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Abstract: Climate change will determine a sharp increase in carbon dioxide in the following years.
To study the influence of elevated carbon dioxide on plants, we grew 13 different species and
varieties from the Brassicaceae family at three carbon dioxide concentrations: 400, 800, and 1200 ppmv.
The photosynthetic parameters (assimilation rate and stomatal conductance to water vapor) increase
for all species. The emission of monoterpenes increases for plants grown at elevated carbon dioxide
while the total polyphenols and flavonoids content decrease. The chlorophyll content is affected only
for some species (such as Lipidium sativum), while the β-carotene concentrations in the leaves were
not affected by carbon dioxide.

Keywords: green leaf volatiles; induced emissions; monoterpene emission; photosynthesis;
quantitative responses; volatile organic compounds

1. Introduction

Carbon dioxide is the main greenhouse gas emitted into the atmosphere due to human
activities. Global CO2 concentration has increased more than ever in the last 20 years as
the carbon dioxide amount has grown by 43.5 ppmv, increasing 12 percent. The actual
concentration of carbon dioxide will exceed 420 ppmv at the end of 2021. The projected
CO2 concentrations in 2100, under a range of emissions scenarios developed for The
Intergovernmental Panel on Climate Change (IPCC), vary from 500 ppmv to 1200 ppmv [1].
The critical impacts of projected climate change on plants are considered inevitable [2].
The increase in carbon dioxide emission could lead to more climate change, including
different episodes of extreme heat, droughts, or flooding that stress terrestrial vegetation [3].
Plants can respond to rising atmospheric CO2 concentrations by increasing the water-use
efficiency and photosynthetic rates [4–6]. Free-air CO2 enrichment (FACE) experiments,
which use plants grown in open-air environments enriched with carbon dioxide, have been
shown to increase the yield of food crops, even compared to chamber experiments [7].

Regarding photosynthetic parameters, increasing carbon dioxide determines an in-
crease in photosynthesis for C3 plants [8,9]. On the other hand, different studies have
shown elevated carbon dioxide downregulation of photosynthetic capacity [10]. Such
limitation has been found for Quercus ilex L. leaves and has probably been due to the
low capacity for ribulose-1,5-bisphosphate regeneration [11]. The net photosynthetic rate
dropped for Glycine max (L.) plants grown at elevated carbon dioxide levels due to stomatal
traits and mesophyll tissue size changes [12].

The emission of volatile organic compounds (VOC) from plants grown at high car-
bon dioxide is enhanced compared with plants grown at the actual CO2 concentration
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(see [13] for a review). For example, the isoprene emission increases in Phragmites australis,
Platanus × acerfolia, and Populas nigra × maximowiczii NM6 when grown in high carbon
dioxide [14]. The abundance and diversity of plant volatile organic compounds emission
from Hordeum vulgare L. seedlings, including aromatics, terpenes, and green leaves volatiles,
were also changed by elevated CO2 compared with the actual carbon dioxide concentra-
tion [15]. In contrast, foliar VOC concentrations are unaffected by the growth conditions
(700 ppmv CO2 compared to 400 ppmv CO2) for Artemisia annua plants [16].

It has been found that elevated CO2 increases the foliar contents of polyphenols
of tea seedlings but decreases in free amino acids and caffeine [17]. Carbon dioxide
fertilization has not affected the total phenols determined in chickpea leaves [18]. Leaf
polyphenol concentrations found in two Cerrado native species, Baccharis dracunculifolia and
B. platypoda, grown at 400 ppmv and 800 ppmv carbon dioxide, have not been statistically
significant [19].

The concentration of chlorophylls in the leaves of plants grown at elevated carbon
dioxide decreases despite the total phenols concentration. The rate of decline in the
chlorophyll contents of Oryza sativa L. leaves was faster in plants grown under high carbon
dioxide, mainly in the later growth period [20]. Exposing tomato leaves to various CO2
treatments revealed a decrease in chlorophyll a and b [21]. In a recent study with terrestrial
plants, it has been shown that chlorophyll fluorescence decreases with an increase in carbon
dioxide concentration [22]. In contrast, the total chlorophyll increased in chickpea grown at
700 ppmv CO2 compared to the ambient conditions at the flowering stage. Such behavior
could be explained by symbiotic nitrogen fixation, which can fulfill its N requirement
through plant N uptake, accelerated under elevated atmospheric CO2 [23]. An increase
in chlorophyll content with 33% has been found for pak choi (Brassica rapa ssp. chinensis)
plants grown at 800 ppmv carbon dioxide compared to the control [24]. It was also found
that elevated carbon dioxide could increase the concentrations of photosynthetic pigments
(chlorophylls and carotenoids) in different sorghum genotypes [25].

The synthesis of total flavonoids and monomers in the leaves of Robinia pseudoacacia L.
seedlings is positively affected by elevated carbon dioxide, especially for older plants [26].
Elevated CO2 concentration can cause higher chlorogenic acid accumulation in Lactuca
sativa L. plants [27], while in barley and maize, high CO2 decreases the total flavonoids
and anthocyanins [28]. The summarized data on the effects of elevated carbon dioxide
regarding different plant characteristics are presented in Table 1.

The plants from the Brassicaceae family have economic and agricultural importance
as they represent an important dietary source of glucosinolates, vitamins, polyphenols,
and minerals. The data regarding the influence of elevated carbon dioxide on Brassicaceae
plants’ characteristics are scarce. An early study showed that two Brassica rapa cultivars
grows at 550 ppmv CO2 showed increased crop productivity, even with the high-end soil
nitrogen [34]. An increase in chlorophyll content of 33% has been found for pak choi
(Brassica rapa ssp. chinensis) plants grown at 800 ppmv carbon dioxide compared to the
control [24]. In Brassica rapa plants that grew at 700 ppmv carbon dioxide, the higher
phenolic compounds increased the resistance to herbivore stress [35].

To evaluate the impact of two elevated carbon dioxide concentrations on the different
plants, we grew plants at 800 and 1200 ppmv, respectively. Those concentrations could be
achieved in the ambient atmosphere in the year 2100, according to the IPPC models [1].
To the authors’ best knowledge, this is the first study that determines the plants’ response
regarding secondary and primary metabolites for plants grown at a higher than 1000 ppmv
carbon dioxide concentration. This study also aims to determine the photosynthesis
parameters, pigments, and secondary metabolites of 13 different Brassicaceae species and/or
varieties to characterize plant signaling at elevated carbon dioxide.
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Table 1. Examples of the effect of increased CO2 concentrations on the photosynthetic characteristics,
secondary metabolites, and pigment content of different plant species.

Plant Characteristic Effect * Species Elevated Carbon Dioxide
Concentration (ppmv) Reference

Assimilation rate ↑ Trifolium repens 600 [9]
↑ Triticum aestivum 583 [7]
↑ Oryza sativa 475–600 [29]
↑ Glycine max 475–600 [29]
↑ Carthamus tinctorius 1000 [30]
↑ Phaseolus vulgaris L. 700 [31]
↑ Populus × euroamericana 550 [32]
↑ Camellia sinensis 770 [17]
↑ Oryza sativa L. 570 [20]

Isoprene emission ↓ Phragmites australis 800 [14]
↓ Platanus × acerfolia 800 [14]
↓ Populas nigra × maximowiczii NM6 800 [14]
↓ Populus × euroamericana 550 [32]
↔ Populus tremula × Populus tremuloides 780 [33]

Total phenols ↑ Camellia sinensis 770 [17]
↑ Cicer arietinum 750 [18]
↑ Baccharis dracunculifolia 750–800 [19]
↑ Baccharis platypoda 750–800 [19]

Chlorophylls concentration ↓ Oryza sativa L. 570 [20]
↓ Solanum lycopersicum 1000 [21]
↑ Cicer arietinum 700 [23]
↑ Brassica rapa 800 [24]
↑ Sorghum bicolor 700 [25]
↔ Carthamus tinctorius 1000 [30]

Total flavonoids ↑ Robinia pseudoacacia L. 750 [26]
↓ Hordeum vulgare 620 [28]
↓ Zea maize 620 [28]

* Effect: unchanged: ↔; increase: ↑; decrease: ↓.

2. Results
2.1. The Influence of Elevated Carbon Dioxide on Photosynthetic Parameters

The elevated carbon dioxide upregulated the assimilation rates for all Brassicaceae
plants. The highest assimilation rates for plants grown at 1200 ppmv were found in Kale
cabbage (Brassica oleracea var. sabellica) at a level of 36.66 ± 0.46 µmol m−2 s−1, while the
lowest assimilation rate was found for kohlrabi (B. oleracea var. gongylodes) (Figure 1a).
Nonetheless, there are significant differences (one-way ANOVA followed by Tukey’s
multiple comparisons post hoc test, p < 0.05) between the assimilation rates for all plants
species grown at 400, 800, and 1200 ppmv carbon dioxide, despite the differences in the
trend. For example, the most negligible differences in assimilation rates for plants grown at
400 ppmv CO2 compared with the one that was grown at 1200 ppmv CO2 was for B. oleracea
var. cymose (14.01 ± 0.19 µmol m−2 s−1 and 21.79 ± 0.20 µmol m−2 s−1, respectively),
while the greater values were found for Lepidium sativum (6.69 ± 0.21 µmol m−2 s−1 and
28.08 ± 0.18 µmol m−2 s−1, respectively).

The stomatal conductance to water vapor values is not statistically different (one-way
ANOVA followed by Tukey’s multiple comparisons post hoc test, p > 0.05) for plants grown
at 400 ppmv and 800 ppmv for all Brassica oleracea varieties (Figure 1b). At the same
time, there are statistical differences for Brassica napus, Sinapis alba, and Lepidium sativum.
In contrast, there are statistical differences (one-way ANOVA followed by Tukey’s multiple
comparisons post hoc test, p < 0.05) between the stomatal conductance to water vapor for
plants grown at 1200 ppmv CO2 and those grown at 400 and 800 ppmv CO2. The highest
stomatal conductance to water vapor was found for red cabbage (116 ± 5 mmol m−2 s−1),
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which increased at 1200 ppmv carbon dioxide, while the smallest was registered for cress
(30 ± 3 mmol m−2 s−1).
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Figure 1. The assimilation rate (a) and stomatal conductance to water vapor (b) from Brassicaceae 
plants grown at three carbon dioxide concentrations. The values are averages of three independent 
measurements. 
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grown at three carbon dioxide concentrations. The values are averages of three independent measurements.

2.2. The Emission of Volatile Organic Compounds from Plants under Elevated Carbon Dioxide

Among the volatiles, six monoterpenes (camphene, β-pinene, 3-carene, D-limonene,
para-cymene, and γ-terpinene) were found in the emission of all 13 Brassicaceae plants.
The total emission from all different species are pretty low but is increasing for plants
grown at a high carbon dioxide concentration (Figure 2). The emission of terpenes was
most abundant in cress, rapes, and white mustard, whereas the lowest levels were found in
red and white cabbages.

There is only one plant variety (B. oleracea var. capitata “Vertus 2”) with no significant
emission differences between all three growing conditions (one-way ANOVA followed by
Tukey’s multiple comparisons post hoc test, p > 1). In contrast, in all other 12 Brassicacea
varieties, there is an increase in monoterpene emission, at least for plants that grow at
1200 ppmv carbon dioxide. On the other hand, for kale, broccoli, and cabbage (“Cuor
di bue grosso”) the emission is not statistically different between plants that grow at
400 ppmv carbon dioxide and plants that grow at 800 ppmv carbon dioxide (one way
ANOVA followed by Tukey’s multiple comparisons post hoc test, p < 0.05).
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Figure 2. The emission rate of monoterpenes from Brassicaceae plants grown at three carbon dioxide
concentrations. The values are averages of three independent measurements.

2.3. The Influence of Elevated Carbon Dioxide on Chlorophylls and β-Carotene

The chlorophyll a concentration in leaves of all 13 Brassicaceae varieties increase with
the increase in carbon dioxide concentrations (Figure 3a). The medium chlorophyll a
concentrations in the leaves of all 13 plants were 173 ± 63 mg m−2 for plants grown at
400 ppmv CO2, 231± 56 mg m−2 for plants grown at 800 ppmv CO2, and 283 ± 21 mg m−2

for plants grown at 1200 ppmv CO2, respectively. The chlorophyll a concentration for plants
grown at 400 ppmv CO2 varies from 100 ± 21 mg m−2 in B. oleracea var. gongylodes to
273 ± 19 mg m−2 in Lipidium sativum, while from plants grown at 1200 ppmv CO2 vary
from 200± 20 mg m−2 in Sinapis alba to 371± 21 mg m−2 in B. oleracea var. capitata “Rubra”.
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The chlorophyll b concentrations generally increase for plants grown at high carbon
dioxide concentrations, but it is not general for all varieties (Figure 3b). The medium chloro-
phyll b concentrations in the leaves of all 13 plants were 97± 40 mg m−2 for plants grown at
400 ppmv CO2, 132± 35 mg m−2 for plants grown at 800 ppmv CO2, and 160 ± 33 mg m−2

for plants grown at 1200 ppmv CO2, respectively.
The β-carotene concentration does not depend on the carbon dioxide growing condi-

tions except for red cabbage (Figure 3c).
The medium β-carotene concentrations in the leaves of all 13 plants were 24 ± 6 mg m−2

for plants grown at 400 ppmv CO2, 29 ± 7 mg m−2 for plants grown at 800 ppmv CO2,
and 35 ± 9 mg m−2 for plants grown at 1200 ppmv CO2, respectively. There are only
statistical differences between plants grown at 1200 ppmv and 400 ppmv CO2 (one-way
ANOVA followed by Tukey’s multiple comparisons post hoc test, p < 0.01).
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2.4. The Change in Total Phenol Concentration for Plants Grown at Different Carbon
Dioxide Concentration

Elevated carbon dioxide does not affect the total phenols concentration for some
varieties but decreases for others (Figure 4). The most pronounced decrease in total phenols
concentration was found in Lepidium sativum plants (227 ± 7 mg Eg gallic acid/L for
plants grown at 400 ppmv compared with 145 ± 5 mg Eg ac gallic/L for plants grown at
1200 ppmv).
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2.5. The Influence of Elevated Carbon Dioxide on Flavonoids Content in the Leaves of
Brasicacea Plants

The total flavonoid contents in leaves generally decrease for plants grown at elevated
carbon dioxide, but there is no clear trend (Figure 5). There are some species (such as
Sinapis alba) in which the concentration decrease significantly (one way ANOVA followed
by Tukey’s multiple comparisons post hoc test, p < 0.001) for plants grown at elevated carbon
dioxide, while in others the concentration of flavonoids is not affected (as in B. oleracea
var. gemmifera).

The medium total flavonoids concentrations in the leaves of all 13 plants were
0.054 ± 0.030 mg rutin equivalents/mL for plants grown at 400 ppmv CO2, 0.043 ± 0.018 mg
rutin equivalents/mL for plants grown at 800 ppmv CO2, and 0.041 ± 0.0016 mg/mL for
plants grown at 1200 ppmv CO2, respectively. There are no statistical differences between
plants grown at different CO2 concentrations (one-way ANOVA followed by Tukey’s
multiple comparisons post hoc test, p > 0.1).

2.6. Microscopic Analyses

Stomatal characteristics did not differ between plants from different treatment groups
(Figure 6). The stomata length among the three treatments are 26.37± 3.09 µm for 400 ppmv
CO2, 24.35 ± 1.84 µm for 800 ppmv CO2, and 26.73 ± 1.71 µm for 1200 ppmv CO2, which
are not statistically different among treatments (one way ANOVA followed by Tukey’s
multiple comparisons post hoc test, p = 0.7356).
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The pore apertures of plants grown at lower concentrations of CO2 remained larger
than those of other plant groups. Stoma pore length slightly decreased from 14.65 ± 2.88 µm
at 400 ppmv CO2 to 13.57 ± 1.93 µm at 800 ppmv CO2, but only became statistically differ-
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ent at 1200 ppmv CO2 (8.01 ± 0.88 µm, one way ANOVA followed by Tukey’s multiple
comparisons post hoc test, p < 0.05).

3. Discussion

As expected, assimilation rates increased with the carbon dioxide concentrations for all
species. The same results have been obtained from extensive experiments (FACE) in which
legumes showed a 21% increase in saturated assimilation rates with growth at elevated
CO2 (see [29] for a review). Carbon dioxide is collected in the substomatal cavities, which
could determine the carbon dioxide fixation due to the reaction with RuBP in the presence
of the RuBisCo enzyme [36]. Moreover, it has been shown that increasing CO2 in all species
determines the decreasing percentage of leaf nitrogen allocated to RuBisCo, which suggests
the acclimation of photosynthesis to elevated carbon dioxide [37]. Indeed, many studies
have shown that elevated carbon dioxide increases the assimilation rates for C3 plants but
decreases their nitrogen content, which is essential for vegetables [38,39].

Generally, under elevated carbon dioxide, stomata close due to higher depolarization
of the guard cells [40,41]. The stomata closer to elevated carbon dioxide are induced by
enhancing anion channel activity in guard cells [42]. Despite other experiments (in which
stomatal conductance decreased on average by 20% in high carbon dioxide [43]), the stom-
atal conductance to water vapor is not affected by mildly increasing the carbon dioxide
concentration. Such behavior has been found for Cajanus cajan L. during vegetative and
reproductive growth phases [44] and could be due to altered guard cell signaling pat-
terns. In Arabidopsis mutants with impaired Ca2+ priming sensors and HT1 protein kinase,
the increase in carbon dioxide provoking stomatal conductance increased [45]. In our
experiment, the stomatal conductance increases significantly only for plants grown at the
highest carbon dioxide concentrations (1200 ppmv), which agrees with the results from
previous papers [44,45].

The emission of terpenes from plants could be done from specialized secretory or-
gans such as resin ducts, glandular trichomes, oil cavities, or de novo biosynthesis [46,47].
The monoterpenes emitted from plants in the atmosphere participates in secondary aerosol
formations and could be implicated in different photochemical reactions. Generally,
the emission of terpenes is decreasing for plants grown at elevated carbon dioxide con-
centrations [48]. Contradictory results have been found for the emission of volatiles from
Brassicaceae. On the one hand, it has been shown that the emission of terpenes from Brassica
oleracea ssp. capitata decrease for plants grown at high carbon dioxide [49] and, on the
other hand, the emission of different volatile organic compounds from Brassica napus
ssp. oleifera increase for plants grown at elevated carbon dioxide [50]. In our experiment,
the monoterpene emission increased significantly (as in Lepidium sativium). In contrast,
elevated carbon dioxide does not affect the emission for other species, as in the case of
B. oleracea var. sabellica. Such data suggest that the monoterpene emission capacity of
plants grown at elevated carbon dioxide is not affected by carbon accumulation in the leaf
tissues [51]. As one of the most abundant terpenes in the emission blend for all species
was limonene, the total enhancement in the emission at high carbon dioxide could be
explained by increased activity of limonene synthase [52]. On the other hand, it has been
demonstrated that isoprene emission decreases under high carbon dioxide due to either the
stimulation of phosphoenolpyruvate carboxylase (PEPC), which competes for the pyruvate
required for the MEP pathway, or the reduction in DMADP production [14]. However,
in our experiment, the chlorophyll content at elevated carbon dioxide increases, suggesting
that the N content in the leaves is not affected [53]. Indeed, the enhancement in soil-nitrogen
supply affects the energy cycling between the reaction center and the chlorophyll pool,
determining the chlorophyll increase. In contrast, the total phenolic compounds decrease
for some species grown at elevated carbon dioxide due to the downregulation of the key
enzyme PAL activity on the phenylpropanoid pathway [54]. Nonetheless, for most species,
the total phenols are not significantly modified. The flavonoid contents decrease at ele-
vated carbon dioxide for all species, probably due to a downregulation of leaf antioxidant
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enzymes under elevated carbon dioxide. The same trend has been found in the seedling
of Oryza sativa L., while for mature plants, the total phenols and flavonoids concentration
increase [55].

The hierarchical model of ANOVA analysis between treatment (different carbon
dioxide concentrations) and species/varieties confirms the statistical significance of the
differences between species and varieties within treatment (Table 2).

Table 2. The hierarchical model of ANOVA analysis between treatment (different carbon dioxide
concentrations) and species/varieties.

Source of
Variation

Assimilation
Rate

Stomata
Conductance

Monoterpene
Emission Chlorophyll a Chlorophyll b β-carotene Flavonoids Polyphenols

df, MS, F, p
Value

df, MS, F, p
Value

df, MS, F, p
Value

df, MS, F, p
Value

df, MS, F, p
Value

df, MS, F, p
Value

df, MS, F, p
Value

df, MS, F, p
Value

Carbon
dioxide

2, 3182, 2849,
<0.0001

2, 4907, 97.81,
<0.0001

2, 0.0406, 1671,
<0.0001

2, 119,198,
214.2, <0.0001

2, 39,098, 130.2,
<0.0001

2, 1127, 44.26,
<0.0001

2, 0.00333,
265.4, <0.0001

2, 2573, 5178,
<0.0001

Species/varieties 12, 313.2, 280.4,
<0.0001

12, 7206, 143.6,
<0.0001

12, 0.0724,
2979, <0.0001

12, 25,178,
45.24, <0.0001

12, 10,211,
34.01, <0.0001

12, 389.9, 15.31,
<0.0001

12, 0.00629,
501.0, <0.0001

12, 22,126,
44,530, <0.0001

Error 174.2 7827 0.001895 43,406 23,416 1986 0.001958 38.76

Some structural changes could be seen for plants growing at high carbon dioxide. Such
a modification in mitochondria and chloroplast has been shown for plants from different
families and could be due to increased cellular energy demands when plants are grown at
elevated CO2 [56].

4. Materials and Methods
4.1. Plant Material

The Brassicaceae (Cruciferae or mustard) family includes many species distributed
worldwide (except Antarctica) and encloses approximately 338 genera and 3709 species.

Plants of 13 species from the Brassicaceae family were grown from the seeds as fol-
lows: Red cabbage (Brassica oleracea var. capitata, Langedijker Herfst (Sem-Luca, Timisoara,
Romania)), Broccoli (Brassica oleracea var. cymose, Calabrese (Agrosel, Campia-Turzii, Roma-
nia)), Green Cabbage (Brassica oleracea var. capitata, Varza de buzau (Sem-Luca, Timisoara,
Romania); Vertus 2, (Legutko, Jutrosin, Poland), Cuor de Bue Grosso, (Legutko, Jutrosin,
Poland)), Kale (Brassica oleracea var. sabellica, Black magic (Sem-Luca, Timisoara, Romania)),
Broccoli (Brassica oleracea var. italica, Early Purple (Legutko, Jutrosin, Poland)), Brus-
sels sprout (Brassica oleracea var. gemmifera, Groninger (Sem-Luca, Timisoara, Romania)),
Kohlrabi (Brassica oleracea var. gongyloides, Gongylodes (Agrosel, Campia-Turzii, Romania)),
Cauliflower (Brassica oleracea var. botrytis, Moldovita F1 (Agrosel, Campia-Turzii, Roma-
nia)), Cress (Lepidium sativum, Common (Legutko, Jutrosin, Poland)), Rapeseed (Brassica
napus subsp. napus, Pioneer PT275, Pioneer Hi-Bred, România), and White Mustard (Sinapis
alba L., Franchi Sementini, Bergamo, Italy).

The seeds were sown in 0.8 L plastic pots filled with a mixture of commercial garden
soil and quartz sand. The plants have been fertilized with fertilizers for foliar (Bionat
Plus, Panetone SRL, Timisoara, Romania) and radicular (Cropcare 11-11-21, YaraMila, Oslo,
Norway). Day length was 12 h, and the light intensity at plant level of 800 µmol m−2 s−1

was provided by led lamps (Hoff, Nürnberg, Germany). Day/night temperatures were
maintained at 25/22 ◦C and a relative humidity of 65%. The plants were watered every day
to soil field capacity. Seven-week-old non-bolted plants with at least three fully developed
leaves were used in the experiments. We used the fully expanded leaves with the same
development stage for all measurements. The plants were randomized to ensure that all
plants grow in the same light. The leaves used for photosynthetic and volatile organic
compounds measurements were used for the biochemical analysis.

4.2. Photosynthetic Measurements

A portable gas exchange system (GFS-3000, Waltz, Effeltrich, Germany) was used to
determine the photosynthetic parameters, as reported earlier in [57,58]. The calculation of
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the steady-state values of net assimilation (A) and stomatal conductance to water vapor (gs)
was performed as was depicted in [58].

4.3. Volatile Sampling and GC–MS Analyses

Volatile organic compounds (VOC) were sampled (by a flow air sample pump 210-
1003 MTX (SKC Inc., Houston, TX, USA)) and analyzed (by a Shimadzu TD20 automated
cartridge desorber coupled with a Shimadzu 2010 Plus GC–MS equipment (Shimadzu
Corporation, Kyoto, Japan)), as earlier reported in [59].

4.4. Chromatographic Analysis of Photosynthetic Pigments

The pigments (chlorophyll a, chlorophyll b, and β-carotene) were extracted in acetone
as described before [60], and the quantitative analyses were performed using the UHPLC-
DAD apparatus (NEXERA 8030, Shimadzu, Kyoto, Japan) following the same method
earlier published [57]. The concentration of chlorophyll a, chlorophyll b, and β-carotene
was calculated using the pure chromatographic standards (Merck, Darmstadt, Germany).

4.5. Flavonoid Content Analysis

The total flavonoid content was determined using the spectrophotometric method [59].
A reaction mixture of aluminum chloride, sodium acetate, and sample was measured at
434 nm, and the results were expressed in mg rutin equivalents/mL.

4.6. Total Phenolic Content—Folin–Ciocalteu Method

Total phenolic content was determined according to the Folin–Ciocalteu, method as
described in [59,61], and the results were expressed in mg gallic acid equivalents/mL.

4.7. Microscopy Analyses

The surfaces of leaves were examined by using a Zeiss Scope.A1 microscope equipped
with the AxioCam MRc 5 camera and ZEN lite 2012 software (Carl Zeiss MicroImaging
GmbH, Jena, Germany). The samples preparation was done by following the next steps:
peel the epidermis from the backside of the leaf, mount the sample on a glass slide in
distilled water, fix with a coverslip, and observe under the microscope at 40×magnification.
For scanning electron microscopy (SEM), leaves were mounted on stubs using carbon
double-sided adhesive tape without any treatment. The samples were examined and
photographed using LYRA3 scanning electron microscope (LYRA3 XMU, Tescan, Brno,
CzechRepublic) with Low Vacuum Secondary Electron Tescan Detector (LVSTD), at 15 kV
and magnification 800×.

4.8. Statistical Analysis and Data Handling

One-way ANOVA, Tukey’s multiple comparisons test, and two-way ANOVA were
done using GraphPad Prism version 9.3.0 for Windows (GraphPad Software, San Diego,
Ca, USA, www.graphpad.com (accessed on 30 January 2022)). Results were considered
significantly different at p-values < 0.05.

5. Conclusions

In this study, we have shown that elevated carbon dioxide increases the photosynthetic
activities and emission of volatile organic compounds. On the other hand, plants that grow
at a high concentration of CO2 exhibit downregulation of polyphenols and flavonoids,
which could become a significant problem in light of future climate change conditions.
The results revealed that different species/varieties from the Brassicaceae family respond
differently to increases in carbon dioxide concentration. Generally, all plants increase their
assimilation rates, monoterpene emission, and chlorophylls and decrease their flavonoids
and polyphenols content.

www.graphpad.com
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