15 min. PCR was performed in a thermal cycler
(Master cycler gradient, Eppendorf, Hamburg, Germany) and the expected products of
236 bp of the GVA ORF5 sequence were analyzed by electrophoresis in 1% agarose gel,
following staining with FluoroVue™ Nucleic Acid Gel Stain (Smobio, Taiwan).

2.4. Sequencing and Phylogenetic Analysis

PCR products of eight ELISA-positive samples (from the Torkaman, Urmia, Varjoy,
Nazloo, Siloo, Maragheh and Khaneh beig regions) were purified, directly sequenced by
Macrogen (Seoul, Korea) on both strands and the obtained sequences compared with GVA
sequences deposited in the GenBank database (http://www.ncbi.nlm.nih.gov) (accessed on
19 October 2018) using BLASTn (http://www.ncbi.nlm.nih.gov) (accessed on 19 October
2018). Nucleotide sequence similarity analyses and multiple alignments were performed
using MAFFTv.7. Phylogenetic tree reconstruction was done by MrBayes 3.2.6 (HKY model)
and embedded in Geneious Prime® 2019.1.3 (Biomatters, Auckland, New Zealand) using
default settings.

2.5. ORF 5 Sequence Analyses

Pfam (Protein families’ database) was used to analyze the partial ORF5 (p10) gene
product (90 aa) of eight GVA Iranian isolates. The analysis was conducted with Weblogo 3
(http://weblogo.berkeley.edu/logo.cgi) (accessed on 21 October 2020) by submitting mul-
tiple sequence alignments (MSA) of the desired regions [31] of the p10 proteins of dif-
ferent GVA isolates, and also of p10 proteins of GVA isolates and the corresponding
proteins of other vitiviruses, including grapevine virus B (GVB, Acc. No. CAG38877),

http://www.ncbi.nlm.nih.gov
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grapevine virus K (GVK, Acc. No. YP_009389467), grapevine virus J (GVJ, Acc. No.
YP_009551971), grapevine virus D (GVD Acc. No. CAA69071), grapevine virus H (GVH,
Acc. No. YP_009551909), actinidia virus A (AVA, Acc. No. AET36889), and actinidia virus
B (AVB, Acc. No. YP_004935362).

2.6. Sequence Analyses

The Linux version of MAFFTv.7 was used to align the complete genome sequences and
the sequences of each individual gene of GVA isolates separately [32], with ‘Auto’ settings.
Subsequently, Mesquite v.3.10 was used to generate MSA [33] manually and IQtree (Linux
version) to reconstruct the phylogenetic tree, and to create MSAs of full genome sequences
and of each gene sequence [34], automatically selecting the best substitution model using
the ModelFinder program. To validate the phylogenetic trees, 1000 replicates of Hasegawa
approximate likelihood ratio test (SH-aLRT) and Ultrafast bootstrap (UFBoot) were used.
Finally, Figtree v.1.4.3 (http://tree.bio.ed.ac.uk/software/figtree/) (accessed on 25 October
2020) was used to visualize the IQtree and the reconstructed consensus trees (based on 50%
majority rules) generated by MrBayes 3.2.7 [35] (at CIPRES Science Gateway [36]). Topology
tree comparisons were performed by Robinson–Foulds (RF) distances using TreeCmp [37].

3. Results
3.1. Virus Detection

During 2014–2016, grapevine samples showing virus-like symptoms were collected
from vineyards of East and West Azarbaijan provinces in Northwest Iran. Following GVA
detection using DAS-ELISA, 56 out of 403 grapevine symptomatic samples (14%) from
five major autochtonous grapevine cultivars tested positive for this virus (Table 1). These
samples were further subjected to RT-PCR, using ORF5-specific primer pairs. The expected
amplicon of 236 bp corresponding to a partial ORF5 sequence was amplified, while no am-
plicons were obtained from healthy control plants. Keshmeshiye bidaneh cultivar showed
the highest infection rate (16.74%), whereas Fakhri had the lowest infection level (9.83%).

Table 1. Presence and distribution of GVA in grapevine samples in the East and West Azarbaijan
provinces.

East Azarbaijan Province West Azarbaijan Province Total

Cultivar Infected/Tested
(% Infection)

Infected/Tested
(% Infection)

Infected/Tested
(% Infection)

Keshmeshiye bidaneh 27/170 (15.9) 9/45 (20.0) 36/215 (16.7)
Angore-siyah 8/72 (11.1) 1/18 (5.6) 9/90 (10.0)

Fakhri 5/44 (11.4) 1/17 (5.9) 6/61 (9.8)
Garmian 3/23 13.0) 1/2 (50) 4/25 (16.0)

Qizil Uzum 1/8 (12.5) 0/4 (0) 1/9 (11.1)
Total 44/317 (13.9) 12/86 (14.4) 56/403 (14.0)

3.2. Phylogenetic Analyses of the ORF5 Sequence

The partial ORF5 nucleotide sequences of eight Iranian isolates named T6, UC, VJ8,
UN1, Cyl3, MR, Ben1, and NR were deposited in GenBank with accession numbers
MG551301 to MG551308, respectively (Supplementary Table S1). Among them, T6, UC,
and UN1 were from West Azarbaijan province, and VJ8, MR, Ben1, NR, and Cyl3 were
from East Azarbaijan province. Sequence comparison showed that they were highly similar,
with nucleotide identity scores ranging from 91.6 to 99.6%. The highest levels of nucleotide
identity among them were observed for Ben1, Cyl3, and NR isolates, from East Azarbaijan
province (99.6%), while MR and UN1 isolates shared 91.6% identity. Meanwhile, when we
checked the identity of these new Iranian isolate sequences with three isolates previously
reported from Southern Iran and other GVA sequences in the GenBank, scores of 90.8–99.2%
and 87.4–95.4% were obtained, respectively. Considering the GVA sequences deposited in

http://tree.bio.ed.ac.uk/software/figtree/
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GenBank, the lowest identity (87.4%) occurred between the UN1 and 92PA isolates from
Poland and the highest (95.4%) between the UC and TRAJ2-BR isolates from Brazil.

From the phylogenetic analysis of the partial ORF5 nucleotide sequences among the
Iranian isolates determined in this study, the isolates previously reported from Iran and
45 isolates available in GenBank (Supplementary Table S1) revealed four major groups
(Figure 1). There was no correlation between the geographical origin of these new Iranian
isolates and their nucleotide sequences. All of the eight isolates analyzed in this study
belong to group I; however, the isolates UN1, T6, Ben1, NR, Cyl3, MR, and UC clustered
together, whereas VJ8 clustered with three previously reported Iranian GVA isolates. Group
I also contained diverse isolates from different continents, whereas group II included
mainly Chinese isolates, and groups III and IV included four divergent isolates of GVA.
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Figure 1. Phylogenetic tree of grapevine virus A (GVA) isolates based on partial nucleotide sequences
of the ORF5 gene (236 nt) reconstructed by MrBayes. Bootstrap values (1000 replicates) are given at
the branch nodes. Bootstrap values lower than 60 are not shown. Details of isolates are provided in
Supplementary Table S1. Grapevine virus D (GVD) was used as the out-group. Iranian GVA isolates
are shown in bold within a dark yellow box.

3.3. Analysis of the Partial Protein Sequence of p10, the ORF5 Gene Product

The analysis of the partial p10 protein sequences of Iranian GVA isolates was con-
ducted with Pfam, a widely used database of protein families and domains suitable to
characterize a protein sequence. Based on Pfam, p10 was found to belong to the nu-
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cleic acid binding protein (NABP) family and the e-value was calculated as 3.2 × 10−7.
The NABPs of the vitiviruses GVD, GVK and GVJ had the highest similarity with GVA p10,
according to BLASTp results. The conserved sites of the RNA binding proteins have been
determined for GVA and other vitiviruses including GVB, GVK, GVJ, GVD, GVH, AVA
and AVB.

Multiple sequence alignment of these partial protein sequence (90 aa) using Weblogo
showed significant amino acid conservation. The N-terminal portion of these proteins
showed a basic, arginine-rich motif (ARM:KRRRARR), followed by a zinc-finger mo-
tif [C-X-C-X4 (GAIM)-H-X4 (NNKD)-C] (Figure 2A). As can be noted, the p10 protein of
the GVA isolates here considered also includes a highly conserved domain HKLDRLR-
FVKEGRV of unknown function. Interestingly, while the arginine rich motif and the zinc
finger motifs in the N-terminus of the protein are also conserved regions in the ORF5 prod-
ucts of other vitiviruses, including GVB, GVK, GVJ, GVD, GVH, AVA, and AVB (Figure 2B),
the motif HKLDRLRFVKEGRV is not conserved (Figure 2B). Moreover, the C-terminal por-
tion of the protein did not show any conserved region among these vitiviruses (Figure 2B).
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Figure 2. Weblogo depicting the multiple sequence alignment of the partial p10 protein sequences of
the new GVA isolates collected in Iran (A). (B) shows the same analysis conducted including the RNA
binding protein sequences of GVA, GVD (CAA69071), GVK (YP_009389467), GVJ (YP_009551971),
GVH (YP_009551909), AVA (AET36889), and AVB (YP_004935362). The y-axis represents the bit
score, where 4 means 100% conservation. The x-axis displays the amino acid position in the mul-
tiple sequence alignment. The arginine-rich motif (ARM) and the zinc-finger motif are shown in
red rectangles.

3.4. Comparing the Topology of Full Genome Tree and Gene Trees

The nucleotide sequences of 18 complete genome sequenced GVA isolates were re-
trieved from NCBI GenBank (Supplementary Table S2). Since GVD is the most closely
related virus out of the GVA groups based on BLAST results, the reference sequence of GVD
(Acc. No. MF774336) was used as the out-group. Tree reconstruction based on individual
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genes and on full genome sequencing resulted in six trees. The best-fitting model selected
by IQtree to reconstruct the full genome tree of the 18 GVA isolates based on BIC criteria
was GTR + F + I + G4 [38]. The four-clade system of Alabi et al. [19] was used to name the
main clades of the reconstructed tree (Figure 3a).
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Figure 3. ML phylogenetic tree of (a) 18 terminals based on full genome sequences of all available GVA
isolates and (b) 18 terminals based on ORF1, (c) ORF2, (d) ORF3, (e) ORF4, and (f) ORF5 sequences,
all rooted by a GVD isolate. The classification is according to Alabi et al. [19]. Four clades, namely,
I (blue), II (dark green), III (purple) and IV (brown) are shown.

The GTR + F + I + G4 model was selected as the best-fitting one for ORF1, the TIM3
+ F + G4 model for ORF2, the TIM2 + F + G4 model for ORF3, the K2P + G4 model for
ORF4, the K2P + I + G4 model for ORF5, and the GTR +F + I + G4 model for the full
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genome [39,40]. The estimated total sites, informative parsimony characters, singletons,
and constant sites, per reconstructed tree, as detected by IQtree, are summarized in Table 2.
As indicated, ORF1 followed by ORF3 had the highest number of informative parsimony
characters, whereas ORF5 had the least. Variable sites (informative characters and singleton
sites) for all the five ORFs were as follows: ORF1, 64%; ORF2, 81%; ORF3, 61%; ORF4, 48%;
and ORF5, 41%. As shown, ORF2 followed by ORF1 had the highest percentage of variable
sites. In the next step, we compared the topology of the full genome and of the gene trees.
For this, we first compared the order of clades as illustrated in Figure 3. The orders of
the clades in individual gene trees were different from the full genome tree, except for
ORF1. Clade IV in the ORF5 tree is merged with clade I. Additionally, the RF distance of
the ORF1–ORF5 trees calculated by TreeCmp were 2, 5, 4, 8, and 8, respectively.

Table 2. Characterization of the phylogenetic trees using IQtree.

Best Model (Based on Bic) Total Sites Informative Sites Singleton Sites Constant Sites

Full genome tree GTR + F+I + G4 7313 3408 1194 2711
ORF1 tree GTR + F+I + G4 5126 2499 793 1834
ORF2 tree TIM3 + F + G4 533 318 116 99
ORF3 tree TIM2 + F + G4 837 374 137 326
ORF4 tree K2P + G4 596 203 87 306
ORF5 tree K2P + I + G4 273 58 54 161

4. Discussion

In this study, GVA was detected in the main vineyards of East and West Azarbaijan
provinces in Northwest Iran using both DAS-ELISA and RT-PCR with primers targeting
ORF5. To date, 86 different viruses have been reported on grapevine worldwide and some
of them have a strong economic impact on the cultivation of this crop [41]. The presence
of viral diseases in commercial planting materials indicates the use of infected material
for the establishment of vineyards and the lack of efficient monitoring systems for trans-
ferring and planting virus-free materials [42,43]. The management of viral disease of
grapevine is very hard due to the lack of effective chemical compounds for their control,
their fast evolution rate through mutation and genetic recombination events, their easy
adaptation to the local environmental conditions, and the breakdown of plant genetic
resistance [44]. For these reasons, it is very important to detect the virus/viruses infecting
grapevine, especially from the perspective of ecologically sustainable agricultural practices
and environmental preservation.

The most prevalent symptoms of GVA infection in the surveyed areas were leaf roll,
leaf yellowing, leaf reddening, and irregular fruit ripening, as described previously in
vineyards of Fars, East and West Azarbaijan, Kurdestan, Kohgiluyeh va Boyer-Ahmad and
Zanjan provinces [10,13–16]. The plants analyzed in this study showed symptoms typical
of GVA, but only 14% of them tested positive for this virus, implying that other viruses
may be responsible for the symptoms.

Reconstruction of the phylogenetic tree using the partial ORF5 gene sequences of eight
field isolates of GVA collected in the East and West Azarbaijan provinces discriminated
four clades and all the newly sequenced Iranian isolates of this study clustered in group
I. Our results are in agreement with previous studies that used different ORFs includ-
ing CP, RdRp and partial nucleotide sequences encompassing the CP and ORF5 genes
distinguishing GVA isolates into four groups [23–25,27].

In a second part of the work, the sequence of the ORF5 gene product, the p10 protein
of the GVA Iranian isolates, was studied. The conserved sites of the p10 protein were
determined and the Weblogo analysis showed the presence of a highly conserved basic,
arginine-rich motif followed by a zinc-finger motif in its N-terminal portion. Our results
are in agreement with previous studies showing that the basic, arginine-rich motif is
responsible for the RNA binding activity of this protein [9,17]. Other vitiviruses used in
this study showed conserved regions only in the N-terminal portion of the protein, with no
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conservation in the C-terminal part, emphasizing again the relevance of the N-terminal of
the protein in RNA binding activity.

Different ORFs were used for phylogenetic analysis and evolutionary studies of GVA
around the world. In this study, we compared the full genome tree and individual gene
trees of GVA isolates using RF distance in order to find gene(s) suitable as evolutionary
marker(s) in phylogenetic studies, instead of the whole viral genome. First, the topology
and clade pattern of the full genome tree (as the true tree) were compared to those created
with individual genes. All gene trees produced the same number of clusters as the full
genome tree. A significant factor for selecting a phylogenetic marker is the level of sequence
variability [45]; our results showed that ORF1 and ORF3 have the highest number of
informative sites. Therefore, GTR +F + I + G4 was selected as the best model to reconstruct
the tree for the full genome and ORF1. In summary, our results detected four main
clades for all GVA isolates using either partial or complete sequences submitted to public
databases. Therefore, ORF1 encoding RdRp can be an appropriate representative gene of
the full genome in phylogenetic studies of GVA. It is worth indicating that a smaller, highly
conserved part of this ORF may be sufficient, instead of the whole ORF. Indeed, the RdRp
region of ORF1 was used by Alabi et al. (2014) to group the GVA isolates (19).

The selection of an appropriate phylogenetic gene marker was previously performed
for other viruses by different authors. As an example, Tomimura et al. [46] indicated the
NIb-VPg regions as phylogenetic markers for turnip mosaic virus, and Baradar et al. [47]
reported that the NIb, Nib, and VPg genes can be used as evolutionary markers for bean
yellow mosaic virus; both of these viruses belong to the Potyvirus genus. In this study,
the ML-based IQtree and BI-based MrBayes programs were used for the reconstruction
of full genome and individual gene trees and all fully sequenced GVA isolates were clas-
sified and compared to Alabi et al. [19]. In all the reconstructed trees, almost all main
monophyletic groups detected by previous studies are present with high posterior proba-
bility and bootstrap support, named as groups I–IV, as suggested in the naming system
by Alabi et al. [19]. The clades in all individual gene trees are almost similar to those of
the full genome tree. Notably, when comparing individual genes and complete genome
trees, our findings are in contrast with those of Alabi et al. [19] and with other stud-
ies that indicated that the GVA ORF4, encoding the CP, is the most suitable region for
taxonomic purposes [10,20–22].

Most available isolates in public databases are partially sequenced and virologists
are obliged to use partial genomes or individual genes for phylogenetic studies. As such,
to avoid unbiased classification, phylogenetic studies should be based on either phylo-
genetic gene marker(s) or on a multigene dataset, instead of just one random gene (47).
This study is the first to determine a marker gene for GVA phylogenetic and evolutionary
analysis, and the methodology and the results here described can be used for further
research on phylogenetic analysis, evolution history, epidemiology, etiology, and control
measures of GVA, taken as the type species of the Vitivirus genus, but also for other viruses
of grapevine. Moreover, protein sequence analyses of the partial ORF5 gene product of
Iranian GVA isolates supports the RNA binding ability of this protein.

Supplementary Materials: The following supporting information can be downloaded at: https://
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