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Abstract: Pine resin is one of the best known and most exploited non-wood products. Resin is
a complex mixture of terpenes produced by specialized cells that are dedicated to tree defense.
Chemical defenses are plastic properties, and concentrations of chemical defenses can be adjusted
based on environmental factors, such as resource availability. The slope orientation (south/sunny
or north/shady) and the altitude of the plantation site have significant effects on the soil nutrient
and the plant performance, whereas little is known about how the slope affects the pine resin yield
and its components. In total, 1180 slash pines in 18 plots at different slope positions were established
to determine the effects on the α- and β-pinene content and resin production of the slash pine. The
near-infrared spectroscopy (NIR) technique was developed to rapidly and economically predict the
turpentine content for each sample. The results showed that the best partial least squares regression
(PLS) models for α- and β-pinene content prediction were established via the combined treatment
of multiplicative scatter correction–significant multivariate correlation (MSC–sMC). The prediction
models based on sMC spectra for α- and β-pinene content have an R2 of 0.82 and 0.85 and an RMSE
of 0.96 and 0.82, respectively, and they were successfully implemented in turpentine prediction in this
research. The results also showed that a barren slope position (especially mid-slope) could improve
the α-pinene and β-pinene content and resin productivity of slash pine, and the β-pinene content in
the resin had more variances in this research.

Keywords: model calibration; turpentine; NIR spectroscopy; slope position; slash pine

1. Introduction

Resins contained in many tree species, such as pines (which produce pine rosin and
turpentine), are a renewable raw material for products such as high-grade perfumes,
adhesives, and inks [1–3]. The important economic application value of resin should
be reflected in the relative content of its main components, as production often requires
certain components rather than the entire resin [4]. The main components of turpentine
are α-pinene and β-pinene, which especially have a wide range of therapeutic potential [5]
and have huge impact on the value of the resin. The quick and economical identification
and analysis of the monoterpene content in different resins is significant for the production
and processing of related industrial raw materials [6,7].

Chemical composition analysis is usually performed using a gas chromatography–
mass spectrometry (GC–MS) system. Stable and efficient GC or GC–MS analysis methods
has been established for the chemical composition analysis of pine resin, which can obtain
the relative content of main components [8,9]. Recently, the methods based on the GC or
GC–MS for verification and analysis of volatile essential oil composition (mainly including
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the α and β-pinene) were developed [10,11]. However, in addition to the expensive GC–
MS spectrometry instrument, the GC–MS analysis method has high requirements for the
experimental level and analytical ability of the operator. Moreover, it is expensive and
time-consuming to analyze each sample, and the identification and analysis of off-line data
can only be completed by professional technicians with a chemical background [12].

Therefore, rapid and nondestructive vibrational spectroscopy methods for the rapid
determination of oleoresin composition are valuable. The near infrared (NIR) spectroscopy
region extends from 780 to 2500 nm, in which the spectra may be characterized by the as-
signment of the absorption bands to overtones and combinations of fundamental vibrations
associated with C-H, O-H, and N-H bonds [13]. The content of many oil compositions,
such as α- and β-pinene from plant resources or the content of resin and rubber, were
estimated by NIR spectroscopy methods [14,15]. Vibrational spectroscopy methods for
oleoresin composition analysis are promising. However, few studies have reported on the
content of pine oleoresin estimated by NIR spectroscopy methods. Partial least squares
(PLS) regression, a quick, efficient, and optimal regression method for the construction
of prediction models based on vibrational spectroscopy, is a widely used chemometric
method [16]. It is worth noting that substantial spectral data will contain redundant and
complicated information. Therefore, to establish a moderately practical model, it is nec-
essary to preprocess the collected spectral data [17]. Preprocessing NIR spectral data has
since become a crucial step in chemometric modeling. Similarly, variable selection is also a
critical step in spectral analysis, which can select the most relevant spectral band to improve
the model’s overall performance [18].

Resin terpene synthesis in conifers is influenced not only by genetic factors but also by
climatic and environmental factors such as soil fertility, stand dominance, tree growth, age,
season, temperature, wounding, and disturbance [2,19]. According to Sampedro et al. [20],
chemical defenses are plastic properties, and concentrations of chemical defenses can be
adjusted on the basis of the environment and by the interaction effect of genotypes on
environmental conditions such as resource availability. Genetic effects influencing the
content of pine oleoresin components were studied by Zhang et al. [7], Lai et al. [4], and
Yi et al. [21]. Individual heritability was moderate for resin yield and moderate to high
for monoterpene components at different sites. A significant site effect for most of the
studied properties was observed with the joint analysis of all trials. The estimates of type-B
genetic correlations showed that the genotype-by-environment (G × E) interaction had a
relatively strong influence on resin yield and most of the resin chemical components [4].
The compounds and their content of the essential oil from the needles or twigs of pine
species of different geographical regions are also varied because of the environmental
differences during different seasons [22,23].

Pine plantations are primarily located in the low hills of subtropical areas in southern
China [24]. A lower content of organic matter and microorganisms and lower activity of
the enzymes related to microbiological activity in the soil on the north-facing slope were
observed [25]. The research showed that trees on sunny slopes had higher growth than
the trees on shady slopes, whereas trees in mid-slope positions with shallower soils and
high sodicity showed the lowest aboveground biomass, stem biomass, and total height
yield [26]. Soil-available water was the primary factor for plant productivity. All growth
parameters in Aleppo pine trees obtained on valley bottoms were significantly higher than
all aspect slope position combinations due to the accumulation of runoff and deposition
from the upper to middle and finally to lower slopes [27].

All studies have shown that the slope direction and position at one site have significant
effects on soil nutrients and plant performance [26–29]. However, little is known about how
the slope affects the pine resin yield and its components. China’s output of pine resin has
reached more than 60% of the world’s output, and pine resin is one of the most important
parts of forestry, with an annual output value of more than 8 billion yuan in recent years.
Slash pine (Pinus elliottii Engelm var. elliottii) is one of the leading tree species for resin
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tapping in China [30]. Thus, it is important to know how the slope direction and position
affect the pine resin yield and the components for field management and resin production.

Therefore, this paper aims (1) to derive a technique to reliably estimate and predict
the content of α- and β-pinene in the resin of slash pine using NIR technology and (2) to
determine the effects of slash pine and resin production at different slope positions on the
α- and β-pinene content using the NIR-based technique.

2. Materials and Methods
2.1. Sites and Plots

The study sites were located in the western suburbs of Hangzhou city, China (30◦3′ N,
119◦57′ E). The site belongs to subtropical low hill area with an east to west orientation.
Slash pine plantations were established on the two slopes of the hill in January 1999 with
a spacing of 3 m between rows and 2 m between trees within a row. In total, 1180 trees
of 18 plots at different positions (P) and directions of slope (SO) were established in the
spring of 2019, and the length and width for each plot was 25 m (Table 1). Each plot had an
average of 65 trees, ranging from 50 to 85.

Table 1. The position and tree information for each plot.

Slope Orientation Slope
Angle Plot No. Altitude Position Average of Tree Height Average of Diameter at

Breast Height

South
(Sunny) 20◦

10, 13, 16 10 m Low 9.8 m 12.1 cm
11, 14, 17 30 m Middle 8.9 m 10.8 cm
12, 15, 18 50 m High 9.1 m 11.3 cm

North
(Shady) 21◦

3, 4, 5, 6 10 m Low 9.7 m 11.9 cm
7, 8, 9 30 m Middle 8.7 m 10.5 cm

1, 2 50 m High 8.8 m 11.1 cm

2.2. Growth Measurements and Resin Collection

The tree height and DBH (diameter at breast height) were measured in the spring of
2019. The collection of oleoresin production was done in August 2019 using the special
tube (Figure 1A) method of Zhang et al. [7]. The resin collected in the 1180 plastic tubes
was measured for resin productivity (RP). The resin in plastic tubes (Figure 1A) was then
transferred to glass tubes (Figure 1B) for NIR spectral data collection as soon as possible.

Figure 1. Resin collection (A) and NIR scan (B) device.

2.3. Collection of NIR Spectral Data

The NIR spectral data from all 1180 resin samples were collected by using near-infrared
spectroscopy (XDS™ NIR Rapid Liquid Analyzer, FOSS). For each scan, the resin sample
was placed in the glass tube (Figure 1B) dedicated to the Foss spectrometer, and scanned
spectra were averaged after 20 scans per sample, whose values ranged from 400 nm to
2500 nm with a 2 nm resolution. A total of 143 resin samples in the glass tubes were selected
randomly for GC–MS analysis after collection of the NIR data.
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2.4. Resin Analysis by GC–MS

The GC–MS method was carried out for the 143 samples using an HP6890GC/5975B
gas chromatograph and the mass spectrometry (Agilent 5975B, Santa Clara, CA, USA) for
qualitative and quantitative analysis of oleoresin composition with the chromatographic
condition as follows: GC: 0.05 g of oleoresin was dissolved in 0.5 mL of ethyl alcohol
containing 50 µL tetramethylammonium hydroxide and analyzed by using a DB-5MS silica
capillary column (60 m × 0.25 mm internal diameter, 0.25 µM film thickness). The initial
column temperature was 60 ◦C for 2 min, increased to 80 ◦C for 5 min, and reaching a
maximum of 280 ◦C at a rate of 2 ◦C per min for 5 min. Injector temperature was 260 ◦C.
The injection volume was 1 µL with a 1/50 split ratio. The carrier gas was helium. EI-MS:
the electron energy was 70 eV. The connection parts and ion source temperatures were 250◦

and 230 ◦C, respectively. The mass scan range was 30 to 600 m/z along with solvent delay
for 3 min.

Resin compositions were identified by matching experimental fragmentation patterns
in mass spectra with the NIST08 database through the data processing system of Agilent
Chem Station and then comparing with the relevant literature [9]. The relative content of
each component determined by peak area normalization is expressed as a percentage of
the total amount of components.

2.5. Preprocessing and Variable Selection of NIR

To reduce bias from physical factors and irrelevant variables on the establishment of
a stable and reliable model [31], four preprocessing methods, namely, standard normal
variate (SNV), multiplicative scatter correction (MSC), derivative method (DM), and block
normal (BN), were combined with PLS [32]. The calibration set (n = 100 samples) was
used to develop a calibrated model, and the separate validation set (n = 43 samples) was
reserved to assess and evaluate the prediction performance of the developed model. Two
indicators of internal cross-validation, the correlation coefficient (R2) and root mean square
error (RMSE), were used to assess model robustness. For that, the closer R2 is to 1 and
RMSE is to 0, the better the prediction ability of the model is [33]. We used sMC (significant
multivariate correlation) [34] as a variable selection method to determine the best PLS
model performance with fewer spectral variables.

2.6. Software Tools

All NIR data analysis and model building were implemented in Unscrambler (v10.2,
CAMO, Software AS, Norway). R software (V4.0.5) was used in the basic analysis and for
drawing the plots [35].

3. Results
3.1. Establishment of α- and β-Pinene Content Models Based on PLS

Four spectral preprocessing methods were used for model calibration (n = 100 samples),
and the results showed that the MSC method with a full or characteristic NIR spectrum
was best for model establishment. For example, the MSC preprocessing method produced
the most accurate α-pinene content prediction model, with R2 and RMSE values for the
calibration set of 0.89 and 0.74, respectively (Table 2). To improve the model, a characteristic
spectral band (based on sMC) was selected, which showed that many significant regression
coefficients for α-pinene and β-pinene at wavelengths of 1638, 1640, 1734, 1738, 1752, 1754,
1780, 1784, 2118, and 2122 nm were opposite in sign (Figure 2). For example, the regression
coefficients were −2.12 (1638 nm) and 4.81 (1640 nm) for α- and β-pinene, respectively.
The characteristic spectral ranges of α-pinene and β-pinene were under 50% of the full
spectra (400 nm–2500 nm). The results of the prediction and calibration models with the
full NIR spectrum and characteristic spectra are shown in Table 2. The calibration and
prediction models both showed that there were superior R2 and minor RMSE values in
model establishment with characteristic spectra than with full spectra (Table 2).
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Table 2. The indicators of internal cross-validation, the correlation coefficient (R2) and root mean
square error (RMSE) for the calibration and prediction model of α- and β-pinene content based on
full and characteristic spectra.

Model
Calibration Prediction

Spectra R2 RMSE R2 RMSE

α-pinene content Full Spectra (400 nm–2500 nm) 0.8927 0.7435 0.8157 0.9850

Characteristic spectra (selected by sMC) 0.8953 0.7239 0.8203 0.9579

β-pinene content
Full Spectra (400 nm–2500 nm) 0.9314 0.5405 0.8389 0.8349

Characteristic spectra (selected by sMC) 0.9418 0.4877 0.8464 0.8167

Figure 2. The range of characteristic spectra based on sMC for α-pinene and β-pinene and the
regression coefficients of the spectra to the pinene content. The numbers near the curves are the
wavelengths of the corresponding curve peaks.

3.2. Separate Validation to Evaluate the Prediction Performance

The separate validation set (n = 43 samples) was reserved to evaluate the prediction
performance of the developed model. The prediction results are shown in Table 3 and
Figure 3. The average α-pinene content measured by GC–MS (reference) and the predicted
model (predicted) was 16.55% and 16.41%, respectively, and the deviation for the predicted
value was 0.91. The average β-pinene content was 8.34% and 8.44% for the reference
and predicted values, respectively, with a lower deviation of 0.49 for the predicted value.
The linear equation for the predicted (y) and reference (x) values is listed in Figure 3,
which shows a higher determination coefficient (R2) of 0.741 and 0.714 for α-pinene and
β-pinene, respectively.

3.3. Comparisons of α-Pinene and β-Pinene Content Percentages in Slash Pine at Different
Positions Using the PLS Model

The characteristic spectra model was used to predict the α-pinene and β-pinene con-
tents of slash pines in the 18 plots established at different positions of a low hill plantation
(Figure 4A,B). The resin productivity (Figure 4C) of each tree in the plots was analyzed.
The differences in the resin components are shown in Figure 5 and Table 4.

There were no differences on the α-pinene content, β-pinene content, and resin pro-
ductivity for the trees between the north and south slopes (Figure 5A and Table 4). The
mean α-pinene content on the northern and southern slopes was 16.61% and 16.62%, re-
spectively, which are almost the same. Additionally, the β-pinene content was 8.51% and
8.53%, respectively. The resin productivity in the north was 6.00 g, which was slightly
higher than the 6.40 g on the south slope.
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There were no differences in the α-pinene and β-pinene content for the trees between
the different elevations combined with the results of the south and north slopes, whereas
the resin productivity at the middle elevation was significantly higher than that at the high
elevation (Figure 5B and Table 4). Moreover, the α-pinene and β-pinene content and resin
productivity at the middle elevation were higher than those at the low and high elevations.

Table 3. The α- and β-pinene content of the separate validation samples predicted by the correspond-
ing PLS model.

Samples
α-Pinene Content (%) β-Pinene Content (%)

Reference Predicted Deviation Reference Predicted Deviation

PEE101 19.98 20.14 0.52 3.50 4.31 0.32
PEE102 17.29 16.42 0.72 10.06 9.57 0.32
PEE103 17.80 17.40 0.50 7.55 8.30 0.27
PEE104 12.81 11.58 1.91 7.03 7.07 1.62
PEE105 21.12 20.86 0.99 6.24 3.98 1.58
PEE106 17.38 15.99 0.54 7.77 7.63 0.29
PEE107 18.52 17.61 0.47 7.09 6.45 0.39
PEE108 19.07 18.78 0.69 7.42 7.30 0.39
PEE109 18.05 17.82 0.45 7.03 7.06 0.30
PEE110 11.90 12.00 0.62 12.22 12.04 0.35
PEE111 14.53 14.77 0.61 10.74 10.91 0.32
PEE112 17.67 16.76 0.68 7.88 8.46 0.27
PEE113 16.63 16.13 0.70 8.31 7.80 0.35
PEE114 19.82 19.24 0.93 5.60 12.41 1.99
PEE115 12.09 13.66 0.65 11.39 12.04 0.39
PEE116 16.81 16.96 0.50 9.06 8.25 0.29
PEE117 17.16 16.50 0.50 7.91 7.77 0.31
PEE118 14.87 14.91 1.74 8.40 9.13 0.49
PEE119 11.96 18.57 0.42 5.33 7.76 0.41
PEE120 15.78 14.87 0.56 8.30 8.08 0.30
PEE121 17.42 16.70 0.57 8.16 8.53 0.31
PEE122 15.38 17.13 0.96 9.35 9.42 0.98
PEE123 16.55 17.48 1.14 7.57 7.84 0.31
PEE124 18.32 17.72 0.68 8.60 8.10 0.30
PEE125 16.72 16.31 0.69 7.86 8.20 0.30
PEE126 16.41 16.34 0.74 6.65 7.55 0.37
PEE127 18.23 18.52 0.46 8.01 7.79 0.31
PEE128 16.05 15.31 1.05 10.46 9.85 0.30
PEE129 17.01 16.74 0.84 9.18 8.19 0.30
PEE130 18.09 18.71 0.87 6.03 6.47 0.31
PEE131 15.28 15.31 0.78 11.04 10.02 0.32
PEE132 16.97 16.68 0.67 11.15 9.98 0.31
PEE133 13.81 12.83 0.73 13.18 12.39 0.34
PEE134 12.53 10.39 3.99 10.48 10.61 0.97
PEE135 17.01 15.71 0.74 11.32 10.51 0.32
PEE136 19.58 18.42 1.61 7.07 6.96 0.62
PEE137 11.89 11.75 0.67 9.65 9.75 0.33
PEE138 15.89 16.45 1.36 9.11 9.34 0.33
PEE139 15.54 15.87 0.46 8.01 7.77 0.37
PEE140 17.74 16.43 1.26 5.02 4.51 0.91
PEE141 14.45 13.89 1.30 12.04 12.73 0.39
PEE142 22.41 23.05 1.44 1.34 2.09 0.46
PEE143 17.02 16.98 1.31 8.53 8.18 0.50
Mean 16.55 16.41 0.91 8.34 8.44 0.49
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Figure 3. The α- and β-pinene content for the separate validation samples predicted by the PLS
model and their relationship between measured and predicted.

Figure 4. The α-Pinene (A) and β-pinene (B) contents and resin productivity (C) of the trees in
each plot.
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Figure 5. The α-Pinene and β-pinene contents and resin productivity for the trees in different plots
and their comparison ((A): North vs. South slope; (B): Elevation; (C): North slope; (D): South slope).
Duncan’s multiple-range test; means with the same letter are not significant (p < 0.05).

Table 4. The α-pinene and β-pinene contents and resin productivity for the trees in different plots
and their multiple comparisons *.

Orientation Position Alpha
Pinene/% STDEV Beta

Pinene/% STDEV Resin
/g STDEV

North
All

16.61 a 2.30 8.51 a 2.09 6.40 a 2.14
South 16.62 a 2.48 8.53 a 2.28 6.00 a 2.18

All
High 16.68 a 2.02 8.02 a 2.07 5.78 a 2.04
Low 16.55 a 2.33 8.49 a 1.99 6.27 ab 2.17

Middle 16.72 a 2.83 9.00 a 2.46 6.47 bc 2.23

North
High 17.54 a 1.94 8.03 a 2.28 6.48 a 2.56
Low 16.18 a 1.74 8.59 ab 2.01 6.35 a 2.42

Middle 16.57 a 2.28 8.74 bc 2.23 6.42 a 1.93

South
High 16.59 a 2.08 8.01 a 2.29 5.32 a 1.88
Low 16.02 a 2.40 8.36 a 1.96 6.16 ab 2.09

Middle 17.26 a 2.96 9.23 a 2.59 6.53 bc 2.57

* Duncan’s multiple-range test, means with the same letter are not significant (p < 0.05).

The elevation of the north slope had significant effects on the β-pinene content. The
β-pinene content at the middle elevation on the north slope was significantly higher than
that at the high elevation, whereas there were no differences in the α-pinene content and
resin productivity at different elevations on the north slope (Figure 5C and Table 4). There
were significant differences in resin productivity between the middle and high elevations of
the south slope (Figure 5D and Table 4). The elevation on the south slope had no significant
effects on the α- and β-pinene content. Again, the α-pinene and β-pinene content and resin
productivity at the middle elevation of the south slope were higher than those at low and
high elevations.
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In total, the α-pinene content was not significantly different at different elevations and
slopes. The β-pinene content was significantly affected by the elevation of the northern
slope, and the resin productivity was significantly affected by the elevation of the south-
ern slope. The mean α- and β-pinene content and resin productivity were not affected
significantly by slope orientation.

4. Discussion

The purpose of this study was to reveal the applicability of NIR for the prediction of α-
and β-pinene content in the resin of slash pine and to determine how the slope orientation
and altitude position affect the α- and β-pinene content in the resin of Pinus elliottii using
the NIR-based technique. The resin production of each plot was also considered because of
its significant difference.

In our study, the relationship between α- or β-pinene and NIR spectra was explored
using selected spectral preprocessing methods and characteristic variables. Comparing the
results in Table 2, The R2 values were slightly lower than those reported for predicting the
pinene or resin content (R2 was approximately 0.90) in pepper (Piper nigrum L.) [14] and
guayule (Parthenium argentatum) [15]. The reason for this disparity may be the complexity
of the measured materials. The essential oils distilled from the peppers were mostly volatile
matter, including approximately ten components, and the resin from the guayule was
measured as one compound for prediction. There are more than 40 components [8] in
the sticky resin collected from slash pine in this research, which could have introduced
relatively more irrelevant information in the collected spectral data, which reduced the
modeling accuracy of α- and β-pinene content.

It is necessary to select effective spectral information to improve the accuracy of a
fitted model [36]. Moreover, smaller wavelengths are feasible for using smaller and lighter
portable spectrometers in field applications [37]. In our study (Table 2 and Figure 2), many
significant regression coefficients for α-pinene and β-pinene at the reduced characteristic
spectral band (based on sMC) were opposite in sign because the two chemicals approximate
the chemical structure with the same molecular weight and elemental composition (C10H6).
Their content had a significant negative correlation in slash pine [7].

Pines secrete resins for their protective benefit in response to injury. Conifers have
evolved complex oleoresin terpene defenses against herbivores and pathogens [38]. The
rate and amount of resin flowing from wounds, the pressure and composition of resin,
and the size and number of resin ducts contribute to conifer tree resistance against abiotic
and biotic injury. Resin pressure within the ducts and the flow of resin from wounds
are directly affected by environmental variables, such as temperature and availability of
water [39]. Thus, the amount of resin is not always significantly related to the biomass
of trees because it responds to injury and environmental variables [11,38,39], especially
adverse situations, as noted above. That is why the resin productivity of the trees on
the south slope was slightly lower than that on the north slope, but the tree height and
DBH showed the opposite results in this research. There were no significant differences in
the α-pinene and β-pinene content and resin productivity between the trees on the north
and south slopes (Tables 1 and 4, Figure 5A), which showed that the average difference
in the environments between the two slopes was not significant for resin production or
components. In contrast, the differences between different regions [22,23] were significant
for the constituents of essential oil.

We also found that the α-pinene content was not significantly different at any position,
whereas the β-pinene content had more variance (Table 4, Figure 5), which showed that
α-pinene was more stable than β-pinene in the resin of slash pine. Lai et al. [4] also found a
significant site effect on β-pinene (p < 0.001) and a weak site effect on α-pinene (p = 0.404).
The significant negative correlation between α- and β-pinene content in the resin of slash
pine [4,7] was the typical characteristic, and the reason would be correlated to the synthetic
route and biological functions of the two monoterpenes. The C5 monomeric precursors
in plants were finally converted into monoterpenes (C10) by the action of shared terpene
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synthases [38,40], which means that more α-pinene was synthesized and less β-pinene
was produced.

In this research we mostly discussed the α- and β-pinene content in the resin tap-
ping from the stem of the slash pine. The content of α- and β-pinene in the essential
oil distilled from the needles or twigs of other pine species such as Pinus nigra [22,23] or
Pinus sylvestris [11] have different rules. For example, the α- and β-pinene content in the
essential oil distilled from needles of Pinus nigra in Denizli, Turkey [23] was 4.51–49.63%
and 1.42–13.07%, respectively, which showed that the α-pinene content in the essential oil
had more variance.

5. Conclusions

Our results have shown that we can use NIR spectroscopy to quickly and accurately
predict the α- and β-pinene content in resin. The most important wavelength regions
were found by the sMC variable selection method, which showed that many significant
regression coefficients for α-pinene and β-pinene at specific wavelengths were opposite
in sign. The prediction models were successfully implemented in turpentine prediction
research as a reliable and economical method. The results also showed that a barren slope
position (especially mid-slope) could improve the α-pinene and β-pinene contents and
resin productivity of slash pine, and the β-pinene content in the resin had more variances
in this research.
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