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Abstract: A compensatory base change (CBC) that coevolves in the secondary structure of ribosomal
internal transcribed spacer 2 (ITS2) influences the estimation of genetic distance and thus challenges
the phylogenetic use of this most popular genetic marker. To date, however, the CBC effect on ITS2
genetic distance is still unclear. Here, ITS2 sequences of 46 more recent angiosperm lineages were
screened from 5677 genera and phylogenetically analyzed in sequence-structure format, including
secondary structure prediction, structure-based alignment and sequence partition of paired and
unpaired regions. ITS2 genetic distances were estimated comparatively by using both conventional
DNA substitution models and RNA-specific models, which were performed in the PHASE package.
Our results showed that the existence of the CBC substitution inflated the ITS2 genetic distances to
different extents, and the deviation could be 180% higher if the relative ratio of substitution rate in
ITS2 secondary structure stems was threefold higher than that in the loops. However, the CBC effect
was minor if that ratio was below two, indicating that the DNA model is still applicable in recent
lineages in which few CBCs occur. We thus provide a general empirical threshold to take account of
CBC before ITS2 phylogenetic analyses.

Keywords: compensatory base change; genetic distance; ITS2; RNA substitution model; secondary
structure; sister species pairs

1. Introduction

Genetic distance is conventionally represented by the number of nucleotide differences
between two sequences that derive from a common ancestor [1]. It is an essential param-
eter in the study of molecular evolution for calculating the evolutionary rate, estimating
divergence, and inferring phylogeny among genes or organisms [2]. Therefore, it is vital to
acquire reliable genetic distances.

An important issue related to the calculation of genetic distances is the estimation
of the pattern of nucleotide substitution. The basic principle of phylogenetic inference
assumes that two sequences derived from a common ancestor will substitute independently
and randomly and eventually diverge from each other [1,3]. It is acknowledged that when
a sequence evolves rapidly, multiple substitutes are likely to occur and erase any prior
substitution record. As evolutionary time elapses, multiple substitutes will accumulate, and
the observed distance will become increasingly deviated and eventually saturated, with the
result that late substitutions have little or no impact on the total number of the observed
nucleotide differences [3–5]. In order to adjust the site-change underestimation caused by
the multiple substitutes, several models of DNA substitution have been proposed [6].

In contrast to the site-change underestimation, it is worth noting that some site changes
can also be amplified through covariation. One of the covariation patterns is known as the
compensatory base change (CBC), and this often occurs in structural RNA regions, wherein
substitutions on one side of a pair are compensated by substitutions on the other side in
order to restore the RNA structure stability and function (Figure 1A) [7–9].
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known as the compensatory base change (CBC), and this often occurs in structural RNA 
regions, wherein substitutions on one side of a pair are compensated by substitutions on 
the other side in order to restore the RNA structure stability and function (Figure 1A) [7–
9].  

 
Figure 1. ITS2 secondary structures and the compensatory base change (CBC) on their base pairs. 
(A) A snapshot of ITS2 stem II showing how CBC occurs on RNA secondary structure; (B) an exam-
ple of ITS2 consensus secondary structure derived from the sister species pair of Sinosenecio bodinieri 
and S. confervifer. The four stems are labelled I–IV. The pyrimidine–pyrimidine bulge in stem II, the 
UGGU in stem III and the high adenine content between stems that are typical of nearly all angio-
sperm ITS2 secondary structures are indicated in red. The degree of conservation over the entire 
alignment is displayed in color grades from green (conservative) to red (variable), and the variable 
bases are labeled with site numbers. 

Like multiple substitutions, CBCs also violate the basic assumption of independent 
and random substitution. Some authors are concerned that neglecting the CBC effect 
could result in counting the same substitution twice and could thus overestimate genetic 
distances and mislead phylogenetic inference [10–12]. Accordingly, some RNA-specific 
substitution models have been proposed to account for the covariable base states together 
in both sides instead of treating them separately in each side [13–15]. Through their prac-
tical applications, some authors found that the phylogeny of ancient lineages constructed 
using the RNA model outperforms that of the DNA model due to its shorter branch length 
and higher likelihoods [16,17]. In contrast, other studies in recent lineages showed a small 
empirical effect of CBC in phylogenetic analyses [9]. Moreover, other studies indicated 
that using the RNA model could reduce the weights of stem substitutions, which is con-
sequently equivalent to up-weighting loop substitutions. However, the loop regions are 
more liable to be saturated and misaligned and thus more likely to lead to an inaccurate 
phylogeny [18]. Taken together, although the CBC effect has been acknowledged, the ex-
tent of its effect on genetic distance in different lineages still needs critical assessment.  

The ribosomal internal transcribed spacer 2 (ITS2) is an ideal region to assess CBC 
effects on genetic distance. First, ITS2 has been widely used in plant phylogeny and DNA 
barcoding and has accumulated millions of sequences in GenBank, and thereby could fa-
cilitate large dataset analyses across a wide range of taxa. Second, despite rapidly evolv-
ing, ITS2 has a highly conserved secondary structure throughout Eukaryota, indicating 
that this region is under functional constraints. Accumulating evidence in the study of 
ribosome biogenesis shows that ITS2 is the last spacer removed from the 5.8S-ITS2-25S 
complex (27SB pre-rRNA in yeast), in which ITS2 folding could bring 5.8S and 25S pre-
rRNA together to form a hallmark ‘foot’ architecture during ribosome assembly. The char-

Figure 1. ITS2 secondary structures and the compensatory base change (CBC) on their base pairs.
(A) A snapshot of ITS2 stem II showing how CBC occurs on RNA secondary structure; (B) an example
of ITS2 consensus secondary structure derived from the sister species pair of Sinosenecio bodinieri and
S. confervifer. The four stems are labelled I–IV. The pyrimidine–pyrimidine bulge in stem II, the UGGU
in stem III and the high adenine content between stems that are typical of nearly all angiosperm
ITS2 secondary structures are indicated in red. The degree of conservation over the entire alignment
is displayed in color grades from green (conservative) to red (variable), and the variable bases are
labeled with site numbers.

Like multiple substitutions, CBCs also violate the basic assumption of independent
and random substitution. Some authors are concerned that neglecting the CBC effect
could result in counting the same substitution twice and could thus overestimate genetic
distances and mislead phylogenetic inference [10–12]. Accordingly, some RNA-specific
substitution models have been proposed to account for the covariable base states together in
both sides instead of treating them separately in each side [13–15]. Through their practical
applications, some authors found that the phylogeny of ancient lineages constructed using
the RNA model outperforms that of the DNA model due to its shorter branch length and
higher likelihoods [16,17]. In contrast, other studies in recent lineages showed a small
empirical effect of CBC in phylogenetic analyses [9]. Moreover, other studies indicated that
using the RNA model could reduce the weights of stem substitutions, which is consequently
equivalent to up-weighting loop substitutions. However, the loop regions are more liable to
be saturated and misaligned and thus more likely to lead to an inaccurate phylogeny [18].
Taken together, although the CBC effect has been acknowledged, the extent of its effect on
genetic distance in different lineages still needs critical assessment.

The ribosomal internal transcribed spacer 2 (ITS2) is an ideal region to assess CBC
effects on genetic distance. First, ITS2 has been widely used in plant phylogeny and DNA
barcoding and has accumulated millions of sequences in GenBank, and thereby could facil-
itate large dataset analyses across a wide range of taxa. Second, despite rapidly evolving,
ITS2 has a highly conserved secondary structure throughout Eukaryota, indicating that this
region is under functional constraints. Accumulating evidence in the study of ribosome
biogenesis shows that ITS2 is the last spacer removed from the 5.8S-ITS2-25S complex
(27SB pre-rRNA in yeast), in which ITS2 folding could bring 5.8S and 25S pre-rRNA to-
gether to form a hallmark ‘foot’ architecture during ribosome assembly. The characteristic
ITS2 secondary structure, which is always in “hairpin” or “ring-pin” form, functions as
a scaffold to mediate this ‘foot’ topological rearrangement and is thus necessary for the
downstream ribosome assembly [19–21]. The availability of this ITS2 secondary structure
will contribute significantly to accounting for the true number of ITS2 substitutions us-
ing structure-based RNA models [9,21]. In this study, we focused on the phylogenetic
implications of CBC substitution and quantified its effects on ITS2 genetic distance by com-
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paratively using both DNA- and RNA-specific models. Furthermore, it has been considered
that evolutionary saturation and misalignment are likely to occur in ancient lineages, which
may mislead substitution counting. We thus sampled lineages including closely related
species using the large dataset of ITS2. This also allowed us to explore the minimum genetic
distance between species and test the hypothesis of the ITS2 molecular threshold [22].

2. Results
2.1. ITS2 Sequences and Their Genetic Distances among the Investigated Lineages

For the investigated lineages, all sequences annotated “internal transcribed spacer 2”
or “internal transcribed spacer” that had been deposited in GenBank before April 2019
were retrieved for analysis. We excluded incomplete ITS2 sequences and lineages with an
insufficient number of species. A total of 99,128 ITS2 sequences representing 5677 genera
and 16,371 species were initially obtained. These sequences of a genus were each constructed
into a neighbor-joining (NJ) tree. We then deleted genera with poor species resolution or
lineages with paraphyletic or polyphyletic species. Finally, a total of 46 sister species pairs
(SSPs) were identified, involving 20 genera and 16 families (Table S1).

Distphase analysis in the PHASE package showed that the ITS2 genetic distances based
on DNA models (GDDNA) of these 46 SSPs ranged widely, from 0.12% to 8.72%, with an
average value of 2.54%. Distance analysis using MEGA software yielded an almost identical
value as PHASE for each SSP (paired-samples t test, p = 0.443), and accordingly, the minimum,
maximum and average values were 0.12%, 8.78% and 2.53%, respectively (Table S1). These
results validated the GDDNA, which was used for comparison with GDRNA in the following
analyses. Although the GDDNA varied greatly in a few extreme cases, 80% of the lineages’
GDDNA was less than 4.0% (Figure S1).

2.2. ITS2 Secondary Structure and the Structure-Based SSP Alignments

The consensus ITS2 secondary structure of each SSP had a typical “four-helix model”
(Figure 1B), of which helix III was the longest and had the UGGU motif, the helix II was
rich in G-C pairs and had a pronounced pyrimidine bulge, helixes I and IV were relatively
variable in their length and base pair composition. The loops between the four stems had a
characteristic adenine bias. These common features validate the ITS2 secondary structure
prediction in this study.

Based on these consensus secondary structures, the ITS2 sequences were partitioned
into paired and unpaired regions. The aligned length of ITS2 alignments ranged from 165
to 264 bp, with an average length of 231 bp, including 134 bp paired and 97 bp unpaired
regions in the SSP consensus secondary structures (Table S1). On average, nearly 60% of
ITS2 bp were involved in the stems, in which CBC substitution occurs, indicating that
RNA models may be more appropriate for ITS2 than the conventional DNA models. Taken
across all 46 SSP alignments, a total of 332 variable sites were observed, including 77 stem
sites and 255 loop sites. The variable sites in the stems of each SSP consensus secondary
structure ranged from seven to zero, and they were generally less than their loop sites
(Table S1). We found that 13 of 46 SSP alignments had no variable sites in the stem region
(Table S1) and removed them to make the RNA model applicable. In addition, there were
three SSP alignments that had no variable sites in their loop regions, and the RNA models
were also not applicable to these. When all of these inapplicable SSP alignments were
removed, the remaining 30 were used for the PHASE RNA model.

2.3. Comparison of the Best-Fitting DNA and RNA Models

The structural partitioning of ITS2 alignments allows loops and stems to be tested
separately via distinct substitution model parameters in the RNA models, which assigned
a DNA model to loop sites and an RNA-specific model to stem sites (Table S3). The Perl
script implemented in the likelihood program of PHASE was executed to adjust these
model parameters to make distinct model test results compatible. These model test results
showed that for each ITS2 alignment the best-fit RNA model was always lower than the
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best-fit DNA model in either log-likelihood (-ln L) or AICc scores (Figure 2), averaging 81%
and 82% of the DNA model, respectively (Table S3). Notably, the best-fit RNA models in
most lineages were consistent with each other, among which 85% (39/46 lineages) of the
ITS2 stems evolved homogeneously under the RNA7G model (Table S3). Given that both
-ln L and AICc values are associated with branch lengths on a given tree, and branch length
can be represented as genetic distance, it is reasonable to speculate that GDRNA should be
lower than GDDNA in these lineages.
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Figure 2. Comparisons of distinct likelihoods obtained from the best-fitting DNA and RNA models.
(A) -ln L likelihood; (B) AICc likelihood. The same ITS2 sequence-structure alignments analyzed
separately with DNA and RNA-models are connected with lines.

2.4. Comparison between GDRNA and GDDNA

Phylogenetic analyses of ITS2 sequence-structure alignments using the best-fit DNA
model (for unpaired regions) and RNA model (for paired regions) generated the GDRNA.
The PHASE analysis showed that the ITS2 GDRNA of these 30 SSP alignments ranged from
0.12% to 25.28%. In contrast, the ITS2 GDDNA ranged from 0.53% to 8.29%. Unexpectedly,
the average value of GDRNA was higher than that of GDDNA for 26/30 SSP alignments,
averaging 174% of the GDDNA (5.76% ± 5.50% vs. 3.04% ± 2.02%; Table S2), indicating that
some constraints have limited PHASE analysis when using RNA models.

Given that the genetic distance depends on the substitutions within base pairs, we
investigated the substitution sites in each ITS2 partition (loop vs. stem regions) separately,
counting and comparing their respective raw substitution rates. We found that the GD ratio
(GDRNA/GDDNA) decreased as the SRS/SRL ratio (substitution rate in stems/substitution
rate in loops) increased. When the SRS/SRL ratio equaled 2.0, the expected result, that
GDRNA was lower than GDDNA, began to appear. When the SRS/SSL ratio rose to 3.0,
GDRNA was always smaller than GDDNA (Figure 3).
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Figure 3. A scatter plot showing the effect of compensatory base change on genetic distance. As the
rate of substitution between stem and loop regions increases, the rate of genetic distance between
RNA and DNA models becomes less and less, making RNA models more and more effective and
play a leading role when the substitution rate ratio is greater than three.

3. Discussion

An accurate estimation of genetic distance is a prerequisite for molecular phylogeny,
molecular chronogram and evolution, which are all based on the measurement of sequence
divergences [1]. However, genetic distance estimation is not easy for the ITS2 region,
although it has been widely used as a phylogenetic marker [21,23,24]. In vivo, ITS2 rRNA
folds and functions in the form of a secondary structure that is maintained through base-
pair interactions [19,20]. Our results showed that ITS2 secondary structures are consistent
with the typical “four-helix” model across a broad range of 13 orders, confirming that
ITS2 is under evolutionary constraints through CBC substitution, to maintain the spe-
cific secondary structures that provide functionality [21]. We found that nearly 60% of
ITS2 bp were involved in the stem, where the CBC substitution occurs. In addition, model
testing showed that, for all 46 SSP alignments, the RNA substitution models always had
a higher likelihood than the conventional DNA models (Table S3). Taken together, our
results corroborate the expectation that base-pair covariation has occurred in ITS2 within
the study lineage [25]. Therefore, the RNA model should be considered in genetic distance
calculations to account for this non-independent CBC substitution [13–15,17].

The distinct evolutionary pattern between stem and loop regions should be considered
seriously in genetic distance analyses. Some authors have warned that the loops are more
apt to evolutionary saturation and/or misalignment in ancient lineages, wherein using
RNA models down-weights stems and virtually magnifies the loop effect and thus misleads
phylogenetic signals [18]. This view has been confirmed here by our finding that ITS2 loop
sites are more variable than stem sites (Table S2). To avoid the possible loop effect on stem
phylogenetic analyses, this study chose the most recent lineage and focused on sequence
divergence between sister species. Thereby, we could also explore the ITS2 threshold
among species based on the RNA divergence. We found that although the GDDNA varied
greatly in a few extreme cases, 80% of lineages’ GDDNA was less than 4.0%, consistent
with the previous study of Qin et al. [22]. In general, the almost identical results between
PHASE and the conventionally used MEGA validate the GDDNA of SSP alignments and
the usability of PHASE. Taken across all six lineages within the best scope of application
through PHASE (Figure S2), all the GDRNA were lower than GDDNA, averaging 56% of
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the GDDNA (1.18% vs. 2.11%). This result justifies some authors’ concern that failing to
account for the covariation pattern (CBC) of stem regions could result in an overestimation
of phylogenetic variation and leads to misleading distance-based statistics with strong
support [12,13]. Furthermore, this study provided an empirical estimation that was 180%
higher when this non-independence was neglected.

A highlight of this study is providing an empirical threshold of a threefold substitution
rate between the stem region and loop region to help determine when it is necessary to
take account of the CBC effect. Because, although CBC substitutions affect the DNA-based
phylogenetic analyses, not all the substitutions in the stem region are of the CBC pattern.
In fact, CBC has generally been considered a two-step substitution through a slightly
unstable intermediate base-pair; for example, the substitution from AU to GC is mainly
through a GU intermediate, as shown in stem II of Figure 1 [7,9,25]. It has been revealed
that the time required for these changes spans one or several closed related species on a
phylogenetic tree [8,9]. Within these time constraints, despite variations occurring in the
stem region, they are only one-side substitutions before the CBCs and thus still obey the
site-independence assumption. In this context, calculating genetic distances using DNA
models seems unlikely to be problematic within such recently diverged lineages, in which
few CBCs are observed [9]. However, as lineages diverge further, the CBC substitutions
become common, and the DNA models are less able to describe these variations. Therefore,
the threshold we provide here could contribute to clarifying how much of the variation
present in stem regions could affect the estimation of genetic distance.

4. Materials and Methods
4.1. Lineage Sampling and Sister Species Pair Acquisition

The species validity and coverage within a certain lineage (genus) were based on Plant
List (online service http://www.theplantlist.org, accessed on 20 January 2021). We sampled
lineages from GenBank for which the complete ITS2 sequences were available from at least
one half of the total species, and at least two sequences available per species. The ITS2 region
was identified and delimited from the raw sequences using GenBank annotations and the
“ITS2 annotation” online service in the ITS2 database (http://its2.bioapps.biozentrum.
uni-wuerzburg.de, accessed on 15 February 2021). The ITS2 matrix was aligned with
MAFFT, using the G-INS-i iterative refinement method and the default parameters (Scoring
matrix: 200PAM/k = 2; Gap opening penalty: 1.53; Offset value: 0) [26]. Then, the aligned
sequence matrix was imported into MEGA11 [27] to construct the neighbor joining (NJ) tree
based on the Kimura 2-parameter (K2P) model, with the following options: substitutions
included transitions and transversions, uniform rates and homogeneous pattern, and
gaps/missing data were treated as complete deletion. The confidence of the tree branch
was evaluated using 1000 replicates. The lineages were screened again based on the tree
topology, which met the following criteria. First, species resolution was at least 50%
on the ITS2 NJ tree. Second, species with multiple individuals clustering together into
a monophyletic group in NJ trees with a bootstrap value above 50% were regarded as
successful species identifications. Third, the shallow phylogenies (i.e., clades toward the
tips) were well-resolved, and at least one sister species pair (SSP) was identified.

4.2. ITS2 Sequence-Structure Alignment

The individual ITS2 sequence of SSPs was folded into a secondary structure using
homology modeling from the online ITS2 database [28] and was exported into the Vienna
format. Then, a raw sequence-structure matrix which was composed of every single ITS2
sequence, and its secondary structure was synchronously aligned using 4SALE 1.7 [29,30].
After manual adjustment using the 4SALE editor, the ITS2 consensus secondary structure
was yielded into a graphical form. The 75% majority consensus secondary structure was
selected and transformed manually into the Vienna format for subsequent analyses. By
referring to the consensus secondary structure, the ITS2 sequence matrix was partitioned

http://www.theplantlist.org
http://its2.bioapps.biozentrum.uni-wuerzburg.de
http://its2.bioapps.biozentrum.uni-wuerzburg.de
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into paired and unpaired regions and was phylogenetically analyzed both separately and
in combination using RNA and DNA models.

4.3. Genetic Distance Acquisition Using DNA and RNA Substitution Models

The best-fitting model for the ITS2 sequence-structure (RNA form) evolution was
estimated using the optimizer in PHASE package 3.0 [15,31], wherein a total of 2 × 16
mixed models were tested (REV or HKY85 for loop regions and 16 base-paired models for
stem regions) [15]. Considering that different numbers of parameters between the 4-, 7-,
and 16-state treatments of base state in the mixed models could mislead the comparison of
different likelihood values, we used a Perl script for likelihood correction to make model
test results compatible [15]. The REV or HKY85, the best fitting in the mixed model test, was
also used for calculating genetic distances of ITS2 sequence. Then, genetic distance based on
RNA and DNA models was calculated separately through distphase in the PHASE package.
Statistical analyses were then performed to summarize these results using Microsoft 2016
Excel, SPSS 22.0 and Origin Pro 9.0.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants11070929/s1, Figure S1: ITS2 genetic distances of sister
species pairs vary among different lineages; Figure S2: Comparisons of ITS2 genetic distances between
RNA and DNA substitution models when the effect of compensatory base change in stem regions is
too large to be neglected; Table S1: Statistics of phylogenetic analyses from all sequence-structure
matrices; Table S2: Statistics of phylogenetic analyses from the 30 sequence-structure matrices that can
be applicable for the RNA substitution models. Table S3: Comparison of likelihood scores between
DNA- and RNA-specific models applied to the ITS2 alignments.
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