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Abstract: Plant height (PH) and its component traits are critical determinants of lodging resistance
and strongly influence yield in rice. The genetic architecture of PH and its component traits were
mined in two mapping populations. In the natural population composed of 504 accessions, a total
of forty simple sequence repeat (SSR) markers associated with PH and its component traits were
detected across two environments via association mapping. Allele RM305-210 bp on chromosome
5 for PH had the largest phenotypic effect value (PEV) (−51.42 cm) with a reducing effect. Allele
RM3533-220 bp on chromosome 9 for panicle length and allele RM264-120 bp on chromosome 8 for
the length of upper first elongated internode (1IN) showed the highest positive PEV. Among the
elongated internodes with negative effects being desirable, the allele RM348-130 bp showed the
largest PEV (−7.48 cm) for the length of upper second elongated internode. In the chromosome
segment substitution line population consisting of 53 lines, a total of nine QTLs were detected across
two environments, with the phenotypic variance explained (PVE) ranging 10.07–28.42%. Among
the detected QTLs, q1IN-7 explained the largest PVE (28.42%) for the 1IN, with an additive of
5.31 cm. The favorable allele RM257-125 bp on chromosome 9 for the 1IN increasing was detected
in both populations. The favorable alleles provided here could be used to shape PH architecture
against lodging.

Keywords: plant height and component traits; favorable alleles; elongated internodes; chromosome
segment substitution lines; natural population; Oryza sativa

1. Introduction

Rice (Oryza sativa L.) is one of the most important staple crops serving as a major food
source for over 3.5 billion people worldwide; hence, it is considered to be a food security
crop worldwide [1,2]. The world rice cultivation acreage was 167.13 million hectares and
the production of milled rice was 509 metric tons in year 2018/2019. China was the leading
producer, with 148.5 million metric tons of milled rice on the paddy field of 31 million
hectares, followed by India, with 116.42 million metric tons on the rice acreage of 40 million
hectares [3]. The global population is growing continuously, and the arable land acreage
is continuously reducing, creating threats to food security. It has been estimated that rice
production needs to increase by more than 42% of the current production in order to meet
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future needs by 2050 [4]. It is imperative to increase the yield of rice per unit area through
genetic improvement to meet the food demands of this growing global population.

The use of semi-dwarf rice cultivars solves the problem of increasing fertilizer ap-
plication without lodging before harvest, so as to increase yield (compared with high
stalk cultivars) [5,6]. The use of hybrid rice cultivars can increase yield (compared with
semi dwarf conventional cultivars) by using heterosis and appropriately increasing total
biomass [7,8]. However, in order to further improve the grain yield per unit area of hybrid
rice varieties, it is necessary to manipulate the length of each internode in the aboveground
part of rice plants, so as to make the field plant population develop to the upper space, and
not only increase the biomass per unit area, but also not lead to lodging before harvest.
This plant height design is also necessary for development of the parents of hybrid rice
cultivars (male sterile line, maintainer line, restorer line and photo-thermosensitive genic
male sterile line) and conventional cultivars.

In general, the plant height (PH) in rice plant comprises four elongated internodes on
the main stem. So far, at least thirty-six quantitative trait loci (QTLs) have been identified
and reported for PH in rice, including 3, 4, 4, 1, 2, 4, 3, 6, 2, 4, 2 and 1 QTL on chromosomes
1 to 12, respectively [9–12]. The phenotypic variance explained (PVE) by these QTLs ranged
from 2.41 to 28.05%, and of these, 8 of the 36 QTLs have a PVE >10%. Some of the genes
for PH have been cloned, and the functions have been elucidated; for example, CYP94C2b
is a gene controlling PH and the elongated internode lengths, and the overexpression of
CYP94C2b increased the height and the internode lengths [13]. Another candidate gene,
OsMPH1, has also been demonstrated to control PH; the overexpression of OsMPH1 leads
to increases in PH and grain yield in rice [14].

Panicle length (PL) is a quantitative trait controlled by both major and minor QTLs
and influence by environment [15]. To date, at least 253 QTLs for PL have been reported
across the 12 chromosomes [15–19]. However, only a few genes regulating panicle de-
velopment have been cloned and functionally validated, such as LP1 [19], DEP2 [20] and
DEP3 [21] over the past two decades. Additionally, TUT1 is another gene encoding a
functional SCAR/WAVE protein which plays an essential role in regulating F-actin or-
ganization, functioning in multiple aspects of rice growing stages, especially in panicle
development [22].

For the top first internode, four QTLs were detected on chromosomes 3, 7, 8 and 9,
explaining 20.3% of the total phenotypic variation [23]. Until today, several studies have
cloned and elucidated the function of the elongated uppermost internode gene, designated
as EUI1, which is characterized by the near doubling 1IN [24–26].

For the 2IN, seven QTLs were mapped on seven chromosomes and collectively ac-
counted for 34.1% phenotypic variation [23]. Wu, et al. [27] reported that a dm-type rice
mutant DMF-1 previously induced by X-ray irradiation of plants on the rice cultivar Fu-
jiminori revealed semi-dwarfism and high lodging resistance with an apparently normal
growth, but with inhibition of elongation of the 2IN, being controlled by a dominant gene
Ssi1 (Short second internode 1). A QTL flanked by OSR7 and RM230 on chromosome 8 had
important effects on the first and second elongated internodes.

For the 3IN, six QTLs mapped on chromosomes 1, 6, 8, 10 and 12 caused 29.0%
phenotypic variation for this trait. Six QTLs for the top fourth internode (4IN) were detected
on chromosomes 1, 3, 4, 6, 10, and 12, which collectively explained 39.6% phenotypic
variation [23]. The semi-dwarfing gene, sd-1, contributes significantly to lodging resistance,
inhibiting the elongation of lower internodes, particularly the 3IN and 4IN, more than
upper internodes, because lodging often takes place at the lower internodes [28]. A study
on short basal internodes reported that a rice semi-dominant lodging resistance gene, SBI
(shortened basal internodes), encodes a culm-specific expressed OsGA2ox that reduces the
culm content of bioactive gibberellin, particularly in the basal internodes [29]. In addition,
higher activity of the SBI significantly reduced the rice PH, and, therefore, its application
in rice production contributed to breed improved lodging-resistant rice varieties and thus
increased yield. Although several studies on associations between markers and the plant
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height have been conducted in rice [10,30–33], to date, no report has documented a QTL
analysis of the relationships between plant height and its components traits (panicle length
and the length of all internodes), using two mapping strategies.

The objectives of the present study were (i) to map QTLs for PH and its component
traits in a natural population consisting of 504 rice accessions, using a genome-wide associ-
ation study (GWAS) mapping strategy; (ii) to detect QTLs for PH and its component traits
in a chromosome segment substitution line population designated XC-CSSLs population
by likelihood ratio test based on stepwise regression (RSTEP-LRT) method; (iii) to identify
favorable marker alleles associated with PH and its component traits in the two popula-
tions; and (iv) to predict parental combinations that could be used to improve PH and its
component traits by pyramiding favorable alleles method for breeding cultivars with a
high yield and resistance to lodging.

2. Results
2.1. Phenotypic Evaluations of the Six Traits in the Natural Population Composed of 504 Rice Accessions

Table 1 shows descriptive statistics for each trait calculated from the 504 accessions
in 2018 and 2019. The phenotypic data of most of the traits largely followed a normal
continuous distribution that is typical of quantitative traits (Figure 1).

Table 1. Descriptive statistics of phenotypic performance of 504 rice accessions for PH and its
component traits in natural population across 2 years.

Trait (cm) Year Mean ± SD Min Max Skew Kurtosis CV (%) h2 (%)

PH
2018 120.07 ± 27.24 68.78 193.82 0.22 −1.13 22.68 92.59
2019 128.78 ± 29.90 75.73 230.27 0.42 −0.93 23.21 99.55

PL
2018 22.82 ± 4.60 7.02 40.38 0.35 0.45 20.16 45.27
2019 23.32 ± 4.66 9.87 37.16 0.38 0.01 19.99 94.01

1IN
2018 38.04 ± 7.51 21.86 63.57 0.21 −0.57 19.75 93.00
2019 37.30 ± 7.21 12.47 62.28 0.17 −0.05 19.32 95.03

2IN
2018 23.30 ± 5.10 11.02 35.74 0.30 −0.80 21.91 82.27
2019 23.33 ± 5.22 11.48 37.63 0.45 −0.07 22.36 92.33

3IN
2018 17.76 ± 4.32 6.27 29.14 0.06 −0.52 24.33 77.20
2019 19.30 ± 5.45 6.82 32.93 0.28 −0.87 28.26 94.55

4IN
2018 12.81 ± 5.37 2.42 27.16 0.45 −0.49 41.88 76.31
2019 14.19 ± 6.03 1.96 31.44 0.41 −0.75 42.49 93.27

PH, plant height; PL, panicle length; 1IN, first internode from the top; 2IN, second internode from the top; 3IN,
third internode from the top; 4IN, fourth internode from the top; SD, standard deviation; CV, coefficient of
variation; h2, heritability in broad sense.

The analysis of variance (ANOVA) showed highly significant (p < 0.01) differences
among the 504 accessions for each trait, indicating that there exists high genetic variation
in the natural population. There was no statistically significant difference between 2018
and 2019 in means of the entire population in each trait. In 2018, the PH among the
504 accessions ranged from 68.78 to 193.82 cm, with an average of 120.07 cm (Table 1). The
average PL was 22.82 ± 4.60, ranging from 7.02 to 40.38 cm. For 1IN, the mean value of the
entire population was 38.04 cm, ranging from 21.86 to 63.57 cm, with 93% for broad sense
heritability (h2). For 2IN, the mean value of the entire population was 23.30 cm, ranging
from 11.02 to 35.74 cm, with 82% h2. For 3IN, the mean value of the entire population
was 17.76 cm, ranging from 6.27 to 29.14 cm, with 77% h2. For 4IN, the mean value of
the entire population was 12.81 cm, ranging from 2.42 to 27.16 cm, with 76% h2. Similar
results were obtained in 2019 (Table 1). These indicate that 4IN had the shortest length.
With the exception of PL in 2018, all the traits evaluated had high h2 in the range of 76–99%,
pinpointing that the studied traits are largely under genetic control.
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Figure 1. Frequency distribution of plant height and its component traits in the natural population
in 2018 (A–F) and in 2019 (G–L). PH, plant height; PL, panicle length; 1IN, first internode from the
top; 2IN, second internode from the top; 3IN, third internode from the top; and 4IN, fourth internode
from the top.
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2.2. Genetic Diversity Revealed by SSR Molecular Markers

A total of 2664 alleles were detected by the 262 SSR markers across the 504 accessions,
with an average ≈10.17 per locus (Supplementary Table S1). Allele number per locus
ranged from 2 (RM7403, RM437 and RM7163 on chromosomes 3, 5 and 11, respectively) to
25 (RM7545 on chromosome 10) (Supplementary Table S1 and Figure S1a). The average
genetic diversity of all SSR loci was 0.73, and the variation range per locus was 0.08
(RM7163 on chromosome 11) to 0.94 (RM7545 on chromosome 10) (Supplementary Table
S1 and Figure S1b). The average PIC value was 0.70, ranging from 0.07 (RM7163 on
chromosome 11) to 0.94 (RM7545 on chromosome 10), with a major distribution between
0.75 and 0.85 (Supplementary Table S1 and Figure S1c). The majority of SSR loci (86.26%)
were highly informative (PIC > 0.5), while 10.69 and 3.05% of the loci were moderately
and slightly informative (0.5 > PIC > 0.25 and PIC < 0.25), respectively, showing that this
population possesses a high genetic diversity and genetic information; thus, it is suitable
for GWAS.

2.3. Population Structure and Genetic Relatedness

A model-based population structure analysis revealed a significant population stratifi-
cation among the 504 rice accessions. In this analysis, the log-likelihood values increased
with the increase of subpopulation number (Supplementary Figure S2a); hence, the statistic
∆K as the diagnostic criterion was then used to determine a suitable number of subpop-
ulation K, based on the method reported by Evanno, et al. [34]. The maximum ∆K value
was observed at K = 8 compared to the other values of K; thus, the 504 accessions can be
stratified by eight subpopulations (sub-pops) (Supplementary Figure S2b). Based on Q
matrix information, each accession with Q value > 0.9 was assigned to the corresponding
subpopulation (Supplementary Table S2 and Figure S3). The 474 accessions were stratified
into eight subpopulations, with 30 accessions being assigned into an admixture group.
The neighbor-joining tree constructed based on the Nei’s genetic distances revealed that
the 474 accessions were divided into eight clusters (Supplementary Figure S4), which is
consistent with the results from the STRUCTURE analysis. The grouping in model-based
population and neighbor-joining tree followed geographical regions of the germplasm with
minor discrepancies. For instance, Sub-Pop 1 and Cluster I comprised mainly germplasm
from Eastern China, Sub-Pop 5 and Cluster V consisted with germplasm mainly from
Northeast China, and Sub-Pop 6 and Cluster VI included mainly germplasm from Vietnam.

The genetic relatedness analysis in this study indicated that over 83% of the kinship
coefficient values (K matrix) were in a range of 0–0.25 based on the 262 genetic SSR markers,
and the remaining 16.8% showed various degrees of genetic relatedness, explaining the ex-
istence of a weak relatedness between pairwise accessions used (Supplementary Figure S5).
Furthermore, a K matrix was obtained through the results from genetic relatedness analysis
for association analysis.

2.4. Genetic Differentiation among Subpopulations

The eight sub-pops obtained from the model-based approach were also subjected to
analysis of molecular variance (AMOVA) to evaluate the percentage of variation among and
within sub-pops. AMOVA showed that 48.21% of the total genetic variation occurred among
the sub-pops, whereas the remaining 51.79% was attributed to the individual differences
within sub-pops (Supplementary Table S3). Fixation index (Fst) statistics was used to
test the genetic variation in the eight sub-pops. Pairwise Fst values indicated significant
differentiation among all the pairs of sub-populations in a range of 0.41 (Sub-Pop 5 vs.
Sub-Pop 3) to 0.59 (Sub-Pop 8 vs. Sub-Pop 2), suggesting that all the eight sub-pops were
significantly different (p < 0.01) from each other. The corresponding standard Nei’s genetic
distance between the eight sub-pops ranged from 0.48 to 0.75. Sub-Pops 2 and 8 were more
differentiated from each other as per the Fst estimates (Supplementary Table S4). To sum
up, the results of AMOVA and Fst analyses were consistent with the results generated
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through phylogenetic tree-based and STRUCTURE analyses. These highlight the presence
of statistically moderate genetic diversity and high diverse population structure.

Supplementary Table S5 shows the standardized disequilibrium coefficient (D′) values
of significant linkage disequilibrium (LD) pairwise loci in all of sub-pops calculated at
p < 0.05. Among the 34,191 pairs, 9553 pairs indicated a presence of significant LD, includ-
ing both inter- and intra-chromosomal combinations. The lowest percentage of significant
LD pairwise loci was found in Sub-Pop 7 (3.08%), whereas the highest one was recorded
in Sub-Pop 5 (8.83%), followed by Sub-Pop 3 (8.63%) (Supplementary Table S5). From the
average of D′ values, we see that Sub-Pop 4 had the highest D′ (0.84), and Sub-Pop 6 had
the lowest average of D′ (0.63) among the eight sub-pops.

2.5. Phenotypic Variation of the Six Traits in the XC-CSSL Population and Its Parents

Table 2 shows descriptive statistics for each trait calculated from the 53 lines in 2018
and 2019. The two parents differed in PH: Xiushui79 (86.04 ± 0.54 and 87.08 ± 0.70 cm)
compared with C-bao (94.48 ± 1.11 and 95.84 ± 1.58 cm) across the two years. The PH of
the XC-CSSL ranged from 72.90 to 141.96 cm across the two years. There was no statistically
significant difference between the two years for each trait, whether it was the parent
population (Xiushui79, C-bao) or the segregating XC-CSSL population. A significantly
longer PL was recorded in C-bao (25.32 cm and 26.38 cm) than in Xiushui79 (15.03 cm and
15.92 cm) across two years. The PL in XC-CSSL population ranged from 13.46 to 26.82 cm
in the 2 years.

Table 2. Descriptive statistics of phenotypic variations in XC-CSSL population and its parents in
two years.

Trait (cm) Year Xiushui79 C-bao XC-CSSL Population
Mean ± SD Mean ± SD Mean ± SD Min Max Skew Kurtosis CV (%) h2 (%)

PH
2018 86.04 ± 0.54 94.48 ± 1.11 90.64 ± 12.19 72.91 123.73 0.93 0.43 13.45 96.97
2019 87.08 ± 0.70 95.84 ± 1.58 108.68 ± 12.79 86.2 141.96 1.08 0.67 11.76 94.93

PL
2018 15.03 ± 0.74 25.32 ± 0.57 16.91 ± 2.56 13.46 23.72 1.1 0.66 15.14 83.75
2019 15.92 ± 0.63 26.38 ± 0.41 18.37 ± 2.62 15.5 26.82 1.35 1.18 14.25 89.71

1IN
2018 24.81 ± 1.02 34.06 ± 0.64 28.54 ± 5.21 22.72 44.64 1.55 1.48 18.26 93.95
2019 26.43 ± 0.18 36.28 ± 0.73 29.20 ± 5.29 23.76 45.36 1.72 1.96 18.13 89.22

2IN
2018 17.30 ± 0.35 15.99 ± 0.26 18.07 ± 2.84 12.79 24.78 0.43 −0.2 15.71 94.92
2019 18.31 ± 1.07 18.01 ± 0.80 21.99 ± 2.44 18.04 30.12 1.27 2.65 11.11 71.39

3IN
2018 16.30 ± 0.61 10.10 ± 0.27 15.97 ± 2.69 8.78 20.76 −0.49 −0.15 16.86 91.66
2019 17.5 ± 0.06 12.23 ± 0.98 19.22 ± 2.41 12.94 26.14 −0.11 0.76 12.55 89.61

4IN
2018 7.04 ± 0.78 3.77 ± 0.82 9.12 ± 2.57 4.32 15.13 0.23 −0.31 28.2 79.83
2019 8.40 ± 0.32 6.61 ± 0.76 12.87 ± 2.76 5.88 19.32 −0.22 0.46 21.49 81.09

PH, plant height; PL, panicle length; 1IN, first internode from the top; 2IN, second internode from the top; 3IN,
third internode from the top; 4IN, fourth internode from the top; SD, standard deviation; CV, coefficient of
variation; h2, heritability in broad sense.

In 2018, for the internode traits, the XC-CSSL population had a mean length in the
range of 28.54 ± 5.21 cm for 1IN, 18.07 ± 2.84 cm for 2IN, 15.97 ± 2.69 cm for 3IN and
9.12 ± 2.57 cm for 4IN. Compared to the parental lines, for Xiushui79 mean length was
24.81 ± 1.02 cm for 1IN, 17.30± 0.35 cm for 2IN, 16.30± 0.61 cm for 3IN and 7.04 ± 0.78 cm
for 4IN; and for the C-bao parent, the order was 34.06± 0.64 cm for 1IN, 15.99± 0.26 cm for
2IN, 10.10 ± 0.27 cm for 3IN and 3.77 ± 0.82 cm for 4IN. Similar results were observed in
2019 (Table 2). The h2 ranged from 71.39 and 96.97% for the six traits studied in the 2 years,
suggesting that the variation in all the traits under study were largely under genetic control,
rather than under the control of environment effects.

2.6. Association Mapping and Discovery of Favorable Alleles for PH and Its Component Traits in
the Natural Population

All the accessions with Q < 0.9 were removed in the present study, and the remaining
474 accessions were utilized to conduct marker–trait association mapping. The MLM
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approach of marker–trait association was applied, using the Q + K model in TASSEL
5.0 with p < 0.05 detected a total of 109 markers associated with the six traits evaluated
in this study across two years (Table 3 and Supplementary Tables S6–S11). Of these,
40 markers were significantly associated with the six traits in both 2018 and 2019 (Table 3),
of which six markers were in regions where the QTL associated with PH or either of
its component traits had been identified and reported in previous studies, whereas the
remaining 69 markers were environment/year specific (Supplementary Tables S6–S11). The
40 markers were unevenly distributed across 11 out of the 12 chromosomes in rice.

In this study, the marker alleles with positive effect were considered favorable alleles
for PL and 1IN, while those with negative effect were considered elite alleles for PH, 2IN,
3IN and 4IN. The larger the positive or negative effect allele value was, the better the allele
for the trait measured. For the thirty-four new loci, 139 favorable alleles were identified for
practical breeding purposes targeted at ideal plant height architecture.

2.6.1. SSR Association Loci and Favorable Alleles for PH in the Natural Population

Five marker loci, i.e., RM301, RM348, RM305, RM264 and RM512, for PH were detected
in the natural population on chromosomes 2, 4, 5, 8 and 12, respectively, in both 2018 and
2019 (Table 3). The PVE ranged from 2.41 to 6.92%. The highest PVE was observed on
RM264, explaining 5.16% of phenotypic variance in 2018 and 6.92% in 2019. RM305 and
RM264 loci for PH were also detected by Jiang, et al. [35] and Bai, et al. [36], respectively.

All the phenotypic effect values of the four favorable alleles (with negative phenotypic
effect) at RM301 locus showed significant differences between each other except between
RM301-150 bp and RM301-170 bp, as revealed by p-value and its significance of F test of
ANOVA for the locus and the t-test method of protected least significant difference (PLSD)
(Supplementary Table S12 and Figure S6c). The phenotypic effect values of the two favor-
able alleles at the RM348 locus showed significant differences, as revealed by the same
test method used above (Supplementary Table S12 and Figure S6d). Among the 15 pairs
of comparison of the phenotypic effect values constructed by the six favorable alleles at
locus RM305, thirteen pairs of comparisons showed significant variation (Supplementary
Table S12 and Figure S6a). The allele RM305-210 bp showed the largest phenotypic effect
(−51.42 cm) for reducing PH, followed by a close proximity phenotypic effect of −43.31 cm
being controlled by the favorable allele RM305-370 bp. In total, 210 of 474 accessions carried
the allele RM305-210 bp, with its typical cultivar being Maoguangdao, and eight accessions
carried the allele RM305-370bp, with Yue4 as a typical carrier (Supplementary Tables S12
and S13). The allele RM264-150 bp showed the largest phenotypic effect (−33.02 cm) for
reducing PH in this locus, with Nannongjing2R being its typical cultivar, and 21 accessions
carried the allele RM264-150 bp. On the other hand, the allele RM512-220 bp had the
highest phenotypic effect (−24.00 cm) in this locus for reducing PH, with its typical cultivar
being Youmang429, and a total of 58 accessions carried the allele RM512-220 bp.

According to the phenotypic values and the number of favorable alleles that could be
substituted or pyramided into an individual plant, the top five cross-combinations were
predicted for PH, and their corresponding phenotypic increment effects (cm) are listed in
Table S14. When Cai1 is crossed with Nannongjing2R, all of the favorable alleles at the
5 loci could be combined into a single genotype, and this could lead to a reduction of length
of −30.57 cm.

2.6.2. SSR Association Loci and Favorable Alleles for PL in the Natural Population

For PL, nine significant associated loci were detected in the natural population in both
years (Table 3). The loci were distributed on chromosomes 1, 3, 5, 6, 7, 9 and 10. RM3533
on chromosome 9 at 65.1 cM accounted for the highest PVE, 7.82%, in 2018 and 7.66%
in 2019. RM1 and RM3600 loci for PL were also detected by Hong and Masahiko [37] and
Liu, et al. [19], respectively.
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Table 3. Marker–trait associations with p-value < 0.05, their equivalent false discovery rate probability (FDR), proportion of phenotypic variance explained (PVE)
and marker position on chromosome derived from 262 markers and 474 rice accessions detected in two years.

Traits SSR Chr Position Position (bp) b 2018 2019 Average QTL Reported in the
Previous Studies

Marker (cM) a Start Pos End Pos p-Value PVE (%) FDR p-Value PVE (%) FDR PVE (%) References

PH RM301 2 53.5 12,216,463 12,216,613 1.38 × 10−3 5.46 6.25 × 10−3 2.29 × 10−3 5.17 5.88 × 10−3 5.31
RM348 4 160.8 32,650,358 32,650,527 4.55 × 10−2 2.41 5.00 × 10−2 8.04 × 10−3 3.34 1.47 × 10−2 2.88
RM305 5 96.9 12,216,463 12,216,613 4.80 × 10−3 4.38 9.38 × 10−3 1.70 × 10−2 3.f65 1.76 × 10−2 4.01 [35]
RM264 8 138.2 27,926,633 27,926,652 2.00 × 10−2 5.16 2.81 × 10−2 1.38 × 10−3 6.92 2.94 × 10−3 6.04 [36]
RM512 12 39.4 5,104,270 5,104,483 1.55 × 10−2 3.00 1.25 × 10−2 2.72 × 10−3 3.90 8.82 × 10−3 3.45

PL RM1 1 25.4 4,635,793 4,635,870 3.30 × 10−2 4.50 4.71 × 10−2 8.97 × 10−3 5.39 1.76 × 10−2 4.94 [37]
RM583 1 38.8 8,328,958 8,329,017 6.29 × 10−3 3.86 1.47 × 10−2 4.12 × 10−3 4.09 1.18 × 10−2 3.97
RM338 3 61.9 13,221,482 13,221,665 3.17 × 10−2 3.60 4.12 × 10−2 2.92 × 10−2 3.66 3.82 × 10−2 3.63
RM122 5 3 311,055 311,218 1.17 × 10−2 3.15 2.06 × 10−2 4.52 × 10−4 4.82 2.94 × 10−3 3.98

RM3330 6 61.6 11,064,125 11,064,294 5.54 × 10−3 6.69 8.82 × 10−3 4.39 × 10−3 6.85 1.47 × 10−2 6.77
RM5380 7 67 19,361,277 19,361,383 3.54 × 10−3 5.64 5.88 × 10−3 7.54 × 10−4 6.57 5.88 × 10−3 6.10
RM3533 9 65.1 17,833,841 17,833,864 1.03 × 10−3 7.82 2.94 × 10−3 1.31 × 10−3 7.66 8.82 × 10−3 7.74
RM3600 9 62.7 17,054,142 17,054,167 2.72 × 10−2 4.94 2.94 × 10−2 2.66 × 10−2 4.96 2.94 × 10−2 4.95 [19]
RM6160 10 81 22,048,086 22,048,115 1.20 × 10−2 4.20 2.35 × 10−2 2.81 × 10−2 3.68 3.53 × 10−2 3.94

1IN RM301 2 53.5 12,216,463 12,216,613 7.99 × 10−3 4.44 8.33 × 10−3 1.70 × 10−2 3.98 3.00 × 10−2 4.21
RM264 8 138.2 27,926,633 27,926,652 3.11 × 10−2 4.84 4.17 × 10−2 2.27 × 10−2 5.06 3.50 × 10−2 4.95
RM257 9 48.8 17,570,591 17,570,612 2.20 × 10−2 3.83 3.33 × 10−2 5.76 × 10−4 5.94 5.00 × 10−3 4.88

2IN RM301 2 53.5 12,216,463 12,216,613 1.24 × 10−3 5.52 1.36 × 10−2 2.13 × 10−2 3.85 3.18 × 10−2 4.68
RM5427 2 84.6 21,544,386 21,544,417 1.18 × 10−2 5.20 3.18 × 10−2 1.80 × 10−2 4.92 2.73 × 10−2 5.06
RM348 4 160.8 32,650,358 32,650,527 7.39 × 10−4 4.57 4.55 × 10−3 1.29 × 10−3 4.29 1.82 × 10−2 4.43
RM122 5 3 311,055 311,218 1.87 × 10−3 4.10 1.82 × 10−2 4.71 × 10−4 4.80 9.09 × 10−3 4.45
RM305 5 96.9 20,944,257 20,944,466 1.89 × 10−3 4.89 2.27 × 10−2 1.21 × 10−3 5.14 1.36 × 10−2 5.02
RM512 12 39.4 5,104,270 5,104,483 9.03 × 10−4 4.47 9.09 × 10−3 4.67 × 10−4 4.80 4.55 × 10−3 4.63

3IN RM301 2 53.5 12,216,463 12,216,613 7.60 × 10−3 4.47 1.79 × 10−2 3.79 × 10−3 4.88 1.15 × 10−2 4.68
RM348 4 160.8 32,650,358 32,650,527 1.46 × 10−2 3.03 2.50 × 10−2 4.12 × 10−2 2.47 4.23 × 10−2 2.75
RM122 5 3 311,055 311,218 7.38 × 10−4 4.57 3.57 × 10−3 1.25 × 10−3 4.30 3.85 × 10−3 4.44
RM305 5 96.9 20,944,257 20,944,466 5.78 × 10−3 4.27 1.43 × 10−2 1.50 × 10−2 3.72 1.92 × 10−2 4.00
RM3589 7 89.8 25,054,610 25,054,631 2.83 × 10−2 5.21 4.64 × 10−2 3.16 × 10−2 5.13 3.46 × 10−2 5.17
RM264 8 138.2 27,926,633 27,926,652 2.63 × 10−2 4.97 4.29 × 10−2 2.08 × 10−3 6.67 7.69 × 10−3 5.82
RM247 12 26.7 3,185,544 3,185,599 1.85 × 10−2 4.90 2.86 × 10−2 4.71 × 10−2 4.25 5.00 × 10−2 4.58
RM512 12 39.4 5,104,270 5,104,483 4.51 × 10−3 3.65 1.07 × 10−2 5.05 × 10−3 3.59 1.54 × 10−2 3.62

4IN RM301 2 53.5 12,216,463 12,216,613 5.32 × 10−4 5.99 2.94 × 10−3 3.49 × 10−3 4.93 6.67 × 10−3 5.46
RM348 4 160.8 32,650,358 32,650,527 2.57 × 10−2 2.72 3.82 × 10−2 8.00 × 10−3 3.35 1.33 × 10−2 3.03
RM122 5 3 311,055 311,218 9.96 × 10−4 4.42 5.88 × 10−3 1.85 × 10−3 4.10 3.33 × 10−3 4.26
RM305 5 96.9 20,944,257 20,944,466 4.77 × 10−3 4.38 1.76 × 10−2 2.52 × 10−2 3.42 3.00 × 10−2 3.90
RM598 5 62.7 16,676,126 16,676,152 2.71 × 10−3 4.31 8.82 × 10−3 2.53 × 10−2 3.08 3.33 × 10−2 3.69
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Table 3. Cont.

Traits SSR Chr Position Position (bp) b 2018 2019 Average QTL Reported in the
Previous Studies

RM225 6 26.2 3,416,638 3,416,665 3.19 × 10−3 6.39 1.18 × 10−2 3.18 × 10−2 4.83 4.33 × 10−2 5.61 [38]
RM234 7 93.9 25,420,132 25,420,157 2.47 × 10−2 5.61 3.53 × 10−2 4.88 × 10−2 5.09 5.00 × 10−2 5.35
RM264 8 138.2 27,926,633 2,7926,652 3.98 × 10−3 6.25 1.47 × 10−2 4.34 × 10−3 6.19 1.00 × 10−2 6.22
RM512 12 39.4 5,104,270 5,104,483 1.58 × 10−2 2.99 2.65 × 10−2 2.45 × 10−2 2.75 2.67 × 10−2 2.87 [39]

SSR markers in boldface represent the co-associated markers for PH, 2IN, 3IN and 4IN; SSR markers with underline represent the co-associated markers for PH, 1IN, 2IN, 3IN and
4IN; SSR markers in italics represent the co-associated markers for PH, 1IN, 3IN and 4IN; SSR markers in double-underline represent the co-associated markers for PL, 2IN, 3IN and
4IN. a The estimated map position (cM) and b physical position (bp) were inferred from the Gremene (“http://www.gramene.org/markers, accessed on 5 May 2021”) and NCBI
(“http://blast.ncbinlm.nih.gov/Blast.cgi, accessed on 5 May 2021”) websites.

http://www.gramene.org/markers
http://blast.ncbinlm.nih.gov/Blast.cgi
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All the phenotypic effect values of the thirty-four favorable alleles (with positive phe-
notypic effect), except two at the RM583 locus, showed significant differences between each
other. The average highest positive phenotypic effect value was observed on RM3330-135 bp,
RM5380-115 bp and RM3533-220 bp, with 7.44, 8.58 and 9.44 cm, respectively. The phenotypic
effect values of the six favorable alleles at the RM3600 locus showed significant differences, as
revealed by the t-test of PLSD (Supplementary Table S12 and Figure S7f). Among the six pairs
of comparison of the phenotypic effect values constructed by the four favorable alleles at locus
RM3533, four pairs of comparisons showed significant difference (Supplementary Table S12
and Figure S7a). The favorable allele RM3533-220 bp on chromosome 9 had the highest posi-
tive phenotypic effect (9.44 cm) for increasing this trait, and the typical carrier accession was
Yue63 (Supplementary Table S12), while the highest negative phenotypic effect (−10.60 cm)
was detected on favorable allele RM338-100 bp, occupying chromosome 3, with its typical
carrier accession being Datougui (Supplementary Table S13).

2.6.3. SSR Association Loci and Favorable Alleles for 1IN in the Natural Population

For 1IN, one marker each on chromosomes 2 (RM301), 8 (RM264) and 9 (RM257) was
significantly associated in both years in the natural population (Table 3). Among the loci,
RM257 on chromosome 9 had the largest PVE (5.94%) for the 2 years. For this trait, all the
phenotypic effect values of the four favorable alleles (with positive phenotypic effect) at the
RM301 locus showed significant differences between each other (Supplementary Table S12
and Figure S8). The phenotypic effect values of the six favorable alleles at the RM264
locus showed significant differences, as revealed by the t-test (Supplementary Table S12
and Figure S8a). Among the 15 pairs for comparison of the phenotypic effect values
constructed by the six favorable alleles at the locus RM257, fourteen pairs of comparisons
showed significant differences (Supplementary Table S12 and Figure S8a). The maximum
phenotypic positive effect for increasing this trait (10.42 cm) was observed on RM264-120
bp on chromosome 8, with Heizhong as the typical carrier, followed by RM257-125 bp
(9.62 cm) on chromosome 9, carried by Huangkewanguangtou (Supplementary Table S12),
and the average highest negative phenotypic effect value (−6.62 cm) was observed on
RM301-150 bp, with Zacaodao as the typical carrier variety (Supplementary Table S13).

Supplementary Table S15 summarizes the favorable alleles carried by the superior
parents and corresponding phenotypic effect for PL and 1IN. Taking into account the phe-
notypic values and the number of favorable alleles that could be substituted or pyramided
into an individual plant, we see that the parent Yue38 for PL possess all nine favorable
alleles, and the parents Heizhong and Qiyunuo10 for 1IN possess all three favorable alleles
at all their loci that could be combined into a single cultivar. Notwithstanding, the top
five cross-combinations predicted to make a longer PL, and 1IN and its corresponding
phenotypic effect (cm) are listed in Table S14. For example, for Yue38 × Qiyunuo10, it was
predicted that 12 favorable alleles could be pyramided into a single genotype, resulting in
an improvement of 9.38 cm in both traits.

2.6.4. SSR Association Loci and Favorable Alleles for 2IN in the Natural Population

For 2IN, six markers were observed in the natural population distributed on chromo-
somes 2, 4, 5 and 12 associated, and their PVE values ranged from 3.85 to 5.52%, of which
RM301 on chromosome 2, found at 53.5 cM, had the highest PVE (5.52%) for both years.

All the phenotypic effect values of the nineteen favorable alleles (with negative phe-
notypic effect), except four and three at the RM301 and RM305 loci, respectively, showed
significant differences between each other (Supplementary Table S12). All three pairs of
comparisons of the phenotypic effect values constructed by the three favorable alleles
at the RM348 locus revealed significant differences (Supplementary Tables S12 and S9a).
The favorable allele RM348-130 bp on chromosome 4 showed the largest phenotypic ef-
fect (−7.48 cm) for reducing this trait, followed by RM512-115 bp (−5.55 cm) residing on
chromosome 12, and both being carried by the typical carrier accession Zhonghua3 (Sup-
plementary Table S12). The highest phenotypic positive effect value (11.33 cm) was found
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on RM348-170 bp (chromosome 4) with the typical carrier variety, Yue4 (Supplementary
Table S13).

2.6.5. SSR Association Loci and Favorable Alleles for 3IN in the Natural Population

For 3IN, eight significant association loci were detected in both years in the natural
population across chromosomes 2, 4, 5, 7, 8 and 12, with the PVE ranging from 2.47 to
6.67%. RM264 on chromosome 8 had the highest PVE, 4.97% and 6.67%, in 2018 and 2019,
respectively (Table 3).

All the phenotypic effect values of all the favorable alleles (with negative phenotypic
effect) out of two alleles at the locus RM122 presented significant difference between each
other (Supplementary Table S12 and Figure S10). Among the 28 pairs of comparison of
the phenotypic effect values constructed by the eight favorable alleles at locus RM3589,
seventeen pairs of comparisons showed significant difference, as revealed by the t-test
(Supplementary Table S12 and Figure S10a).

The identified thirty-five favorable alleles had an average negative phenotypic effect
value ranging from −7.33 to −0.23 cm. Among them, the favorable allele RM247-165 bp on
chromosome 12 displayed the largest phenotypic effect (−7.33cm) for reducing this trait, fol-
lowed by RM264-150 bp (−6.62 cm) on chromosome 8, with Baikenuo and Nannongjing2R
as typical carrier accessions, respectively (Supplementary Table S12). In contrast, the high-
est phenotypic positive effect value (9.86 cm) for the 3IN was observed on RM348-170 bp
(chromosome 4), with Yue4 as the typical carrier variety (Supplementary Table S13).

2.6.6. SSR Association Loci and Favorable Alleles for 4IN in the Natural Population

For 4IN, nine association markers were identified in the natural population for both
years, distributed on chromosomes 2, 4, 5, 6, 7, 8 and 12 (Table 3). RM264 on chromosome
8, at 138.2 cM, explained the maximum phenotypic variation for 4IN, namely 6.39% in
2018 and 6.19% in 2019 (Table 3). Comparatively, three markers (RM512, RM348 and
RM305) were co-associated with PH, 2IN, 3IN and 4IN (Table 3). Moreover, RM301 was
associated with PH, 1IN, 2IN, 3IN and 4IN concurrently. Moreover, RM264 on chromosome
8 was linked to PH, 1IN, 3IN and 4IN, whereas RM122 on chromosome 5 was associated
with PL, 2IN, 3IN and 4IN (Table 3). RM225 and RM512 for 4IN were also detected by
Wang, et al. [38] and Yamamoto, et al. [39], respectively.

All the phenotypic effect values of the four favorable alleles (with negative phenotypic
effect) at the RM301 locus showed significant differences between each other, except
between the alleles RM301-145 and RM301-150 (Supplementary Table S12 and Figure S11d).
The phenotypic effect values of the seven favorable alleles at the RM264 locus showed
significant differences, as revealed by the t-test (Supplementary Table S12 and Figure S11c).
In this trait, 21 pairs of comparison of the phenotypic effect values were constructed by the
seven favorable alleles at the locus RM234, of which twelve pairs of comparisons revealed
significant differences, as shown by the t-test (Supplementary Table S12 and Figure S11a).

The maximum phenotypic effect (−7.19 cm) for reducing this trait was observed
on RM264-150 bp (chromosome 8), with Nannongjing2R as the typical carrier accession
(Supplementary Table S12), and the highest positive phenotypic effect (14.15 cm) was
detected on RM234-105 bp located on chromosome 7, carried by Buxienuo (Supplementary
Table S13).

Fifteen excellent parental combinations were proposed for pyramiding favorable
alleles into one single genotype to improve the rice basal internode length (Supplementary
Table S14).

2.7. QTL Identification for PH and Its Component Traits in XC-CSSL Population

Table 4 shows the nine QTLs detected for the PH and its component traits in the XC-
CSSL population, based on the RSTEP-LRT method in the CSL option in QTL IciMapping
version 4.1 software, with an LOD threshold of 2.5 over two years.
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Table 4. QTLs for PH and its component traits detected in XC-CSSL population.

Trait (cm) Quantitative
Trait Locus

Marker Locus
Linked to the QTL

Marker
Location (cM)

2018 2019

LOD PVE (%) Add (cm) LOD PVE (%) Add (cm)

PH qPH-12 RM19 20.9 2.96 17.77 15.10 2.52 17.19 14.85
PL qPL-7 RM180 30.1 2.94 22.95 2.28 - - -
1IN q1IN-7 RM180 30.1 4.95 28.42 5.31 - - -

q1IN-9 RM257 79.7 3.20 16.92 5.68 - - -
2IN q2IN-7.1 RM180 30.1 2.91 10.68 2.08 - - -

q2IN-7.2 RM542 34.7 - - - 2.60 10.07 2.80
q2IN-12 RM19 20.9 2.87 10.78 2.87 - - -

3IN q3IN-12 RM19 20.9 - - - 2.57 16.70 2.82
4IN q4IN-8 RM72 60.9 2.72 14.15 1.40 - - -

cM, centimorgan; PVE, percentage of phenotypic variance explained; Add, additive effect.

For the PH, one QTL (qPH-12) linked to marker RM19 was detected on chromosome
12, with PVE 17.77% in 2018 and 17.19% in 2019. The additive effect (or substitutive effect)
of allele from C-bao was 15.10 cm in 2018 and 14.85 cm in 2019 (Table 4). The allele from
parent Xiushui 79 at qPH-12 locus was the favorable allele in this study. Interestingly, the
locus qPH-12 is the same as the one linked to the locus RM512 in the natural population for
PH (Tables 3 and 4).

For PL, one QTL (qPL-7) linked to RM180 was identified in 2018, with a PVE of
22.95% and additive effect of 2.28 cm, and the beneficial allele at this locus was inherited
from C-bao.

For 1IN, one QTL (q1IN-7) linked to marker RM180 was identified on the same chro-
mosome region of qPL-7, with the largest PVE of 28.42% and an additive effect of 5.31 cm
of alleles from C-bao. The QTL q1IN-9 linked to marker RM257 had a PVE of 16.92%, with
an additive effect of 5.68 cm.

For 2IN, three QTLs (q2IN-7.1, q2IN-7.2 and q2IN-12) linked with RM180, RM542 and
RM19, respectively, were detected across two years, where QTL q2IN-12 showed the highest
PVE of 10.78%, with a maximum additive effect of 2.87 cm of allele from C-bao.

For 3IN, one QTL (q3IN-12) was detected linked with RM19, with a PVE of 16.70% and
additive effect of 2.82 cm. The allele from parent C-bao at q3IN-12 locus was the favorable
allele in this study.

For 4IN, the QTL q4IN-8 linked to RM72 was identified in 2018, with a PVE of 14.15%,
and the beneficial allele at this locus came from the C-bao genome.

2.8. Comparison of Mapping Results in the Natural and XC-CSSL Populations

The marker locus RM257 (48.8 cM) located on chromosome 9, which was linked with
the 1IN, was detected via both association and linkage mapping strategies (Tables 3 and 4).
In the XC-CSSL population, RM257-125 bp was the favorable allele derived from the C-bao
parent. In the natural population, RM257-125 bp was also the favorable allele and was
carried by Huangkewanguangtou as the typical carrier variety.

3. Discussion

In the natural population, we detected five SSR markers associated with PH in
two years. Among them, the marker RM305 on chromosome 5 was consistent with the
QTL qPH5 detected in previous studies linked between the marker interval RM164-RM305,
with an average explained phenotypic variation of 3.5% in recombinant inbred lines [35].
Similarly, Bai, et al. [36] reported one major QTL, qph8, located on chromosome 8 within
the marker interval RM502–RM264 with a logarithms of odd (LOD) score more than 10 and
explained over 24% of the phenotype variance among the recombinant inbred lines. The
remaining three QTLs linked by RM301, RM348 and RM512 were newly found in the
present study, and they could be targeted for future studies to broaden our understanding
of PH in rice. After pyramiding the favorable alleles located on these five loci into a single
genotype, the PH could be reduced by −30.57 cm. A moderate plant height is an important
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basis for rice breeding, and this is supported by Andrew-Peter-Leon, et al. [40] and Bhu-
vaneswari, et al. [41], who have reported that OsGA20ox2 and OsFBX26, have important
roles in regulating semi-dwarfism and early flowering in rice. Likewise, this finding is
supported by Liu, et al. [29], who reported that several semi-dwarf rice varieties have
been bred by genetic introduction of the mutant alleles of SD1, which encodes OsGA20ox2
for catalyzing GA biosynthesis. This is true, since other studies have shown that TUT1
encodes an inhibitor of the cAMP-like receptor protein, and es1-1 displays a shorter plant
height and shorter internode [42]. Considering that es1-1 affects both plant height and
internode length, it is reasonable to presume that a desirable plant height could be achieved
by es1-1 regulation. Interestingly, es1-1 is also important for actin assembly and panicle
development [22].

For PL, nine SSR associated markers were detected in both years, suggesting that
these markers were stable against environmental factors. RM3600 is a stable marker which
was found in other studies associated with PL [19], and the remaining eight SSR markers
detected for this trait, namely RM1, RM583, RM338, RM122, RM3330, RM5380, RM3533
and RM6160, are reported here for the first time and represent promising targets for further
analysis of PL. In keeping with previous studies, we found that RM3600 on chromosome
9 was consistent with the QTL LP1 delimited to a 1.60 cM region between RM3600 and
RM410, detected via both association mapping and linkage analysis, and has been identified
as a major QTL associated with high phenotypic variation for PL; and the LOC_Os09g28300
was validated as the gene locus controlling PL [19]. In this trait, the elite allele RM3533-
220 bp had the largest phenotypic effect value among all positive elite alleles found on
their marker loci (Supplementary Table S12 and Figure S7), suggesting that this elite allele
may be valuable for practical breeding to increase the PL and, in turn, the rice yield, due
to the strong effects of the PL on yield components, such as grain number per panicle,
and therefore can be used as candidate selection criteria for yield breeding [19]. After
pyramiding the favorable alleles from the nine loci into a single genotype, the PL could
increase by 4.48 cm (Supplementary Table S14).

For 1IN, all three QTLs detected in the natural population were novel. We found that
the allele RM264-120 bp had the largest PEV among the six elite alleles found at this marker
locus (Supplementary Table S12 and Figure S8b). This indicates that this favorable allele
could be used to increase the length of the 1IN in breeding programs and, consequently,
would be of great value for panicle exertion enhancement. It is supported by previous
studies that the elongation of different internodes in the rice culm may be regulated by
different genes, and the loss of function or downregulation of EUI1, which encodes a
P450, CYP714D1, gave rise to the increase of 1IN [24–26]. After pyramiding the favorable
alleles from the three loci into a single genotype, the 1IN length might increase to 3.08 cm
(Supplementary Table S14).

For 2IN, the six QTLs for this trait in the natural population were newly detected,
and the favorable allele RM348-130 bp on chromosome 4 exhibited pleiotropic effects on
reducing the PH and the basal internode lengths (Table 3). Moreover, since all three pairs
of comparisons of the phenotypic effect values constructed by the three favorable alleles
at RM348 locus revealed significant difference (Supplementary Table S12 and Figure S9a),
we speculate that this favorable allele is an important candidate and could be further
validated trough marker-assisted selection (MAS) and that the genes on this locus could
be mapped and functionally validated to deepen our understanding on genetic bases
of PH, 2IN, 3IN and 4IN, which could be valuable for breeding programs designed to
increase lodging resistance based on selecting desirable cultivars in rice. After pyramiding
the favorable alleles from the six loci into a single genotype, the 2IN length is likely to
be reduced by −2.53 cm. Though studies on 2IN development in rice remain limited,
Jiang, et al. [43] reported a gene, SSI2, responsible for reduced elongation specifically in the
second internode counted from the top, which encodes a fatty-acid dehydrogenase and has
an effect on the process of fatty-acid biosynthesis.
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For 3IN, all the eight QTLs were detected for the first time in the natural population.
RM264 on chromosome 8 showed the largest PVE for the 3IN and 4IN traits (Table 3),
suggesting that this marker can be validated and used for MAS in developing lodging
resistance of the basal internodes in rice. After pyramiding the favorable alleles from the
eight loci into a single genotype, the 3IN length possibly can be reduced by −2.29 cm.
For 4IN, nine QTLs were detected in the natural population, of which RM225 and RM512
for 4IN were also detected by Wang, et al. [38] and Yamamoto, et al. [39], respectively,
and the remaining seven marker loci, namely RM301, RM348, RM122, RM305, RM598,
RM234 and RM264, were novel. Previous studies by Wang, et al. [38] reported a QTL
significantly associated with the fourth internode, qFOIL-6-4, tagged by RM225, with an
average explained phenotypic variation of more than 3.78% in 331 japonica rice accessions.
In addition, RM301, RM122 and RM512 loci on chromosomes 2, 5 and 12, respectively, had
pleiotropic effects on reducing the 2IN, 3IN and 4IN, suggesting that these loci had the
most effective control on internode elongation. It is reported that the expression of the QTL
flanked by RG20q and RG901 on chromosome 12 stimulated panicle initiation at the early
stage, peaking at approximately 7 days later, and then declining gradually, with effects on
the 2IN, 3IN and 4IN [23].

In the present study, we also found that the favorable alleles RM247-165 bp and
RM264-150 bp (Supplementary Table S12) exerted the maximum phenotypic effect for
reducing the 3IN and 4IN. This is supported by previous studies which reported that the
phenomenon of lodging in rice often occurs at lower internodes (below the 3IN from the
top) in response to bending higher up the stem; therefore, the lower internodes tend to
result in better lodging resistance [44], and this is consistent with other previous reports
on rice [45] and wheat [46] that supported this idea, where they found that PH markers,
especially those affecting the two lower internodes (3IN and 4IN) are expected to be able to
contribute significantly to lodging resistance. Previous studies in rice plants indicate that
the reduced height of the sd-1 is due to the defect in the GA biosynthetic pathway [6,47,48],
as opposed to the wheat Rht-B1/Rht-D1mutant plants in which the GA signal transduction
pathway is weakened [49,50]. Importantly, the OsGA20ox gene corresponds to the Sd-1
locus in the rice genome [41,51]. Similar results were found by Liu, et al. [29], who reported
that the culm content of bioactive gibberellin, especially in the basal internodes, is reduced
by a semi-dominant lodging resistance gene, SBI, which encodes a culm-specific expressed
OsGA2ox, and, thereafter, the higher activity of the SBI considerably reduced the rice PH
and contributed to breed enhanced lodging resistant rice varieties and, therefore, increased
the yield. For this reason, the shorter the 4IN, 3IN and 2IN lengths are, the better for no
lodging in rice.

Our analysis of the XC-CSSL population revealed that the PH would be shortened
29.8 cm if the chromosome region of the QTL qPH-12 linked to RM19 in C-bao was substi-
tuted by Xiushui 79 (Table 4); thus, the lodging resistance can be improved in rice varieties,
and this is supported by Hirano, et al. [52], who reported that reducing the PH lowers the
center of gravity and improves bending-type lodging resistance. For the PL trait, the allele
from C-bao on QTL qPL-7, a newly discovered locus linked with the marker RM180 with
PVE 22.95%, could increase PL 2.28 cm (Table 4). This newly detected locus needs further
screening and validation to possibly be used directly for improving the PL of the japonica
rice variety by MAS. For 1IN, two QTLs (q1IN-7 and q1IN-9) were detected across 2 years.
The QTL q1IN-7 had the highest PVE 28.42% observed among all loci, and the largest
addictive effect value, i.e., 5.68 cm, was found on q1IN-7 closely linked with the marker
RM257, and, interestingly, this marker locus was also detected in the natural population.
In this study, the RM257-125 marker allele was the favorable allele in both populations.
Although the method and detection principle of the XC-CSSL and natural populations for
mapping QTLs differed, the RM257-125 bp can be detected consistently, showing that the
allele RM257-125 bp is stable and has a strong effect on the 1IN. The alleles increasing the
first internode length in these two loci (q1IN-7 and q1IN-9) were from the C-bao parent.
Notwithstanding, the first internode length will increase by 10.99 cm since the chromosome
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region of the two loci are from C-bao genome. For 2IN, three QTLs (q2IN-7.1, q2IN-7.2
and q2IN-12) were detected across 2 years. The QTL q2IN-12 had the highest PVE 10.78%
observed among all new loci, and the largest addictive effect value, i.e., 2.87 cm, was found
in this locus linked with the marker RM19. The alleles reducing the second internode
length in these three loci were from the C-bao parent. Thus, the second internode length
of Xiushui 79 would decrease by 7.74 cm if the chromosome regions of the two loci are
substituted by the C-bao region. For 3IN, one QTL, q3IN-12, was detected with a PVE of
16.7% and an addictive effect value of 2.82 cm. If the chromosome region of this site in
C-bao is substituted by Xiushui 79, the third internode length will be shortened 5.64 cm.
For 4IN, one QTL, q4IN-8, was detected with a PVE of 14.15% and additive effect value
of 1.40 cm. The 4IN will be shortened by 2.80 cm if the chromosome region of this site in
C-bao is substituted by Xiushui 79 genome.

These new loci provided in this study serve as attractive candidate regions for fur-
ther study on elucidation of the genetic basis for the improvement of rice-plant height
architecture and its component traits through MAS.

4. Materials and Methods
4.1. Plant Materials

Two mapping populations, namely a natural population and a chromosome segment
substitution line (CSSL) population, were used in the present study. The natural popula-
tion consisted of 504 rice accessions from different geographical regions (Supplementary
Table S2). The seeds of all accessions were obtained from State Key Laboratory of Crop
Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China.
The CSSL population was composed of 53 lines derived from a cross between two japonica
rice cultivars, Xiushui79 (background parent, Figure 2A, left side) and C-bao cultivar (donor
parent, Figure 2A, right side). This XC-CSSL population construction has previously been
completed and published by Bux, et al. [53].
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Figure 2. Plants, plant-height traits measurement and partial materials in XC-CSSL population and
natural population. (A) Plants of Xiushui79 (1) and C-bao (2) (scale bar = 5 cm). (B) Measurement
of Panicle (PL) and internode length: the upper first (1IN), second (2IN), third (3IN) and fourth
(4IN) internodes (Scale bar = 5 cm). (C) Partial materials of XC-CSSL population showing differences
of plant height among lines. (D) Partial varieties of natural population showing differences in the
plant height.
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4.2. Field Planting and Trait Measurement

All the genetic materials were planted in randomized complete block design with
three replications in the paddy fields at Jiangpu Agricultural Experiment Station of Nanjing
Agricultural University, Nanjing, China (32◦05′ N, 118◦64′ E), over two seasons, 2018 and
2019. The seeds of both populations were sown in the seedling nursery bed of paddy fields
on 10 May and 16 May in 2018 and 2019, respectively. The healthy and uniform seedlings
were transplanted at approximately 30 days after sowing on nursery beds onto the field at
a spacing of 17 × 20 cm with one seedling per hill. Each plot consisted of four rows with
eight hills per row. The fields were managed following local standard agronomic practices.
At the mature stage, three plants in the middle rows of each plot from each replication were
randomly sampled for measurements of the six traits, i.e., PH, PL, 1IN, 2IN, 3IN and 4IN of
the tallest stem within a hill (Figure 1B). PH was recorded from the ground surface to the
tip of the tallest panicle, excluding awns. PL was recorded as the length from the panicle
neck node to the panicle tip of the tallest panicle. All lengths were recorded in centimeters.
The means of three replicates were used in the data analysis.

4.3. Phenotypic Data Analysis and Heritability in a Broad Sense

The phenotypic data collected on PH and its associated traits were subjected to analysis
of variance (ANOVA) based on the mean values for environment, using SAS statistical
software version 9.4 (SAS Institute Inc., Cary, NC, USA). Broad-sense heritability (h2) was
calculated for each environment and population, using the following formula:

h2 = σ2
g /

(
σ2

g + σ2
e /n

)
(1)

where σ2
g represents the genetic variance, σ2

e represents the error variance and n represents
the number of replicates.

4.4. DNA Extraction and SSR Marker Genotyping

The methods described by Murray and Thompson [54] were applied to extract genomic
DNA from young leaf tissue of each accession. A total of 262 simple sequence repeat (SSR)
markers previously published on rice molecular map and microsatellite database [55,56]
selected from the 12 rice chromosomes were used to genotype the natural population.
The primers were synthesized by Shanghai Generay Biotech Co., Ltd., Shanghai, China.
The PCR amplification was performed in a 10 µL reaction containing 1 µL of 20 ng µL−1

template DNA, 0.6 µL of 25 mmol L−1 MgCl2, 0.7 µL of 2 pmol µL−1 forward primers,
0.7 µL of 2 pmol µL−1 reverse primers, 0.2 µL of 2.5 mmol L−1 dNTP, 1 µL of 10 × PCR
buffer, 0.1µL of 5 U µL−1 rTaq DNA polymerase (TaKaRa Bio Inc., Kusatsu, Shiga, Japan)
and 5.7 µL of ddH2O. The DNA amplification was conducted by using a PTC-100, a new
type Peltier Thermal Cycler (MJ Research Inc., Union, NJ, USA). The order of the PCR
program in timing during the amplification was denaturation at 95 ◦C for 5 min, followed
by 35 cycles of 95 ◦C for 30 s, 55 ◦C for 30 s, 72 ◦C for 30 s and a final extension step at 72 ◦C
for 5 min. The amplified products were run on 8% non-denaturing polyacrylamide gels at
a 180 V for approximately 100 min, and visualized through silver staining [57].

4.5. Population Structure Analysis, Genetic Diversity and Phylogenesis

The population structure (Q matrix) of 504 accessions was analyzed by using STRUC-
TURE software, version 2.2 [58], following the settings used by Sowadan, et al. [10]. Fur-
thermore, we used an ad hoc statistic (∆K) to determine the suitable K values [34]. All
non-admixed individuals in each genetic subgroup were determined by using a Q value
greater than 0.9 (Q > 0.9) in the Q-matrix. The PowerMarker on its version 3.25 was applied
to carry out statistics, including the number of alleles per locus, major allele frequency,
gene diversity and polymorphism information content (PIC) values per locus. Nei’s genetic
distance [59] was calculated and used for the reconstruction of the phylogenic tree, using
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the neighbor-joining method, as implemented in PowerMarker, with the tree viewed by
using MEGA X software [60].

Analysis of molecular variance (AMOVA) was conducted to assess population differ-
entiation clustered by STRUCTURE 2.2, using the software Arlequin 3.5 [61]. Based on
methods by Weir and Hill [62], the coefficient of subpopulation genetic fixation (Fst) was
estimated among subpopulations, using Arlequin 3.5.

4.6. Linkage Disequilibrium Analysis

Linkage disequilibrium (LD) is the basis of association analysis, which refers to the
non-random association of alleles of different loci in a population [63]. It includes both inter-
chromosomal and intra-chromosomal combinations. TASSEL version 5 standalone software
was used to compute the LD value between linked loci [64], using 100,000 permutations on
all accession and on clusters derived by STRUCTURE 2.2. The standardized disequilibrium
coefficients (D′) generally ranges from 0 to 1, and a D′ < 0.5 is a sign of LD decay. Before
the association analysis, the rare alleles (with a frequency of ≤5%) were excluded from
the dataset.

4.7. Association Mapping

Association mapping in the natural population was conducted with a mixed linear
model (MLM) in TASSEL 5.0 software [65]. To avoid possible spurious associations between
molecular marker and genomic locus, the K (the kinship matrix) and Q matrices were used
as covariates in the association analysis [66]. The false discovery rate (FDR) of 0.05 was
used as a threshold to control significant associations based on correction method reported
by Benjamini and Hochberg [67]. Applying the association locus previously identified,
the “null allele” (non-amplified allele) was used to calculate the phenotypic effect value of
other alleles [68].

The formula used for calculating phenotypic effect value of a single allele was as follows:

ai =
ni

∑
j=1

xij/n−
nk

∑
k=1

Nk/nk (2)

where ai was the phenotypic effect value of the allele of i, xij indicates the phenotypic
measurement values of j variety carrying the allele of i, ni denotes the number of materials
carrying the allele of i, Nk depicts the phenotypic value of the variety of k carrying the
null allele and nk represents the number of materials carrying the null allele. Alleles with
positive effect values are considered as an elite allele if the objective is to increase the trait
value of interest; otherwise, if the objective is to reduce the trait, alleles of negative effect
are considered as elite alleles, and we determine the carrier accessions accordingly. The
alleles effect was subjected to ANOVA, and means separation was performed by using
Duncan multiple range test.

4.8. QTL Detection for PH and Its Component Traits in the XC-CSSL Population

The Phenotypic data for PH and its component traits in the XC-CSSL population
were analyzed based on the mean values for environment, using SAS statistical software
version 9.4 (SAS Institute Inc., Cary, NC, USA). Since many lines of the XC-CSSL population
comprised more than one segment from the donor parent, the standard t-test method is
not appropriate for QTL detection. Therefore, we used the RSTEP-LRT mapping method
proposed by Wang, et al. [69], which is equivalent to the standard t-test with the idealized
CSS lines. The threshold of 2.5 was set, and the QTL detection was implemented in QTL
IciMapping 4.1 software [69]. Furthermore, the QTL nomenclature was based on the
principle reported by McCouch [70], but with minor modification.
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5. Conclusions

There was high genetic variation in the natural population, due to the highly sig-
nificant differences among the 504 accessions for plant height and its component traits.
From the results that 34 stable novel loci for PH (3), PL (7), 1IN (3), 2IN (6), 3IN (8) and
4IN (7) were identified in the natural population, and the fact that q1IN-7 linked with
RM257 was also detected in the XC-CSSL population, we can conclude that there are many
genetic loci controlling plant height and its components, and it is possible to shape plant
height architecture by pyramiding various favorable alleles distributed at different loci
in rice. Plant height in rice could be improved according to the crosses between the best
parental combinations predicted for PL + 1IN (Yue38 × Qiyunuo10) and 2IN + 3IN + 4IN
(Aijiaoluganhuang × Si4049 × Yandao6) in order to resolve the prevailing contradiction
between increasing plant height and lodging.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/plants11070999/s1. Figure S1: Distribution of genetic diversity of 262 SSR loci across 504 rice
accessions. Figure S2: Changes in the log-likelihood function value (a) and in ∆K values (b), with the
number of subpopulations. Figure S3: 504 rice varieties belonging to eight subpopulations, calculated
by STRUCTURE software. Figure S4: Neighbor-joining tree for the 504 accessions constructed
by using Nei’s (1983) genetic distance. Figure S5: Distribution of pair-wise kinship coefficients
among 474 rice accessions based on 262 SSR markers. Figure S6: Pairwise t-test for plant height.
Figure S7: Pairwise t-test for panicle length. Figure S8: Pairwise t-test for First internode. Figure S9:
Pairwise t-test for second internode. Figure S10: Pairwise t-test for third internode. Figure S12:
The phenomenon of lodging in partial rice materials of natural population. Table S1: Summary
statistics for the 262 SSR markers used in the present study.Table S2: Code, name and origin of
504 rice accessions divided into 8 subpopulations corresponding to the probability value (Q value).
Table S3: Analysis of molecular variance (AMOVA) for the 8 subpopulations of rice varieties. Table S4:
Pairwise population differentiation according to groups of populations, as measured by Fst values,
using Arlequin software ver. 3.5. Table S5: Comparison of D′ values of LD for pairwise loci in each
subpopulation. Table S6: Marker–trait associations with p-value < 0.05 for PH. Table S7: Marker–trait
associations with p-value < 0.05 for PL. Table S8: Marker–trait associations with p-value < 0.05
for 1IN. Table S9: Marker–trait associations with p-value < 0.05 for 2IN. Table S10: Marker–trait
associations with p-value < 0.05 for 3IN. Table S11: Marker–trait associations with p-value < 0.05 for
4IN. Table S12: Phenotypic effect of top two negative favorable alleles for PH, 2IN, 3IN, 4IN and top
two positive favorable alleles significantly associated with PL and 1IN and their carrier varieties.
Table S13: Positive and negative elite alleles, phenotypic effect value and typical carrier materials.
Table S14: Prediction of excellent parental combinations, favorable allele number and increment for
PH, 1IN, 2IN, 3IN and 4IN after pyramiding. Table S15: Favorable alleles carried by the superior
parents for PH with its component traits and corresponding phenotypic effect.
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