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Abstract: Perennial fruit crops enter dormancy to ensure bud tissue survival during winter. However,
a faster phenological advancement caused by global warming exposes bud tissue to a higher risk of
spring frost damage. Tissue dehydration and soluble sugars accumulation are connected to freezing
tolerance, but non-structural carbohydrates also act as metabolic substrates and signaling molecules.
A deepened understanding of sugar metabolism in the context of winter freezing resistance is required
to gain insight into adaptive possibilities to cope with climate changes. In this study, the soluble sugar
content was measured in a cold-tolerant grapevine hybrid throughout the winter season. Moreover,
the expression of drought-responsive hexose transporters VvHT1 and VvHT5, raffinose synthase
VvRS and grapevine ABA-, Stress- and Ripening protein VvMSA was analyzed. The general increase
in sugars in December and January suggests that they can participate in protecting bud tissues
against low temperatures. The modulation of VvHT5, VvINV and VvRS appeared consistent with the
availability of the different sugar species; challenging results were obtained for VvHT1 and VvMSA,
suggesting interesting hypotheses about their role in the sugar–hormone crosstalk. The multifaceted
role of sugars on the intricate phenomenon, which is the response of dormant buds to changing
temperature, is discussed.
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1. Introduction

Woody perennials have developed several adaptive measures to endure yearly tem-
perature fluctuations, such as bud dormancy and cold hardiness acquisition to survive
winter freezing conditions [1]. In the context of climate change, the observed increase
in average surface temperatures causes an acceleration of plant phenology progression,
exposing vulnerable green bud structures to a higher risk of late frost damage [2]. This
is especially true for grapevine, whose development rate is very sensitive to temperature
variations [3]. Both extreme winter temperatures and late freezing occurrences in spring
can be highly detrimental to grapevine productivity, as observed in several areas of the
world. Freezing temperatures result in a wide range of injuries in plants, spanning from
the separation of cell layers and cavitation formation to the radial splitting of the trunk, tor
xylem embolisms [4]. For example, winter temperatures during the 2018–2019 season in
North Dakota (USA) reached a minimum of −36.8 ◦C, causing budbreak failure in multiple
genotypes [5]. On the other hand, major economic losses were registered following the
Easter freeze of April 2007 in Missouri (USA), with several wine-grape cultivars having
95% to 100% primary bud injury [6].

In several perennial species, non-structural carbohydrates have a crucial role in the
budbreak process [7,8], but they are also required for basal metabolism during winter
dormancy [9,10]. Moreover, soluble sugars are tightly connected to plant tolerance to cold
temperatures [11,12], due to their role as osmolytes and cryoprotectants, by reducing ice
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nucleation within the apoplast, thus limiting freezing-induced dehydration [13]. Intracel-
lular ice formation results not only in water subtraction but also in mechanical stress on
the plasma membrane, likely lethal for cells [14]. Soluble sugars have been implicated in
the stabilization of cellular membranes during dehydration stress, such as RFOs (Raffi-
nose Family Oligosaccharides), which were implicated in liposome membranes protection
during desiccation [15]. Fructans were also linked to winter hardiness improvement by
direct interaction with membranes, as well as a putative movement to the apoplast during
cold exposure [16,17]. In grapevine, variations in the concentration of several sugars such
as sucrose, glucose, fructose, raffinose and stachyose have been associated with freezing
tolerance [11,13,18]. In particular, raffinose has been shown to be mostly related to cold
resistance and was shown to accumulate earlier in cold-tolerant cultivars compared to
cold-sensitive ones [13]. Consistently, the induction of genes coding for raffinose synthase
has been observed in grapevine flowers after a cold night, which is coherent with their
role as an osmoprotectant [19]. Moreover, freezing tolerance enhancement has also been
associated with bud water content reduction [20].

Despite their part in basal plant metabolism, sugars may play a crucial role, as signal-
ing molecules, in the control of plant metabolism and development and revealing inter-
actions that integrate environmental factors and hormone signaling [21]. Carbohydrate
signaling in grapevines has been investigated mainly in the berry, an organ that accumu-
lates high concentrations of sugars and several reviews are available on this topic [22,23],
but the possible role in mediating bud dormancy progression is still largely unknown.
Recently, sugar metabolism was proven as being pivotal for dormancy transition, not only
as energy supply but also as a source of signal molecules [24–26]. As a consequence, in this
complex feedback and multi-step regulation, sugar transporters and metabolic enzymes
and their genetic regulation are critical.

Monosaccharides are delivered to sink tissues, such as buds, by hexose transporters
(HTs). Fifty-nine putative grapevine HTs have been identified in grapevines [27], and three
of these, namely VvHT1, VvHT4 and VvHT5, are located on the plasma membrane [28,29].
Genes VvHT1 and VvHT5 encode high-affinity H+-dependent glucose transporters [28,29]
and were shown to be responsive to water stress, with VvHT1 being downregulated and
VvHT5 upregulated [24]. VvHT5 is also considered a general stress response-related gene,
possibly due to its role in enhancing sink strength under stress conditions [30,31]. On the
other hand, the irreversible sucrose hydrolysis by invertases in different cell compartments
leads to hexoses increase, suggesting a fine-tuning of the sugar transport activity [32].
VvHT1 was recently shown to be a target of VvMSA protein (Maturation, Stress, ABA),
the only identified member of ASRs (ABA-, stress- and ripening-induced) in grapevine,
hypothesized to act as a transcriptional regulator connecting sugar and ABA signaling [33,34],
although many aspects of its action remain to be elucidated. ASR proteins have recently
sparked interest because of their role as transcriptional regulators, suggested by their DNA-
binding activity and nuclear localization [33], and as candidates for direct protein protection
due to their hydrophilic nature [35]. A role in plant response to various environmental cues
is strongly suggested by ASR induction following several stresses [36,37]. An interaction of
VvMSA and a dehydration-responsive element-binding protein named VvDREB, mostly
involved in osmotic stress and dehydration responses, was also observed in the nucleus
of grape cells [38]. Taken together, this information makes VvMSA a good candidate for
a role in integrating important physiological processes (i.e., hormones signaling, sugar
accumulation, dehydration, stress response) during dormancy progression. Surprisingly,
to our knowledge, no data on VvMSA expression and interactions in buds are available.

Wild grapevine species are typically more cold-hardy compared to cultivated Vitis
vinifera. However, they are also more precocious in terms of budbreak timing, which para-
doxically puts them at a higher risk of spring frost damage, with differences depending on
cultivar [39]. In fact, for putative evolutionary reasons, deacclimation was observed to pro-
ceed much faster in wild species such as Vitis riparia and Vitis amurensis, routinely used by
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breeders to introduce resistant phenotypes in V. vinifera. Therefore, a better understanding
of dormancy physiology and regulation also for these species is desirable [40].

This work aims to explore soluble sugars metabolism in the context of low-temperature-
induced responses during endo- and ecodormancy in buds of a hybrid of renowned cultivar
Merlot, UD 31-103 (Merlot × Kozma 20-3). This hybrid is a disease-resistant selection of
the University of Udine, and it was chosen for its improved resistance to low temperatures
due to the presence of a cold-tolerant grape cultivar (Vitis amurensis) in its pedigree. This
investigation will provide new insights to deepen our understanding of the regulation of
dormancy, paving the way for effective frost mitigation strategies.

2. Materials and Methods
2.1. Plant Material

The red grapevine interspecific hybrid UD 31-103 (Merlot × Kozma 20-3), tolerant
to minima of −20 ◦C, was field-grown at the Experimental Farm “A. Servadei” (46◦04′ N
13◦14′ E, University of Udine, Northern Italy). During the 2019–2020 winter season, buds
were regularly collected at 9–10 AM every ~15 days from October to March, in proxim-
ity to budbreak. Buds were stored at −80 ◦C for gene expression analysis and soluble
sugars measurements.

2.2. Soluble Sugars Extraction

Soluble sugar extraction was performed based on a previously tested protocol [18].
Three biological replicates of 10 buds were ground in liquid nitrogen and subsequently
freeze-dried for 72 h. Forty ± 5 mg of ground sample powder were moved to 2 mL tubes,
and 1 mL of 75% ethanol (v/v) at room temperatures was added for incubation of 3 h.
Samples were continuously shaken during incubation and vortexed at maximum speed for
1 min every 30 min. After 5′ centrifugation at 6700× g, supernatants were collected and
dried in a centrifugal vacuum concentrator. All steps were repeated twice for each sample.

2.3. HPLC Analysis

Soluble sugars were separated using a 250 mm long Ultra Amino column (Restek
S.r.l., Cernusco sul Naviglio, Italy) with a 4.6 mm internal diameter and 5 µm particle size,
equipped on a 1260 Infinity HPLC system (Agilent Technologies, Santa Clara, CA, USA)
with autosampler, quaternary pump and refractive index detector. An acetonitrile/water
mixture (70/30) was used as the mobile phase (1 mL·min−1). The oven and detector were
set at 30 ◦C. Before injection, dry soluble sugars extracts were added to 300 µL of the
mobile phase and thoroughly mixed using a vortex for 30”. To ensure complete sample
solubilization, sonication in an ultrasound bath was performed for 5′. Finally, 50 µL of the
sample was injected following filtration.

Standard solutions of glucose, fructose, sucrose and raffinose (Sigma-Aldrich, St. Louis,
MO, USA) were used for sugar detection and quantification. Calibration curves were con-
structed injecting each sugar standard at concentration ranges: 25,000–25 µg/mL glucose,
20,000–25 µg/mL fructose, 25,000–25 µg/mL sucrose, and 1990–7.5 µg/mL raffinose. Sugar
quantification was calculated from the peak area using Agilent OpenLab CDS ChemStation
Edition (Version C.01.03) software (Agilent Technologies, Santa Clara, CA, USA).

2.4. Gene Expression Analysis

For each sampling time, RNA extraction was performed from 3 biological replicates
of 10 buds using the Spectrum™ Plant Total RNA kit (Sigma-Aldrich, St. Louis, MO,
USA). cDNA was synthesized with QuantiTect® Reverse Transcription kit (Qiagen, Hilden,
Germany), and qPCR was carried out with SsoFast™ EvaGreen® Supermix (Bio-Rad,
Hercules, CA, USA) as previously described [41]. Primers used to detect gene expression
are listed in Table S1. Ubiquitin Conjugating Factor (CF203457; VIT_19s0015g01190) was
selected as a housekeeping gene for qPCR data normalization.
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2.5. Statistical Analysis

All statistical analyses were performed with SigmaPlot 14.0 (https://systatsoftware.
com/) using one-way ANOVA and Tukey HSD as post hoc tests for all pairwise comparison
procedures. Statistical analysis of sugar content data was performed separately for each
sugar.

3. Results
3.1. Soluble Sugars Accumulation Dynamics in Dormant Buds

Hexoses and sucrose content were successfully detected and quantified by HPLC
analysis in buds of the hybrid UD 31-103 (Figure 1a) throughout the 2019–2020 winter
season. Additionally, raffinose concentrations were measured, although it appeared to be
stably less concentrated, in all samples, as compared to sucrose and hexoses (Figure 1b).
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Figure 1. (a) Accumulation dynamics of fructose, glucose and sucrose in buds of UD 31-103 through-
out the 2019–2020 winter season. In (b), the raffinose accumulation pattern in the same samples is
reported. Results are expressed as the mean of 3 biological replicates of 10 buds ± standard error.
Statistical analysis is provided in Supplementary Table S2.

Changes in the concentration of hexoses and sucrose followed the same tendency.
According to the obtained results, all sugars sharply peaked on 15 December, reaching
seasonal maximum levels. Then, sugar levels were observed to gradually decrease up to the
second half of January. A second peak, smaller than the first, was detected on 11 February.

Sucrose was the most abundant sugar in buds, while monosaccharides differed from
each other for the concentration that was lower for glucose. Raffinose concentration was
the lowest and appeared more modulated; in fact, it showed a transient increase in early
November, followed by the highest concentration on 15 December, similarly to all the other
sugar species. Raffinose content then decreased until 9 January and remained stable for the
entire month, when, at the end of the winter, the concentration of the trisaccharide became
almost undetectable.

3.2. Seasonal Variation of Temperature

Daily temperature data, recorded by the S. Osvaldo (Udine, Italy) weather station
and managed by ARPA FVG, are represented in Figure 2 and detailed in Table S3. The
mean daily temperatures in the 2019–2020 winter season regularly decreased starting from
November, reaching their minimum values in the last days of December and the first week
of January, although temperatures around 3 ◦C were observed since the beginning of De-
cember. Interestingly, during the coldest winter period, a transient increase in temperature
was observed between 15 and 23 December, when the environmental temperature averaged
about 10 ◦C. After that, the above-mentioned minimum was reached and then slowly
progressed towards increasing temperatures in February and March.

https://systatsoftware.com/
https://systatsoftware.com/
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3.3. Quantification of Gene Expression in Buds during the Winter Season

The transcriptional regulation of five selected genes was investigated by qRT-PCR in
order to possibly explain the sugars accumulation patterns and substantiate their role as
osmoprotectants and signaling molecules (Figure 3). In detail, hexose transporters VvHT1
and VvHT5 were selected due to their involvement in different stress responses, in tight
connection with VvMSA protein, the only identified member of ASRs in grapevine able to
integrate sugar, stress and hormonal signaling. In addition, the expression of VvINV [42]
and VvRS was determined because of their pivotal role in the production of hexoses and
raffinose, respectively.

The gene encoding the hexose transporter VvHT5 showed a clear expression pattern
characterized by an upregulation in the central phase of the considered period. Specifically,
a peak on 9 January and a decrease to a new significant minimum in late February and
March were detected.

On the contrary, VvHT1 transcription exhibited fairly complementary dynamics com-
pared to VvHT5. In detail, VvHT1 expression displayed its minimum from November to
January and seemed tendentially upregulated from the beginning of February onwards.
In addition, cell wall invertase VvINV expression appeared modulated in a very complex
way. Notably, downregulation was observed from December to January–February, while
the highest VvINV transcription was detected in February and March.

VvMSA expression [43] was successfully detected in grapevine buds of UD 31-103.
Results show that VvMSA was significantly and sharply upregulated in spring. In detail,
although higher expression levels were measured in October as compared to the following
time-points, a general downregulation was observed during the fall–winter season, but a
sharp and significant increase in gene expression was detected on 10 March.

Moreover, the raffinose synthase encoding gene (VvRS) was monitored in buds of
UD 31-103 throughout the 2019–2020 winter season. Despite the low levels of significance,
VvRS displayed a general higher expression until the beginning of January and a tendential
downregulation in the following time-points, reaching a minimum in February and March,
in accordance with raffinose dynamics.
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Results are expressed as the mean of 3 biological replicates of 10 buds± standard error. VvHT5 = Hex-
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Stress, ABA; VvRS = raffinose synthase. Letters represent the results of statistical analyses; in the
VvHT1 expression pattern, no significant difference was found.

4. Discussion

Climate change is not only registered as torrid summers but also warmer winters
or acute cold weather episodes [2]. Recently, dormancy regulation has gained additional
interest due to global warming and unpredictable temperature fluctuations. Cold hardi-
ness kinetics and budbreak phenology are strictly connected and affected by a dormancy
state [44]. In fact, early cold hardiness loss often implies higher frequencies of late frost
damage in sensitive species [45]. Grapevine cultivars have been shown to be differentially
sensitive to warm spells during winter; however, sustained cold winters are necessary for
high cold hardiness levels to be maintained [46]. Soluble sugars accumulation during cold
acclimation play a well-documented role in freezing tolerance acquisition [26]. However,
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sugars are also known as signaling molecules involved in the combination of internal and
external stimuli in different developmental stages and stress responses [47,48], as well
as a source of energy for primary metabolism [8]. The role of sugar metabolism in bud
dormancy transitions is still largely unknown. A better understanding of the mechanisms
underpinning dormancy progression and the key players in this process could be helpful
in increasing the sustainability of grapevine cultivation as climate variation increases.

Cold hardiness of buds collected from the UD 31-103 hybrid during the 2019–2020
winter season has recently been documented, showing maximum levels in December and
in the first part of January [49].

As a rule, dormant buds are considered to be in an inactive state with reduced
metabolic activities; therefore, the dormancy progression and the transition toward bud-
break certainly involve the general reprogramming of carbohydrate metabolism [26]. Al-
though it may be difficult to completely understand the data collected in this preliminary
experiment and to establish their cause–effect relationship, the work might help in defining
the complex pattern of metabolic reactions occurring within dormant buds.

Indeed, significant changes in sugars and related genes transcription were observed.
The raffinose accumulation dynamics appear to confirm its greater correlation to freezing
tolerance compared to other soluble sugars [19], with the increase in raffinose already
detectable in the early stages of the considered period. The transient decline on 25 Novem-
ber suggests that raffinose can rapidly respond to changes in temperature, as the highest
maximum of the period was recorded on that date (Figure 2). Consistently, VvRS expression
almost mirrors this trend, and its downregulation from the beginning of February corre-
sponds to the increase in average daily temperatures during the 2019–2020 winter season
following the coldest interval (Figure 2). To further corroborate this VvRS responsiveness
to rapid temperature changes, a simple relation can be drawn between expression in early
January and the coldest temperatures of the season (Figure 2). VvRS expression pattern,
apparently inconsistent with raffinose levels at this stage, highlights the complexity of its
metabolism [50] that requires further attention. The presence of multiple VvRS homologs
in the grapevine genome also supports the possibility of differential functions or timings of
activation [51]. The induction of the same gene coding for raffinose synthase was described
in inflorescence exposed to cold, allowing us to hypothesize a role for raffinose as an
osmoprotectant [19]. However, it is possible to hypothesize that the accumulation of sugars,
probably connected with the acquisition of cold hardiness, can be driven by many factors,
of which the external temperature represents only a part. For this reason, the environmental
temperature (Figure 2) can only in part explain buds’ carbohydrate content, which, on
the contrary, appears reasonably related to low temperatures tolerance (measured as DTA,
Figure 4).

As expected, the accumulation pattern of sucrose and hexoses appears more difficult to
be directly related to low temperatures occurrences. This is specifically due to the difficulties
in discriminating the role of sugars as signaling molecules from their contribution as
metabolic substrates and/or osmolytes [52]. However, soluble sugars levels were low in
buds at the beginning of dormancy and then increased gradually with a major peak in
December and a following smaller increase during February. These results are fairly in
agreement with previous findings in grapevine and other species, suggesting that sucrose
and hexoses can also contribute to improving the freezing tolerance by lowering the
freezing point of free water and inhibiting the formation of ice crystals [26,53]. However,
the relative amounts of sugars with fructose higher than glucose might reflect the utilization
of both glucose and sucrose in raffinose biosynthesis. This speculation further corroborates
the difficulty in mechanistically explaining the relative proportion of the different sugars
measured, given their diversified function and their metabolic crosstalk.
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On the other hand, the expression of hexose transporters encoding genes appeared
only partially coherent with the accumulation pattern of fructose and glucose. In detail,
VvHT1 is nearly downregulated during winter months, while VvHT5 is significantly up-
regulated in a complementary way around the same time period. These results seem
consistent with previously reported drought-induced VvHT5 upregulation and VvHT1
downregulation [30]. In addition to this, recent evidence documented the upregulation
of an unspecified hexose transporter in cold-treated Vitis amurensis seedlings while show-
ing no obvious difference in V. vinifera [54]. Given the similarities of plants’ adaptation
mechanisms to cold and drought stress [55,56], our results allow suggesting that hexoses
transporters encoding genes examined in this work display comparable behavior as ob-
served in drought-stress responses. In particular, VvHT5 upregulation could be related
to freezing-induced dehydration stress, leading to hexoses uptake and enhanced cold
tolerance. In addition, a downregulating role of glucose on VvHT1 expression and glucose
uptake has been recognized [57], and the pattern identified in our work should be consistent
with this interaction, being the accumulation profile of glucose almost complementary to
that of VvHT1 transcripts. Interestingly, VvHT1 expression is controlled by VvMSA during
berry development [58]. To our knowledge, the results presented in this study are the first
example of documented VvMSA expression in grapevine buds. The expression pattern
suggests a role for VvMSA in the context of dormancy release, and its double regulation by
both ABA and sugars makes it an interesting target for future investigations as a relevant
key player in dormancy progression. Although an immediate connection between soluble
sugars and VvMSA expression in grapevine buds cannot be stated from these data, as seen
in other grapevine tissues [33,34], the coordination between VvHT1 and VvMSA expression
supports the hypothesis of a possible interplay between the two genes also in buds.

Cell wall invertases are generally regarded as providing substrates for metabolism,
but in many conditions, the glucose and fructose produced are mainly used in osmoregu-
lation [59]. Recent evidence collected in tomatoes has indicated that cell wall invertases
play an important role in chilling tolerance by regulating sugar content [60]. Ice nucleation
events in plant tissues take place outside living cells, namely in the apoplast, from where
freezing can spread to the symplast [61]. Cell wall invertases are located in the apoplast,
where they hydrolyze sucrose into glucose and fructose, doubling their osmoprotective
function; the evidence collected in this study allows us to hypothesize that generated
hexoses could participate in establishing freezing tolerance in grapevine buds. However,
our results do not point out a correlation between hexoses amount and VvINV expression.
This is not surprising since cell wall invertases can undergo post-transcriptional regulation
and can be inactivated by binding to inhibitor proteins [59]. In any case, cell wall invertases
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have a recognized role in regulating developmental transitions [62], and their expression
was induced shortly before bud break in buds of peach [63], suggesting the catabolic activity
can increase the sink strength, which, in turn, triggers a commitment to bud burst [64]. This
hypothesis appears consistent with our findings, being VvINV significantly upregulated
in February and March when hexoses also showed a slight increase. This upregulation,
concomitant to the gradual rise of temperatures starting in February (Figure 2), appears in
accordance with the proximate growth restart of buds.

5. Conclusions

In conclusion, this work presents evidence of multiple sugar-related responses taking
place inside buds of a cold-tolerant Vitis hybrid. Although not conclusively, it is possible to
attribute a specific role to raffinose in bud acclimation and tolerance to low temperatures.
The accumulation pattern of sucrose and hexose is more intricate, as they are simultane-
ously metabolic substrates and osmoprotectants. However, the increase in these sugars in
December and January suggests that they can participate in protecting bud tissues against
low temperatures. In this context, it has been possible to relate the modulation of VvHT5,
VvINV and VvRS to the availability of the different sugar species. Conversely, challenging
results were obtained for VvHT1 and VvMSA genes (Figure 4). However, VvMSA has
been proposed as a point of convergence in the sugar–hormone crosstalk [65] and as a
key regulator of VvHT1. The first evidence on VvMSA expression in grapevine buds and
its coordination with VvHT1 make them interesting candidates for a possible role in bud
phenological advancement towards budbreak.

New insights have been added to the full understanding of the complex phenomenon
of dormancy progression. An integrative approach is still required in order to untangle the
key molecular pathways involved and to investigate how environmental conditions affect
this phenological transition.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/plants11081027/s1, Table S1: list of primers used for qPCR analysis. Table S2: statistical
analysis of bud sugar content.
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