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Abstract: A novel perception of botanic gardens as complex “factories of molecules” (Lombardy
Region Project–Lr. 25/2016, year 2021), that mediate plant–environment interactions, and are the
basis of their utility for humans, is presented. The core-topic is the medicinal plant heritage of the
Ghirardi Botanic Garden (Toscolano Maderno, Brescia, Italy) of the University of Milan. In this work,
we studied Myrtus communis L. subsp. communis (Myrtaceae) at multiple scale levels: macro- and
micromorphological, with special emphasis on the secretory structures responsible for the production
of secondary metabolites; phytochemical, with the analysis of the essential oil (EO) composition from
leaves (fresh, dried, stored at −20 ◦C and at −80 ◦C) and fruits over two consecutive years (2018 and
2019); bio-ecological, with a focus, based on literature data, on the ecology and biological activity
of the main EO components. The occurrence of secretory cavities producing terpenes, along with
flavonoids, was proven. A high level of chemical variability across the obtained EO profiles emerged,
especially that concerning quantitative data. However, regardless of the different conservation
procedures, the examined plant part, or the phenological stage, we detected the presence of three
ubiquitous compounds: α-pinene, 1,8-cineole, and linalool. The overall results will serve to enrich the
Ghirardi Botanic Garden with novel labeling showing accurate and updated scientific information in
an Open science perspective.

Keywords: myrtle; botanic gardens; secretory cavities; essential oils; α-pinene; 1,8-cineole and
linalool chemotype; light microscopy; GC-MS; Open science

1. Introduction

Botanic gardens currently achieve numerous missions related to biodiversity conser-
vation, scientific research, and educational and dissemination activities [1]. Specifically,
thanks to their competences in research and public engagement, university-based botanical
gardens have a great under-exploited potential in fostering activities such as knowledge
transfer and community service, contributing to society’s social and cultural development
and in creating interactions between academia and the territory [2].

Within this framework, the present work aimed at offering a new perception of botanic
gardens as complex “factories of molecules” that mediate the interactions of the plant world
with the environment, and that are at the basis of their utility for humans. The core-topic of
our study is the plant heritage preserved at the Ghirardi Botanic Garden (Department of
Pharmaceutical Sciences, University of Milan, Toscolano Maderno, Brescia, Italy), where
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only medicinal species from all over the world are preserved, and where a dedicated project
is underway (“Ghirardi Botanic Garden, factory of molecules”—Lombardy Region Project,
L.r. 25/2016, year 2021).

In this project, the botanic garden, with special reference to selected target-taxa, was
studied at four-scale research levels (Figure 1): (a) macroscopic, through the description
of diagnostic macromorphological features; (b) microscopic, through the study of the
secreting structures responsible for the production and emission of secondary metabolites;
(c) phytochemical, through the characterization of their profile; (d) bio-ecological, regarding
the evaluation of their biological activity and ecological significance.

Figure 1. Main iconography of the project “Ghirardi Botanic Garden, factory of molecules”.
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Finally, the research actions were declined in scientific dissemination activities, accord-
ing to the University Third Mission, with special regard to the public of the botanic garden.

In this paper, we addressed our attention on myrtle (Myrtus communis L. subsp.
communis, Myrtaceae), preserved at the Ghirardi Botanic Garden since its foundation in
1964, thus becoming the viaticum to describe the “philosophy” of the project.

Myrtus communis subsp. communis is an evergreen shrub or a small tree [3], growing
spontaneously throughout the Mediterranean basin. The stem is branched from the basal
portion and the bark is brownish or reddish in color. The leaves are simple, opposite, sessile
or sub-sessile, glossy, and dark green in color, lanceolate or ovoid-elliptical in shape with
entire or slightly revolute margins and acute apices; they are very aromatic due to the
presence of numerous secretory cavities. The flowers, white in color with yellowish streaks,
are solitary or coupled at the leaf axil. The fruits are ellipsoidal or subspherical berries,
red-violet or blackish in color at maturity, with persistent calyx residues.

Myrtle has a consolidated ethnobotanical tradition and is used in different parts of
the world, against colds and coughs [4], for self-medication of digestive problems, for
skin disorders [5], for the treatment of obesity, hypercholesterolemia, and diabetes [6,7].
The essential oils (EOs), obtained from shoots, leaves and sometimes flowers and berries,
are used eminently in perfumery. The berries are also employed in the production of
bitters and famous liquors. Due to its broad use in folk medicine, myrtle has been widely
investigated, especially with regards to the EO composition [8–14]. In Italy, previous studies
were focused on plants from Sardinia, Sicily, Campania, and Liguria regions [11,12,15–18].
Concerning literature data on the micromorphology, previous investigations were focused
on the structure and ontogeny of the secretory cavities of leaves and flowers by means of
both light and electronic microscopy [19–22].

Literature contributions concerning the biological activity refer to study on the an-
tioxidant and antimicrobial properties, [23–30], along with potential anti-inflammatory
and antitumoral activities [24,25]. Mahmoudvand et al. [31] also documented the relevant
antiparasitic activity of the leaf EO towards strains of Leishmania tropica.

Recent studies revealed that the fruits and seeds are very rich in phospholipids,
polyunsaturated fatty acids, and phenolic compounds, responsible for the effectiveness
in the treatment of digestive disorders, esophagitis, diarrhea, and ulcerative colitis [32].
Previous contributions regarding the biotic interactions of myrtle mediated by secondary
metabolites are lacking.

In this work we investigated Myrtus communis subsp. communis preserved at the
Ghirardi Botanic Garden in the context of a transversal and multidisciplinary project, where
the focus of the scientific research plans is driven by the public perspective. We performed:
(i) a micromorphological and histochemical investigation on the secretory cavities of leaves
and shoots; (ii) the analyses of the EO compositions obtained from different plant parts and
following different conservation procedures over two following years, 2018 and 2019; (iii)
the correlation of the EO profiles with the potential biological and ecological role through
the analysis of literature data. Finally, the results of our study converged in the realization
of a novel interpretative apparatus that shows the visitors of the garden updated details of
the research, performed in an Open science context, in the attempt to strengthen the link
between scientific findings and society.

2. Results and Discussion
2.1. Micromorphological Investigation

The micromorphological survey showed the occurrence of secretory cavities both in
the leaves and in the shoots. In the leaves these structures were variously distributed: in the
palisade parenchyma, where they are located immediately below the adaxial epidermis; in
the spongy parenchyma, and especially in the transition region with the palisade mesophyll
or adjacent to the abaxial epidermis (Figure 2a,b). In the shoots, the cavities had a reduced
diameter and generally occurred in the cortical parenchyma.
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Figure 2. (a,b) Cross section of Myrtus communis subsp. communis leaf colorless (a) and stained with
Toluidine blue dye, (b); (c) Detail of a leaf secretory cavity, colorless; (d) Detail of a shoot secretory
cavity; (e–g) Histochemistry of secretory cavities: Nadi reagent (e), Fluoral Yellow-088 (f), AlCl3 (g).
Scale bars = 100 µm (a,b); 25 µm (c,d,g); 50 µm (e,f).

The secretory cavities, regardless of the distribution pattern, were globose-spheroidal
in shape and had a diameter ranging from 10 to 50 µm (Figure 2c). The cavities displayed a 1-
layered epithelium consisting of secreting cells that released the secreted material inside the
cavity (Figure 2d). The cavities generally appeared empty, but sometimes the accumulation
of colorless or pale-yellow material was observed; the secreted material consisted of small,
densely packed droplets or of large clusters which filled the entire volume of the cavity.
These results are in accordance with those reported in the literature [19,22].
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The histochemical tests revealed consistent results between the cavities of leaves and
shoots (Figure 2e–g). All the dyes specific for lipophilic substances gave positive responses,
with special reference to the NADI reagent indicating the presence of terpenes (Figure 2e,f).
Furthermore, the production of flavonoids was for the first time highlighted in the cavities
of M. communis subsp. communis following the treatment with AlCl3 (Figure 2g), while the
tests specific for polysaccharides and proteins gave negative results.

2.2. Phytochemical Investigation

The EO compositions of M. communis subsp. communis were assessed over two
consecutive years (2018 and 2019), according to different objectives.

(i) In 2018, we analyzed the leaves to evaluate the EO compositions, following different
preservation methods (Table 1).

(ii) In 2019 we analyzed air-dried samples according to the following considerations:
the highest EO yield; the easiest storage procedure; the evidence that the literature
contributions indicated air-drying as the most usual conservation method. Taking into
account these points and the awareness of the variability in the EO profile compared to
the fresh material, we investigated the EO compositions from air-dried leaves collected
at two different stages of the plant cycle, vegetative and reproductive (Table 2). We
further characterized the profile of the fruits at two collection times: early fruiting and
ripening (Table 3).

Table 1. GC-MS profiles of the essential oils obtained from the leaves of Myrtus communis subsp.
communis collected in July 2018 following different preservation procedures: hydro-distillation as fresh
material (FL), freezing at −20 ◦C (20FL), freezing at −80 ◦C (80FL), drying at room temperature (DL).

LRI Class Compound
Relative Abundance (%)

FL 80FL 20FL DL

1 769 OTHER hexanal 0.1 tr 0.1 tr
2 844 OTHER 2-hexenal 0.6 0.3 1.2 0.6
3 912 OTHER isobutyric acid, isobutyl ester 1.0 0.4 0.9 1.1
4 927 MH α-thujene 0.1 0.2 0.4 0.6
5 935 MH α-pinene 38.6 36.2 41.2 41.6
6 961 MH camphene 0.2 0.1 0.1 0.1
7 983 MH β-pinene 0.3 0.1 0.2 0.3
8 990 MH myrcene 0.6 0.2 0.3 0.3
9 1005 MH α-phellandrene 0.2 0.2 0.1 tr
10 1008 MH 3-carene 0.8 0.2 0.3 0.5
11 1019 MH α-terpinene 0.1 0.1 0.1 0.1
12 1028 AH o-cymene 0.1 - 0.3 0.5
13 1030 MH limonene - - 2.9 3.3
14 1036 MH cis-sabinene hydrate 0.7 - - -
15 1049 OM 1,8-cineole 31.0 25.5 28.2 26.1
16 1052 MH α-ocimene 0.4 0.3 0.4 0.3
17 1064 MH γ-terpinene 0.5 0.3 0.5 0.4
18 1074 OM cis-linalool oxide 0.1 tr 0.2 0.3
19 1088 MH α-terpinolene 0.5 0.5 0.7 0.7
20 1100 OM linalool 10.7 28.6 18.7 18.2
21 1125 OM fenchol 0.1 tr tr -
22 1140 OM pinocarveol 0.2 tr 0.2 -
23 1143 OM nerol oxide 0.1 - - -
24 1154 OM pinocarvone 0.1 - - -
25 1159 OM δ-terpineol 0.1 tr - -
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Table 1. Cont.

LRI Class Compound
Relative Abundance (%)

FL 80FL 20FL DL

26 1162 OM borneol 0.1 tr - -
27 1168 OM terpinen-4-ol 0.5 0.2 0.2 0.3
28 1202 OM α-terpineol 1.8 2.1 1.4 2.0
29 1248 OM linalyl acetate 0.9 0.6 0.4 0.8
30 1255 OM trans-geraniol 1.3 0.2 - -
31 1296 OM trans-pinocarvyl acetate 0.1 tr - -
32 1318 OM methyl geranate 0.1 tr - -
33 1347 OM α-terpinyl acetate 0.7 0.3 - -
34 1356 OM nerol acetate 0.5 0.2 - -
35 1376 OM geranyl acetate 0.8 0.8 - -
36 1402 OM methyleugenol 0.9 0.3 - -
37 1423 SH β-caryophyllene 1.0 0.4 0.5 0.6
38 1440 SH aromadendrene 0.1 - - -
39 1461 SH humulene 1.0 0.5 0.4 0.6
40 1492 OTHER 2-tridecanone 0.1 - - -
41 1518 OTHER durohydroquinone 0.8 0.7 - 0.7
42 1562 OS trans-nerolidol 0.4 - - -
43 1588 OS caryophyllene oxide 0.4 tr - -
44 1603 OS trans-bisabolene oxide 0.1 tr - -
45 1616 OS humulene oxide II 0.3 tr - -
46 1660 OTHER 5,8,11-heptadecatrien-1-ol 0.1 - - -
47 1705 OTHER methyl ketostearate tr 0.1 - -

Oil yields 0.36% 0.46% 0.49% 1.08%
Total identified 98.9 99.9 99.7 100.0

Monoterpene hydrocarbons (MH) 42.9 38.5 47.2 48.2
Oxygenated monoterpenes (OM) 50.0 59.0 49.2 47.7
Sesquiterpene hydrocarbons (SH) 2.1 0.9 0.9 1.3
Oxygenated sesquiterpenes (OS) 1.1 0.1 tr tr

Aromatic hydrocarbons (AH) 0.1 tr 0.3 0.5
Other compounds (OTHER) 2.7 1.5 2.1 2.4

The main common compounds are highlighted in grey color. LRI = Linear Retention Index, experimentally
obtained on a HP-5MS column using a C7–C30 mixture of n-alkanes.

Table 2. GC-MS profiles of the essential oils obtained from the dried leaves (DL) of Myrtus communis
subsp. communis collected in March and October 2019.

LRI Class Compounds
Relative Abundance (%)

DL March DL October

1 845 OTHER 2-hexenal 0.1 0.1
2 909 OTHER isobutyric acid, isobutyl ester 0.2 1.0
3 925 MH α-thujene 0.1 tr
4 935 MH α-pinene 27.4 19.5
5 952 MH camphene tr 0.1
6 979 MH β-pinene 0.1 0.4
7 986 MH myrcene 0.1 0.6
8 1004 MH α-phellandrene 0.1 0.2
9 1005 MH 3-carene 0.2 0.8
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Table 2. Cont.

LRI Class Compounds
Relative Abundance (%)

DL March DL October

10 1016 MH α-terpinene tr 0.1
11 1025 AH o-cymene 0.3 0.1
12 1034 OM 1,8-cineole 23.6 35.1
13 1046 MH α-ocimene 0.2 tr
14 1060 MH γ-terpinene 0.3 0.7
15 1074 OM cis-linalool oxide 0.1 0.1
16 1086 MH α-terpinolene 0.4 0.7
17 1097 OM linalool 35.8 25.2
18 1158 OM verbenol 0.1 0.1
19 1167 OM terpinen-4-ol 0.4 0.5
20 1179 OM α-terpineol 3.0 2.0
21 1198 OM cis-geraniol 0.3 0.1
22 1245 OM linalyl acetate 1.0 1.3
23 1255 OM trans-geraniol 1.1 1.0
24 1296 OM trans-pinocarvyl acetate tr tr
25 1318 OM methyl geranate tr 0.1
26 1347 OM α-terpinyl acetate 0.7 0.9
27 1356 OM nerol acetate 0.3 0.5
28 1376 OM geranyl acetate 0.6 1.0
29 1402 OM methyleugenol 0.5 1.0
30 1420 SH β-caryophyllene 1.0 1.6
31 1436 SH aromandendrene tr 0.2
32 1457 SH humulene 1.0 1.8
33 1517 OTHER durohydroquinone 0.6 1.3
34 1588 OS caryophyllene oxide 0.2 0.5
35 1603 OS trans-bisabolene oxide 0.1 0.1
36 1617 OS humulene oxide II 0.2 0.3
37 1660 OTHER 5,8,11-heptadecatrien-1-ol tr 0.2
38 1705 OTHER methyl ketostearate 0.1 0.4

Oil yield 0.96% 1.02%
Total identified 100.0 99.2

Monoterpene hydrocarbons (MH) 28.9 23.0
Oxygenated monoterpenes (OM) 67.4 68.8
Sesquiterpene hydrocarbons (SH) 2.0 3.5
Oxygenated sesquiterpenes (OS) 0.4 0.9

Aromatic hydrocarbons (AH) 0.3 0.1
Other compounds (OTHER) 0.9 2.9

The main common compounds are highlighted in grey color. LRI = Linear Retention Index, experimentally
obtained on a HP-5MS column using a C7–C30 mixture of n-alkanes.
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Table 3. GC-MS profiles of the essential oils obtained from the fruits of Myrtus communis subsp.
communis collected in July (early fruiting) and in October 2019 (ripening stage).

LRI Class Compounds
Relative Abundance (%)
July October

1 770 OTHER hexanal 0.2 -
2 841 OTHER 2-hexenal 0.4 -
3 911 OTHER isobutyl isobutyrate 0.3 0.3
4 927 MH α-thujene 3.3 2.0
5 936 MH α-pinene 11.9 21.4
6 955 MH camphene 0.2 -
7 980 MH β-pinene 1.3 0.9
8 988 MH myrcene 0.9 0.5
9 1007 MH α-phellandrene 2.0 0.3

10 1010 MH 3-carene 6.5 3.8
11 1018 MH α-terpinene 1.6 0.7
12 1029 AH o-cymene 7.6 7.9
13 1035 MH limonene 0.8 6.8
14 1042 OM 1,8-cineole 6.4 12.2
15 1049 MH E-β-ocimene 4.3 1.3
16 1062 MH γ-terpinene 5.1 4.0
17 1083 MH isoterpinolene 0.1 Tr
18 1088 MH α-terpinolene 5.2 3.9
19 1091 AH p-cymenene 0.3 0.3
20 1101 OM linalool 8.8 9.4
21 1111 OTHER (E)-4,8-dimethylnona-1,3,7-triene 0.2 Tr
22 1125 OM fenchol 0.1 Tr
23 1131 OM cis-2-norbornanol 0.1 0.2
24 1149 OM pinocarveol 0.1 0.1
25 1177 OM isoborneol 0.2 0.3
26 1184 OM terpinen-4-ol 1.9 0.8
27 1191 OM ocimenol 0.3 -
28 1201 OM α-terpineol 6.1 3.6
29 1218 OM fenchyl acetate tr Tr
30 1229 OM cis-geraniol 0.3 0.2
31 1247 OM linalyl acetate 1.4 2.9
32 1252 OM trans-geraniol 1.8 1.5
33 1286 OM bornyl acetate 0.1 0.1
34 1320 OM methyl geranate 0.3 0.2
35 1348 OM α-terpinyl acetate 3.6 0.4
36 1356 OM nerol acetate 0.4 0.3
37 1375 OM geranyl acetate 0.9 0.7
38 1401 OM methyleugenol 1.7 1.1
39 1424 SH β-caryophyllene 4.3 2.6
40 1430 SH γ-elemene tr -
41 1434 SH aromandendrene 0.2 0.2
42 1461 SH humulene 2.9 2.0
43 1494 SH guaia-1(10),11-diene 0.2 0.2
44 1499 SH bicyclogermacrene 0.2 0.1
45 1506 SH 3-carene, 4-acetyl 0.3 0.1
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Table 3. Cont.

LRI Class Compounds
Relative Abundance (%)
July October

46 1518 OTHER durohydroquinone 0.6 0.5
47 1521 SH δ-cadinene 0.1 Tr
48 1566 SH germacrene B 0.7 0.3
49 1574 OS isoaromadendrene epoxide tr -
50 1586 OS spathulenol 0.9 0.8
51 1589 OS caryophyllene oxide 1.3 3.2
52 1594 OS globulol 0.2 Tr
53 1607 OS calarene epoxide 0.2 0.2
54 1619 OS humulene epoxide II 0.6 1.5
55 1635 OS aromandendrene epoxide 0.1 0.1
56 1644 OS ledene oxide 0.3 0.3

Oil yield 0.59% 0.48%
Total identified 99.5 100.0

Monoterpene hydrocarbons (MH) 42.9 45.5
Oxygenated monoterpenes (OM) 34.3 34.0
Sesquiterpene hydrocarbons (SH) 8.9 5.5
Oxygenated sesquiterpenes (OS) 3.7 6.0

Aromatic hydrocarbons (AH) 7.9 8.2
Other compounds (OTHER) 1.8 0.8

The main common compounds are highlighted in grey color. LRI = Linear Retention Index, experimentally
obtained on a HP-5MS column using a C7–C30 mixture of n-alkanes.

In 2018 the leaves were treated according to four different preparation methods and
separately hydro-distilled: as fresh material (FL), after freezing at −20 ◦C (20FL), after
freezing at −80 ◦C (80FL), and after air-drying at room temperature (DL). The profiles of
the leaf EOs are reported in Table 1.

The obtained oil yields ranged from 0.36% in the fresh samples up to 1.08% in the
dried ones. The samples stored at −20 ◦C and at −80 ◦C showed similar values (0.49%
and 0.46%).

The more complex profile, due to the presence of the highest number of total com-
pounds, was that obtained from FL (46), followed by 80FL (38). The other two leaf samples
displayed 26 (20FL) and 25 (DL) total compounds. However, the additional compounds in
FL occurred in amounts ranging from 0.1% up to 0.9%.

The dominant compound classes were monoterpenes, accounting for almost the total
relative abundances (FL 92.9%, 80FL 97.5%, 20FL 96.4%, DL 95.9%). The other classes
exhibited total relative abundances lower than 7.0% in FL and lower than 4.5% in all the
other samples. The principal compounds were invariably α-pinene (5, FL 38.6%, 80FL
36.2%, 20FL 41.2%, DL 41.6%), followed by 1,8-cineole (15, FL 31.0%, 80FL 25.5%, 20FL
28.2%; DL 26.1%), linalool (20, FL 10.7%, 80FL 28.7%, 20FL 18.7%, DL 18.2%) and α-terpineol
(28, FL 1.8%, 80FL 2.1%, 20FL 1.4%, DL 2.0%).

The number of compounds common to all the examined leaf samples was established
as 22, including the dominant ones. Considering the two more complex profiles, FL and
80FL, 14 common compounds were detected, all occurring with amounts lower than 1.0%,
except for trans-geranil (30, 1.3%) in the fresh leaves. The FL profile presented seven
exclusive compounds, i.e., cis-sabinene hydrate (14), nerol oxide (23), pinocarvone (24),
aromadendrene (38), 2-tridecanone (40), trans-nerolidol (42), and 5,8,11-heptadecatrien-1-ol
(46), all accounting for amounts lower than 0.7%. The other profiles were not characterized
by the occurrence of exclusive compounds; however, the presence of limonene (13) in
20FL (2.9%) and in DL (3.3%) was noteworthy. The freezing of the material at −80 ◦C
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would appear to preserve the EO qualitative composition of the fresh plant matrix. The
consistent decline of the total compounds after freezing at −20 ◦C and air-drying suggests
the degradation of some of them and the transformation of others.

Referring to the drying procedure, probably due to degradation processes, a rela-
tionship has been documented between limonene and oxygenated monoterpenes, with
a decrease in the relative percentages of geraniol and terpineol derivatives and a simul-
taneous increase in the concentration of limonene [33]; observing our data for FL and
80FL (Table 2), the sum of those derivatives (25, 27, 32, 33, 35) should be compared to the
increasing abundance of limonene (13).

Based on the results of the first phase of our work, it emerges that although the minor
molecules rarely reached a relative percentage of 1.0%, the profiles of the dried material
(usually used and described as the starting plant matrix in literature) were lacking in the
quantity of compounds.

The variability in EO profiles among the different plant matrices, aroused our curios-
ity and therefore a targeted literature survey on ecological topics was conducted. With
regards to the main common compounds, α-pinene (5) is mostly associated with repulsion
mechanisms against numerous herbivorous insects, very often in synergy with 1,8-cineole
or linalool [34]. However, it is also an attractant for common large wood-boring beetles
from southeastern USA, being used in traps to detect and monitor these pests in forested
areas [35]. 1,8-Cineole (15) shows anti-bacterial activity [36] and a powerful toxicity against
important wheat pests [37]; however, it is also recognized as an attractant of different bee
pollinators [38,39]. Linalool (20) is documented to intoxicate and repel herbivores [40] and
possess antibacterial and antifungal activity [41]: however, it also attracts the males of
Ceratitis capitata, one of the most economically important fruit fly pests [42]. α-Terpineol
(28) exhibits insecticidal properties [43] and is emitted from the bark of Pinus sylvestris L. to
deter the black pine sawyer beetle, a serious pest [44]. However, literature refers also to
α-terpineol as a pest attractant of Megacyllene antennata, a species native to southwestern
North America whose larvae feed on woody tissues of mesquite [45].

Concerning the exclusive compounds of the fresh leaves, deterrent actions were docu-
mented for cis-sabinene hydrate (antimicrobial, [46]), aromadendrene, and pinocarvone
(larvicidal, [47]); trans-nerolidol represents a powerful signal that stimulates the expression
of plant defense towards herbivores and different types of parasites [48]. For the remaining
compounds literature data were lacking.

Therefore, the defensive role of the compounds present in the leaf EOs seems to emerge.
In 2019, the DL EOs referring to two different stages of the plant cycle displayed a high

level of consistency (Table 2). The oil yields were similar (0.96%, 1.02%). Both were charac-
terized by 38 different total compounds; unexpectedly, the profile was richer than in 2018
with an increase from 25 to 38 total compounds—this underlines the qualitative variability
in the profiles in different years in relation to the presence of some minor compounds
(with relative percentages lower than 1.0%). The oxygenated monoterpenes (67.4–68.8%)
dominated on monoterpene hydrocarbons (23.0–28.9%), and the other compound classes
accounted for a total percentage of about 5.0% in March and of about 7.5% in October. The
principal compounds were the same even if with different relative percentages: 1,8-cineole
(12, 23.6%, and 35.1%), linalool (17, 35.8%, and 25.2%), α-pinene (4, 27.4% and 19.5%), and
α-terpineol (20, 3.0%, and 2.0%). Only 1,8-cineole increased considerably, whereas the other
main compounds declined from the beginning of the vegetative stage (March) up to fruit
ripening (October). Their prevailing deterrent roles fit entirely with the need to protect the
young leaves in a susceptible developmental phase, i.e., the onset of the vegetative phase in
March. However, considering the increased trend of 1,8-cineole in the two investigated phe-
nological phases and its high relative percentage at fruit ripening, it could be assumed that
at blooming this compound could be also connected to the enhancement of the attraction
towards pollinators, operated by flowers.

Differently from 2018 DL, 2019 DL did not produce limonene (13). As regards to
the ecological role of this compound, it serves as an antifeedant, an antifungal and acts
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as an oviposition deterrent for many herbivores [49,50]. As an example, in a study on
Pinus sylvestris L., authors documented that in both resistant and susceptible cultivars to
the pine moth herbivore, Dioryctria zimmermani, the production of monoterpenes varies
considerably when the plants are attacked: limonene was the only compound that was
consistently higher in resistant cultivars [51].

As regards to fruits (Table 3), we compared samples collected in July (early fruit-
ing stage) and October (ripening stage). The oil yields were similar, being 0.59% and
0.48%, respectively. The fruit profiles showed 56 total compounds in July and 51 in Oc-
tober; the additional compounds of July EO occurred in amounts lower than 0.4% or in
traces. The monoterpenes dominated (77.2%, 79.5%), followed by appreciable amounts of
sesquiterpenes (9.2%, 14.9%). The most abundant compounds (taking into account relative
percentages higher than 5.0%) are the following: α-pinene (5, 11.9%), 3-carene (10, 6.5%),
o-cymene (12, 7.6%), 1,8-cineole (14, 6.4%), γ-terpinene (16, 5.1%), α-terpinolene (18, 5.2%),
linalool (20, 8.8%), and α-terpineol (28, 6.1%) in July; α-pinene (5, 21.4%), o-cymene (12,
7.9%), limonene (13, 6.8%), 1,8-cineole (14, 12.2%), and linalool (20, 9.4%) in October.

In the transition from the early fruiting to the ripening stages, we detected a wide quan-
titative variability for the main compounds, according to the following patterns: α-pinene
(5), limonene (13), 1,8-cineole (14) increased considerably, and linalool (20) underwent a
more limited rise; 3-carene (10), α-terpinene (11), γ-terpinene (16), α-terpinolene (18), and
α-terpineol (28) declined; the amounts of o-cymene (12) were similar.

In the shift from the unripe to the ripe stages, only quantitative differences emerged,
with increased production of such compounds that were present in low proportions in
unripe fruits or vice versa, and with declined production of others. The involvement
in defensive mechanisms was mainly documented for the molecules of the fruit profiles
which underwent quantitative fluctuations from the unripe to ripe stages, regardless of the
trends of decline or increase. These fluctuations can be explained not only in the defense
towards microorganisms, phytophagous insects, or herbivores, but also in tri-trophic inter-
actions. Therefore, we could hypothesize that attraction strategies towards insects capable
of defending the plant from parasites are activated. For example, we cite the following com-
pounds: 3-carene (10, herbivore-induced attractant of Nesidiocoris tenuis, a predator of major
tomato pests [52], o-cymene and γ-terpinene (12, 16, antimicrobials, [53,54]), α-terpinolene
(18, antifeedant, [55,56]); limonene (13, attractant for pest and pathogen attraction during
orange ripening, facilitating access to the fruit for pulp consumers and seed dispersers [57].

The fruits showed 14 exclusive compounds, all present with percentages lower than
0.3% except for E-β-ocimene (15, 4.3%, 1,3%). 13 of these compounds occurred in both
collection times, whereas ocimenol (27) and γ-elemene (40) were only present at the un-
ripe stage.

E-β-ocimene (15) is known to play a crucial role in attracting insect pollinator in floral
blends [58], but it is also a herbivore-induced monoterpenoid acting by giving airborne
signals to nearby plants in response to insect attack [59]. Moreover, it is a common aphid
alarm pheromone that is released by attacked aphids and causes other aphids in the vicinity
to stop feeding and move away [60].

With regard to the major complexity of fruit profiles in comparison to leaves, this
pattern is exactly that expected where the fruit organoleptic properties are used by animals
to find or identify ripe fruits [61], as plants are expected to be selected to begin attracting
them only after the seeds are viable. However, myrtle seeds are mostly dispersed by
frugivorous birds, i.e., passerines [62,63] that rely mainly on vision for the detection and
selection of ripe fruits [64].

Moreover, comparing leaf and fruit profiles and considering the evolution of the three
major compounds, we note that only 1,8-cineole increased, showing the same pattern in
both plant parts. We wonder if the increase of this compound even in ripe fruits can attract
seed dispersers or has defensive action against pathogens by adding its activity to that
of the other main compounds. In addition, several minor compounds also underwent
fluctuations across the ripening period. We cannot exclude the minor compounds from
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these assessments, since their relevance would result in the expression of synergistic
mechanisms underlying the repulsive roles of the most abundant compounds.

At the same time, in multiple trophic chains for insect herbivores and pathogens and
seed-dispersing vertebrates, even compounds which are defensive in other tissues or play
a defensive role in fruits may primarily be selected due to their secondary function in
attracting seed dispersers. For example, limonene, which increased by 8-times at fruit
ripeness, dominates the scent of ripe oranges and was considered to play a defensive role,
but is in fact an attractant of vertebrate and invertebrate antagonists [57], as stated before.

With regards to the literature contributions on myrtle EO composition, in Table S1 we
depicted the main compounds (relative percentages higher than 9.5%), detected in the sam-
ples from different European and extra-European countries [8,9,11,12,15–18,23,30,65–138].
The most investigated samples were those from Iran and Tunisia. Leaves resulted as the
most studied plant material, though fruits and aerial parts were also the target of study
by many researchers. Shoots and flowers, not investigated herein, were the subject of
each of three previous contributions. The drying process resulted as the most common
conservation procedure.

With regard to the chemical composition, myrtle EOs were predominantly constituted
by: (a) α-pinene and 1,8-cineole; (b) α-pinene, 1,8-cineole and linalool; (c) α-pinene, 1,8-
cineole, limonene and linalool; (d) myrtenyl acetate; (e) 1,8-cineole, linalool, and myrtenyl
acetate; (f) 1,8-cineole, α-pinene, and myrtenyl acetate; (g) 1,8-cineole, limonene and
myrtenyl acetate; (h) α-pinene, 1,8-cineole, limonene, linalool, and myrtenyl acetate. The
presence of α-terpineol is also frequent in myrtle EOs in the literature, as was found
in our samples. Other components occurred also in high amounts in myrtle EOs with
different origins, although only in very few cases (e.g., linalyl acetate, methyleugenol, β-
caryophyllene, camphene, (E)-β-ocimene, myrtenol) (Table S1). The first three components
also occurred in all our samples in relative amounts around 1.0%, except for linalyl acetate
and β-caryophyllene that doubled and halved, respectively in the EO profile of ripe fruits
with respect to the unripe stage; camphene was present in percentage lower than 0.5% and
the last two compounds were lacking.

According to literature, the factors that can influence the chemical composition of
myrtle EOs included the following: geographical origin, plant material used, conservation
method, analytical method, plant phenological stage, wild-growing or cultivated plants,
and the existence of different genotypes or chemotypes [65].

As a whole, the profiles investigated herein showed the most complex compositions
compared to the EOs known from the literature, regardless of the studied plant part. Indeed,
our EO profiles showed invariably the greatest number of several minor compounds.

Concerning the comparison with the previously investigated Italian samples, our
study represents the first survey performed on M. communis in Northern Italy. Qualitative
and quantitative differences emerged; however, the main compounds were ubiquitous even
if present in different relative abundances [11,12,15–18]. Our samples were characterized
by the highest amounts of α-pinene, which varied in relative percentages according to the
conservation method, declining with the drying process.

In the samples investigated herein, the major components of the EOs obtained from
leaves and berries were invariably α-pinene, 1,8-cineole, and linalool. Noteworthy was
the exclusive presence of limonene in the air-dried and −20 ◦C stored leaves of 2018 and
in the ripe fruits. Therefore, the target-species cultivated at the Ghirardi Botanic Garden
belongs to the α-pinene, 1,8-cineole, and linalool chemotype and is characterized by the
lack of myrtenal acetate. The other investigated Italian samples, from Sardinia, Campania,
Liguria, and Sicily belonged instead to the α-pinene, 1,8-cineole, and limonene and linalool
chemotype [11,12,15–18]; however, it was ascertained that all the Italian samples lacked
myrtenal acetate. This ester was found on the contrary in the myrtle EO from various
Mediterranean countries, i.e., Tunisia, Morocco, Albania, Croatia, Montenegro, and Turkey
(Table S1).
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Finally, a literature survey was also performed on the biological activity ascribed
to myrtle EOs. Different authors referred to antioxidant [23,24], antifungal [26–28]), and
antimicrobial properties [65]. Anti-mutagenic effects [27] and anticancer activity of the
EOs against P815 and MCF-7 tumor cell lines [24] were also documented, along with
anti-diabetic properties and the effect on LDL oxidation [24,25]. Previous in vitro studies
also documented the relevant antiparasitic activity of the leaf EO of myrtle towards strains
of Leishmania tropica [31].

2.3. Scientific Dissemination

The scientific results reported in the “Micromorphological investigation” and “Phy-
tochemical investigation” sections converged in the realization of a new interpretative
and iconographic apparatus for M. communis L. subsp. communis at the Ghirardi Botanic
Garden (Toscolano Maderno, Brescia, Italy). In addition to the plant macroscopic features,
it highlights the microscopic morphology, the main components of the EO profile, along
with data concerning their ecological roles and biological activity (Figure 3).

Myrthus communis  L. subsp.  communis 

family: Myrtaceae 
origin: Mediterranean region   
  

with the support ofin collaboration with

project realized within the call for the  
enhancement of Museums di Regione  
Lombardia. Lr. 25/2016 - annuity 2021.

ETHNOBOTANICAL USES 
The leaves and the fruits are used in the treatment of obesity 
and hypercholesterolemia, in addition to colds, coughs and 
digestive disorders. Moreover, the anti-inflammatory and 
antimicrobial properties are noteworthy.

BIOLOGICAL ACTIVITY
Linalool possesses interesting leishmanicidal properties.

D ECOLOGICAL ROLE
alpha-pinene is associated with repulsion mechanisms against 
some insects, in particular beetles.

MACROSCOPIC OBSERVATION
Shrub with stem branched from the basal portion. The leaves, very 
aromatic and glossy-green,  are simple and opposite. The flowers 
are white and the fruits are ellipsoidal berries, purple-bluish in 
color at maturity.

A

MICROSCOPIC OBSERVATION

The structures responsible for the production and accumulation of 
the essential oil are globose-spheroidal secretory cavities present 
in leaves and stems.

B

OLFACTIVE PERCEPTION

The essential oil obtained from leaves, twigs and fruits is 
characterized by the presence of high amounts of alpha-pinene 
and linalool.

C

CH
3

H  3C

H  3C

3H  3C

H  3C

H  2C

H  O

H  C

Please, be careful! The part of the plant you use and the way you store it, can make a huge difference!

Figure 3. New labelling of Myrtus communis L. subsp. communis at the Ghirardi Botanic Garden
(University of Milan, Toscolano Maderno, Brescia, Italy).

As a future work perspective, we will add a specific QR Code, a machine-readable
barcode label, referring to information stored by URLs, i.e., plain text, images, geolocation.
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3. Materials and Methods
3.1. Plant Material

Myrtus communis L. subsp. communis is cultivated at the Ghirardi Botanic Garden,
Department of Pharmaceutical Sciences, University of Milan (Toscolano Maderno, Brescia,
Italy). Prof. G. Fico identified the plant according to Pignatti et al. [3].

The samplings were performed over two consecutive years, 2018 and 2019 (Table 4).
In 2018, leaves were collected and divided into four aliquots, each subjected to a different
storage procedure, i.e., hydro-distilled as fresh material, freezing at −20 ◦C, freezing at
−80 ◦C and drying at room temperature away from direct sunlight for 30 days. In 2019,
leaves were gathered at two different times, March, and October, corresponding to different
stages of the plant cycle, vegetative and reproductive; then they were air-dried. Moreover,
fruits were gathered and dried at two different collection times, early fruiting (July) and
ripening (October).

Table 4. Collection details of the analyzed plant samples of Myrtus communis subsp. communis in
2018 and 2019. March corresponds to the onset of the plant vegetative growth, July to the fruiting
stage, October to the fruit ripeness.

Plant Material Fresh Leaves −80 ◦C Frozen
Leaves

−20 ◦C Frozen
Leaves Dried Leaves Dried Unripe

Fruits
Dried Ripe

Fruits

Year 2018 7 July 7 July 7 July 7 July - -

Year 2019 - - - 3 March 3 July 2 October2 October

Voucher specimens were labelled with the codes GBG2018/048 and GBG2019/052
and deposited in the Herbarium of the Ghirardi Botanic Garden.

3.2. Chemicals

Solvents were of gradient grade purity and purchased from either Exacta Optech
Labcenter SpA (San Prospero (MO), Italy) or VWR International (Milan, Italy). All the
reagents were of reagent grade purity, purchased from Sigma Aldrich (Merck group, Milan,
Italy), Fisher Scientific Italy (Rodano (MI), Italy), or VWR International (Milan, Italy), and
used as received.

Observations by Light and Fluorescence microscopy were performed under a Leitz
DM-RB Fluo Optical Microscope equipped with a Nikon DS-L1 digital camera.

3.3. Micromorphological Investigation
Light Microscopy and Fluorescence Microscopy

The micromorphological investigation under Light microscopy and Fluorescence
microcopy was performed on leaves and shoots, collected from the same individual,
in July 2018. We used both fresh material and fixed samples included in historesin
(Technovit® 7100).

For the fresh material, sections of thickness ranging from 30 to 50 µm were obtained
for fresh leaves using a vibratome, and for shoots using a cryostat.

Samples were also fixed in F.A.A. solution (formaldehyde:acetic acid:ethanol 70% = 5:5:90)
for 10 days at 4 ◦C. Subsequently, fixed samples were washed in 70% ethanol for 24 h; they
were then dehydrated progressively by treatment with 80% ethanol for 2 h, 95% ethanol for
2 h, and then twice in absolute ethanol for 2 h/each. Pre-inclusion was then performed first
with ethanol and historesin in a 1:1 ratio for one night, then with a 1:2 ratio for 2 h and in pure
historesin for 3 h. Finally, the inclusion was done in a polypropylene capsule with addition of
hardener in a ratio 1:15 of basic resin. The historesin samples were cut in 2 µm-sections, by an
ultramicrotome.

At least 10 replicates for leaves and shoots were collected in each year of investigation
to evaluate the level of variability in the morphology, distribution, and histochemistry of
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the secretory cavities. The following dyes were used: Fluoral Yellow-88 for total lipids; Nile
Red for neutral lipids; Nadi reagent for terpenes; Alcian Blue for mucopolysaccharides;
Ruthenium Red for pectins; ferric trichloride for polyphenols; aluminum trichloride and
Naturstoff-reagenz-A for flavonoids.

3.4. Phytochemical Investigation
3.4.1. Preparation of Essential Oils (EOs)

For each harvest period, the dried, frozen, or fresh plant material was weighed, roughly
chopped, and ground, and then subjected to hydrodistillation in a Clevenger apparatus.

The fresh, frozen, and air-dried samples of myrtle of the years 2018 and 2019 were
ground, put into 4 L or 2 L flasks filled with deionized water, with a 1:10 plant mate-
rial/water ratio, and subjected to hydrodistillation using a Clevenger-type apparatus for
2 h, checking that after this time the volume of oil obtained remained constant. Once
obtained, the essential oil was decanted and separated from water, and residual drops were
removed using anhydrous sodium sulphate. The oil yield was estimated on a fresh weight
basis (w/w) for fresh and frozen samples and on a dry weight basis (w/w) for the dried ones.
Due to the complex investigation approach proposed and the presence of only one specimen
of myrtle in the botanic garden, no replicas were performed for distillation. Replicas were
performed in sampling of fresh leaves, to evaluate variation in essential oil composition;
results showed only small variations in relative amounts of single components, which did
not affect the percentage data reported in Table 1.

3.4.2. GC-MS Analysis of Essential Oils

Essential oils were analyzed by GC-MS using two diverse instruments. The first instru-
ment used was an Agilent 6890 N equipped with a 5973 N mass spectrometer. Separation
was achieved on an HP-5 MS capillary column (5% phenyl-methyl-polysiloxane, 30 m,
0.25 mm i.d., 0.1 µm film thickness; J and W Scientific, Folsom, CA, USA) using helium
as the carrier gas (1 mL min−1). The temperature of the oven was set at 60 ◦C for 5 min,
then raised at 4 ◦C min−1 up to 220 ◦C, and finally 11 ◦C min−1 up to 280 ◦C. The TICs
were acquired at 70 eV scanning in the 29–400 m z−1 range. The oil samples were diluted
1:100 in n-hexane, and the volume injected was 2 µL (three injection replicates). Data were
analyzed using MSD ChemStation software (Agilent, Version G1701DA D.01.00) and the
NIST Mass Spectral Search Program for the NIST/EPA/NIH Mass Spectral Library v. 2.0.
The identification of essential oil components was performed by comparison of retention in-
dices, calculated using a C8–C30 series of n-alkanes (Sigma-Aldrich, Milan, Italy) and mass
spectra of unknown peaks with those contained in the commercial libraries WILEY275,
NIST 08, ADAMS, and FFNSC2 as well as those in a homemade library. Percentage val-
ues of essential oil components were obtained from the peak areas in the chromatogram
without the use of correction factors.

The second GC-MS instrument was a Thermo Scientific TRACE ISQ QD Single
Quadrupole GC-MS. EO separation was performed by a capillary column VF-5ms (5%
phenyl-methyl-polysiloxane, length 30 m, 0,25 mm i.d., 0.1 µm film thickness); the tempera-
ture gradient was: 8 min at 50 ◦C, then 4 ◦C/min until 60 ◦C, then 6 ◦C/min from 60 ◦C to
160 ◦C and finally 20 ◦C/min from 160 ◦C to 280 ◦C. Injector and detector temperatures
were set to 280 ◦C; carrier gas He, flux 1 mL/min: the mass range detected was 50–500 m/z.
EO were analyzed pure or diluted 1:100 with n-hexane, with injection volume of 1 µL.

Mass spectra were analyzed by Wiley Mass spectra Library, NIST Mass Spectral
Search Program e NIST Tandem Mass Spectral library 2.3; compounds were identified by
mass fragmentation and retention index, compared with data stored in mass databases
(WILEY, NIST18).
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4. Conclusions

This multidisciplinary work on M. communis subsp. communis enabled the following:

(i) to describe for the first time, by digital light microscopy, the distribution pattern
of the secretory cavities in full-expanded leaves and shoots—the latter has never
been investigated before—and the histochemistry of their secretory products (mainly
terpenes, and flavonoids).

(ii) to characterize the profile of EOs obtained across two consecutive years (2018 and 2019)
from different plant matrices (leaves and fruits), subjected to different treatments
(fresh, −20 ◦C stored, −80 ◦C stored, and dried leaves). For leaves, the optimal
conservation techniques in relation to the highest oil yield and to the more complex
bouquet resulted in air-drying at room temperature and hydrodistillation of fresh and
−80 ◦C/frozen materials, respectively.

(iii) to assign plant growing at the study area to the α-pinene, 1,8-cineole, and linalool
chemotypes.

(iv) to speculate, based on literature data, that the main substances produced by leaves
and fruits act synergistically for simultaneous protection against pests and pathogens
and in attracting natural predators and parasitoids of damaging herbivores, thus
protecting plants from further damage.

(v) to channel the scientific results in a novel and original pictorial apparatus for the
target taxon at the Ghirardi Botanic Garden.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants11060754/s1. Table S1. Chemical composition of the essential
oils of Myrtus communis of different origin on the basis of literature data. From Hennia et al. [65],
modified.
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