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Abstract: Climate change and climate variability are projected to alter the geographic suitability
of lands for crop cultivation. Early awareness of the future climate of the current cultivation areas
for a perennial tree crop like coconut is needed for its adaptation and sustainable cultivation in
vulnerable areas. We analyzed coconut’s vulnerability to climate change in India, based on climate
projections for the 2050s and the 2070s under two Representative Concentration Pathways (RCPs):
4.5 and 8.5. Based on the current cultivation regions and climate change predictions from seven
ensembles of Global Circulation Models, we predict changes in relative climatic suitability for coconut
cultivation using the MaxEnt model. Bioclimatic variables Bio 4 (temperature seasonality, 34.4%)
and Bio 7 (temperature annual range, 28.7%) together contribute 63.1%, which along with Bio 15
(precipitation seasonality, 8.6%) determined 71.7% of the climate suitability for coconuts in India.
The model projected that some current coconut cultivation producing areas will become unsuitable
(plains of South interior Karnataka and Tamil Nadu) requiring crop change, while other areas will
require adaptations in genotypic or agronomic management (east coast and the south interior plains),
and yet in others, the climatic suitability for growing coconut will increase (west coast). The findings
suggest the need for adaptation strategies so as to ensure sustainable cultivation of coconut at least in
presently cultivated areas.

Keywords: coconut; high temperature; prediction; MaxEnt; vulnerability; climate change

1. Introduction

Coconut (Cocos nucifera L.) is an environmentally friendly smallholder palm of the
tropical environment, cultivated in more than 94 countries in the world over 11.99 M
ha, producing 67.04 billion nuts with a productivity of 5592 nuts ha−1 [1]. Indonesia
is the largest coconut-producing country followed by the Philippines, while India, with
2.1 million ha and 2.73 million t copra, occupies third place in area and second place in
production. Around 80 million people depend directly on coconut for their livelihood [2].
The coconut industry, which traditionally relied upon copra and coconut oil, and to some
extent coir, is experiencing a tremendous transformation towards product diversification,
high value product development, by-product utilization, and more importantly, is now
being used as health drink [3]. Of late, the nutraceutical and functional food properties of
tender coconut water, virgin coconut oil [4], and inflorescence sap [5,6] are being harnessed
for a diversity of health products and preventive medicine applications [7–9]. The health
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benefits of coconut are driving its sales. As a result of this, since 2000, a steady annual
increment has been seen for coconut and coconut products and this is predicted to continue
increasing further [10].

To strike a balance between future demand and supply, production has to be aug-
mented either through increased productivity or through cultivating a larger area. The
global cultivation area of coconut clearly indicates that no significant area expansion has
taken place during the 2010 to 2015 period. Meanwhile, during the last decade, coconut
growing regions experienced frequent severe weather events like drought and flood and
numerous pests and diseases infestations, as a result productivity declined, and global
coconut production stagnated [11]. Hence, it may be a great challenge to increase the ex-
pected production unless adoptive measures against the predicted threat of climate change
are addressed.

Climate variables such as temperature, precipitation, and salinity have enormous
impacts on the growth and development of coconut as in other species, and these factors
had restricted its cultivation to southern geographical regions of India [12–15]. These
variables alter the physiology, phenology, behavior, and ecological interactions of the
crops [16–18] and affect the production faster than expected [19]. High temperature, to
a large extent, had offset the otherwise positive effect of the rising atmospheric CO2 on
coconut seedlings, which occurs in many C3 crops [20]. This suggests that climate change
variables must be assessed together to ascertain how a changing climate will impact
coconut [21]. The type of combinatorial experiments that study the effects of both warming
and elevated CO2 on coconut at different stages of growth are very much limited. Coconut
grows well in north India, but when the summer temperature goes up (Tmax > 40 ◦C) under
low humidity nut production is severely dented. Pollen germination on stigma [22] and
pollen tube growth through style [23] in coconut is highly sensitive to high temperature
resulting in poor fertilization and nut set. Similar to high temperature, water limitation is
another common limitation in coconut ecosystems; more than 60% of the crop is grown
under rainfed condition. The interaction effects of rising CO2, warming, and water deficit
in coconut is not well studied, but is well studied in other perennials like grassland [24,25]
or cocoa [26]. The lack of sufficient data on the response of coconut to climatic variables led
us to use the correlative model MaxEnt to assess the coconut suitability/unsuitability of
a region.

In order to predict resulting changes in the relative climatic suitability of crop-growing
regions under future climate scenarios, MaxEnt is widely used and can run with presence
data alone [27]. MaxEnt is considered to be the best method among the species distribution
modeling (SDM) techniques [27,28] due to its higher success rate and excellent results
even with a low sample size [29]. It is an important aid in understanding the influence of
climate change on species distributions [30–32]. MaxEnt was used to predict the change
in climate of some of the plantation growing areas like areas growing cocoa in African
countries [33,34], coffee in Zimbabwe [35], and other agricultural crops [36–38]. Despite the
important role of coconut in safeguarding the livelihood of millions of people in the south
Indian region, the literature shows that there has been little research into the future climate
suitability of the region for coconut cultivation. The present study aims to evaluate the
potential impacts of climate change on the suitability of a habitat for coconut cultivation
and fill this key research gap. We used the MaxEnt model with the kuenm framework in
R software [39]. The specific objectives of this study were to (a) determine the potential
impacts of environmental variables on coconut cultivation; (b) model the current and future
suitability for coconut cultivation under two climate scenarios (RCP 4.5 and RCP 8.5) for
the years 2050 and 2070; and (c) identify the potential changes in the suitability of the land
for coconut cultivation. We also suggest adaptation measures to reduce the vulnerability of
coconut to the projected changes.
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2. Methods
2.1. Study Area

The coconut palm in India is grown under varying climatic and soil conditions mostly
between 8◦4′ N and 20◦ N latitudes. The study area and coconut occurrence points are
shown in Figure 1. Major coconut growing states and their district-wise area and climate
and soil characteristics are presented in Table 1. During the 1960s, the west coast of India, i.e.,
Kerala and coastal Karnataka, were the traditional coconut cultivation areas. Out of the total
area, the major share of nearly 70% was in Kerala followed by 13.65% in Karnataka, only
7.6% in TN (Tamil Nadu), and 4.8% in AP (Andhra Pradesh). Over the years, cultivation
has spread to the plains of Karnataka and TN, resulting in increase in the Karnataka and
TN share to 28% and 20.3%, respectively, with only a marginal increase in AP (5.2%) and a
sharp decline in the Kerala share to 35% (CDB; https://www.coconutboard.gov.in, accessed
on 22 June 2021). The west coast, with its high rainfall (annual rainfall is >2000 mm) and
moderate temperature (Tmax, maximum temperature of 34 to 36 ◦C), is ideal for coconut
cultivation. However, on the east coast, the rainfall is low (around 1000 to 1200 mm) and
Tmax reaches a maximum of 40 to 42 ◦C in some of the coconut growing regions.
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Figure 1. (a) Map showing the spatial distribution of coconut in different regions of India. State-
wise and district-wise area data 2018-19 obtained from https://coconutboard.nic.in/Statistics.aspx,
accessed on 7 January 2021 Numbers on the map show the coconut growing states viz. Kerala (1),
Karnataka (2), Goa (3), Maharashtra (4), Gujarat (5), Tamil Nadu (6), Andhra Pradesh (7), Odisha (8),
West Bengal (9), and Assam (10); and (b) the red point indicates the coconut occurrence points used
in model running.

https://www.coconutboard.gov.in
https://coconutboard.nic.in/Statistics.aspx
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Table 1. Characteristics of some of the major coconut growing districts of India from which the occurrence data was collected as input to MaxEnt model. Humidity
is the range shown for the summer months (March, April, and May). Occurrence points are the number of points for each location after model rarefaction.

State Area
(000 ha)

Major
Districts

Area
(000 ha) Latitude Longitude Soil Type

Temperature Range (◦C) Humidity (%)
(Range)

Precipitation
(mm)

Occurrence
PointsMinimum Maximum

Kerala 761

Kozhikode 112.80 11.2588◦ N 75.7804◦ E Alluvial, lateritic 16.9–24 28.2–36 46–92 3592 51

Malappuram 105.09 11.0510◦ N 76.0711◦ E Loamy 12–24.2 23.7–36 44–94 2877 60

Kannur 85.97 11.8745◦ N 75.3704◦ E Sandy loam to clay 18.1–23.8 30–36 45–95 3831 51

Thrissur 80.58 12.4996◦ N 74.9869◦ E Sandy loam to sandy 17–24.2 29.8–34 53–99 3162 44

Kasaragod 67.08 12.4996◦ N 74.9869◦ E Red sandy loam, sandy 20.2–23.8 31.5–36 36–93 4245 38

Karnataka 619

Tumkur 157.37 13.3379◦ N 77.1173◦ E Red loamy & black 15–17.4 31–37.1 11–90 554 89

Hassan 52.32 13.0033◦ N 76.1004◦ E -do- 14.8–17.7 30–36 34–94 1276 36

Chikkmagaluru 40.93 13.3161◦ N 75.7720◦ E Clay loam 11.8–18.3 28–36 33–93 2019 28

Chitradurga 40.80 14.2251◦ N 76.3980◦ E Red sandy loam 15.7–17.8 33.9–38 11–90 508 27

D. Kannada 20.39 12.8438◦ N 75.2479◦ E Laterite & sandy loam 13.9–23.2 28–35.2 36–93 4089 10

Tamil
Nadu 436

Coimbatore 87.41 11.0168◦ N 76.9558◦ E Sandy loam 10.2–20.9 23.7–38 23–95 1149 48

Thiruppur 60.33 11.1085◦ N 77.3411◦ E Loamy & alluvial 10.2–20.9 23.7–38 23–95 1149 30

Thanjavur 37.33 10.7870◦ N 79.1378◦ E Sandy 21.1–23.3 34.4–41 30–91 850 24

Dindigul 29.22 10.3624◦ N 77.9695◦ E Loamy & Sandy loam 8.6–20.5 22.5–41 29–90 1015 25

Kanyakumari 24.10 8.0883◦ N 77.5385◦ E Saline & Coastal 16.4–24.2 25.7–36 47–95 1254 15

Andhra
Pradesh

111 E. Godavari 52.30 17.3213◦ N 82.0407◦ E Red clay & alluvial 13–22.2 31.3–42 30–93 1274 12

W. Godavari 22.09 16.9174◦ N 81.3399◦ E Alluvial & sandy
alluvial 15.6–21.3 34.5–43 49–98 1166 36
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2.2. Coconut Occurrence Data

The data on major coconut growing states and districts was sourced from the Coconut
Development Board (CDB; https://www.coconutboard.gov.in, accessed on 7 January 2021)
website. From the list, the districts with a large area under coconut cultivation were selected
for the study. From each of these districts, the names and areas of the village with extensive
coconut cultivation were obtained from the agriculture/horticulture officer of the respective
district. In addition to these, the district and village level data for the state of Karnataka
was sourced from the crop survey website (www.cropsurvey.karnataka.gov.in, accessed
on 23 February 2021). In India, a village is a clustered human settlement or community,
larger than a hamlet but smaller than a town, with a population typically ranging from
a few hundred to a few thousand. Villages are the smallest unit for which the coconut
cropped areas and production records are maintained by the agricultural or horticultural
offices. Through this process, nearly 3000 coconut occurrence points were collected from
different coconut growing regions, followed by manual verification using Google Earth
map. The Google Earth platform provides high-resolution images of coconut orchards and
it is, therefore, suitable for identifying coconut cultivation areas. These data, along with the
point data collected using Global Positioning System (GPS) in previous studies, constituted
the occurrence points (Figure 1b). To reduce the issue of spatial sampling biases caused by
multiple autocorrelated locations, the coconut occurrence points were spatially rarefied at
5 km using the SDM Toolbox 2.0 [40] in ArcGIS v. 10 (Registration Number EFL431708926).
The final coconut occurrence dataset used for building SDMs included 1008 occurrence
records. Figure 1b presents the final coconut records utilized for the modeling exercise.

2.3. Selection of Environmental Variables

As environmental predictors, we used 19 bioclimatic variables (Table 2) from Paleoclim.
org [41] for historical (1979–2013) and current climate (baseline) data and from the World
Clim.v1.4 database (http://www.worldclim.org/download, accessed on 15 March 2020) [42]
for the future climate data for the 2050s (average for 2041–2060) and 2070s (average for
2061–2080). Variables representing the two future scenarios ((representative concentra-
tion pathway RCP 4.5 (intermediate scenario) and RCP 8.5 (very high emission scenario))
were an ensemble of 7 GCM Models (BCC-CSM1-1, GFDL-CM3, HadGEM2-ES, MIROC5,
MIROC-CHEM, MIROC-ESM, NorESM1-M), because of their good predictive ability of
climate for India [43,44]. Predictors were obtained at two-and-a-half-minute spatial resolu-
tion (approximately 5 km2 per pixel), which is an adequate resolution for ecological niche
models based only on climate variables [29].

It is recommended to include non-climatic variables to enhance the predictive perfor-
mance of SDMs [45,46]. Hence, we included soil and two topographical variables elevation
and land cover (Table 2), which have a considerable influence on coconut cultivation in
India. Soil data were downloaded from FAO (http://www.fao.org/soils-portal/data-hub/
soil-maps-anddatabases/harmonized-world-soil-database-v12/en/, accessed on 22 May
2020), and elevation data were sourced from the shuttle radar topography mission dataset
(https://cgiarcsi.community/data/srtm-90m-digital-elevation-database-v4-1/, accessed
22 May 2020). The source of land cover data was Glob Cover 2009 (http://due.esrin.esa.
int/page_globcover.php, accessed on 22 May 2020). All the data were converted into
two-and-half minute spatial resolutions (approximately 5 km2 per pixel), the same as that
of climate variables.

To select a distinct set of variables that contributed the most to the models, we used
the correlation analysis of the SDM Toolbox 2.0 by eliminating one variable per pair with
correlations of (r > 0.85) (Table 3). Seven highly correlated climate variables were eliminated
and the remaining 12 bioclimatic variables, along with 2 topographical variables and soil
were selected for the model calibration.

https://www.coconutboard.gov.in
www.cropsurvey.karnataka.gov.in
Paleoclim.org
Paleoclim.org
http://www.worldclim.org/download
http://www.fao.org/soils-portal/data-hub/soil-maps-anddatabases/harmonized-world-soil-database-v12/en/
http://www.fao.org/soils-portal/data-hub/soil-maps-anddatabases/harmonized-world-soil-database-v12/en/
https://cgiarcsi.community/data/srtm-90m-digital-elevation-database-v4-1/
http://due.esrin.esa.int/page_globcover.php
http://due.esrin.esa.int/page_globcover.php
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Table 2. Bioclimatic and topographic variables (in bold texts) used for predicting habitat suitability for coconut in India and their contribution to habitat suitability.

Category Units Sources Variables Abbreviations Units % Contribution

Bioclimatic

WorldClim—Global Climate Data
http://www.worldclim.org/,

accessed on 22 May 2020
Paleoclim.org

Annual mean temperature BIO1 ◦C 1.0
Mean diurnal range BIO2 ◦C 3.1

Isothermality BIO3 unitless 5.6
Temperature seasonality BIO4 unitless 34.4

Max. temperature of warmest month BIO5 ◦C
Min. temperature of coldest month BIO6 ◦C 4.4

Temperature annual range BIO7 ◦C 28.7
Mean temp of wettest quarter BIO8 ◦C
Mean temp of driest quarter BIO9 ◦C

Mean temp of warmest quarter BIO10 ◦C
Mean temp of coldest quarter BIO11 ◦C

Annual precipitation BIO12 mm 2.0
Precipitation of wettest month BIO13 mm
Precipitation of driest month BIO14 mm 4.2

Precipitation seasonality BIO15 unitless 8.6
Precipitation of wettest quarter BIO16 mm
Precipitation of driest quarter BIO17 mm

Precipitation of warmest quarter BIO18 mm 1.1
Precipitation of coldest quarter BIO19 mm 2.2

Topographical
http://www.fao.org/soils, accessed on 22 May 2020 Soil unitless 0.4

http://due.esrin.esa.int/page_globcover.php,
accessed on 22 May 2020 Land cover unitless 0.7

https://cgiarcsi.community/data/srtm,
accessed on 22 May 2020 Elevation meter 3.5

http://www.worldclim.org/
Paleoclim.org
http://www.fao.org/soils
http://due.esrin.esa.int/page_globcover.php
https://cgiarcsi.community/data/srtm
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Table 3. Correlation coefficients (Rs) between 19 environmental variables, 2 topographical variables (elevation, land cover) and soil using the SDM Tool box 2.0.

Layer Bio 1 Bio 2 Bio 3 Bio 4 Bio 5 Bio 6 Bio 7 Bio 8 Bio 9 Bio
10

Bio
11

Bio
12

Bio
13

Bio
14

Bio
15

Bio
16

Bio
17

Bio
18

Bio
19 Soil Land

Cover Elevation

Bio 1 1.000
Bio 2 0.178 1.000
Bio 3 0.359 0.117 1.000
Bio 4 −0.322 0.325 −0.798 1.000
Bio 5 0.848 0.620 0.257 −0.075 1.000
Bio 6 0.820 −0.197 0.649 −0.761 0.537 1.000
Bio 7 −0.051 0.827 −0.450 0.751 0.405 −0.553 1.000
Bio 8 0.787 0.137 −0.120 0.190 0.622 0.396 0.185 1.000
Bio 9 0.864 0.117 0.651 −0.614 0.707 0.895 −0.272 0.480 1.000

Bio 10 0.936 0.397 0.173 −0.058 0.944 0.631 0.248 0.782 0.739 1.000
Bio 11 0.886 0.026 0.657 −0.706 0.698 0.968 −0.359 0.454 0.939 0.741 1.000
Bio 12 −0.362 −0.563 −0.277 −0.021 −0.569 −0.207 −0.338 −0.199 −0.368 −0.464 −0.303 1.000
Bio 13 −0.226 −0.433 −0.119 −0.167 −0.389 −0.067 −0.311 −0.167 −0.172 −0.335 −0.126 0.913 1.000
Bio 14 −0.303 −0.529 −0.040 −0.038 −0.524 −0.091 −0.419 −0.218 −0.300 −0.403 −0.237 0.289 0.041 1.000
Bio 15 0.183 0.393 −0.085 0.131 0.338 −0.056 0.395 0.253 0.167 0.264 0.067 0.016 0.315 −0.560 1.000
Bio 16 −0.249 −0.464 −0.163 −0.128 −0.419 −0.094 −0.311 −0.171 −0.213 −0.351 −0.162 0.946 0.993 0.090 0.256 1.000
Bio 17 −0.309 −0.556 −0.164 0.056 −0.536 −0.149 −0.367 −0.156 −0.363 −0.398 −0.296 0.343 0.062 0.948 −0.582 0.120 1.000
Bio 18 −0.537 −0.371 −0.457 0.389 −0.664 −0.528 −0.084 −0.156 −0.613 −0.543 −0.613 0.666 0.393 0.400 −0.265 0.456 0.447 1.000
Bio 19 0.001 −0.339 0.262 −0.395 −0.162 0.244 −0.425 −0.149 0.148 −0.142 0.178 0.452 0.541 0.039 0.094 0.535 0.017 −0.039 1.000

Soil −0.361 −0.158 −0.302 0.242 −0.315 −0.318 0.034 −0.205 −0.383 −0.304 −0.376 0.083 0.030 0.218 −0.103 0.039 0.257 0.099 −0.043 1.000
Land
Cover −0.267 −0.086 −0.147 0.151 −0.290 −0.269 0.004 −0.118 −0.270 −0.277 −0.290 0.237 0.167 0.160 0.046 0.182 0.163 0.266 0.102 0.061 1.000

Elevation −0.809 0.051 0.017 0.032 −0.555 −0.537 0.034 −0.902 −0.556 −0.727 −0.563 0.039 −0.003 0.108 −0.197 0.002 0.056 0.165 −0.005 0.239 0.128 1.000
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2.4. Model

The climate suitability for the cultivation of coconut under the future climate was
studied using MaxEnt 3.4.1 [27]. This software is based upon the maximum entropy
principle, which is freely available at (url:http://biodiversityinformatics.amnh.org/open_
source/MaxEnt/, accessed on 21 November 2021), and holds anything with the maximum
entropy closest to its real state under known conditions [47]. The MaxEnt model is used
to estimate the target probability distribution by finding the probability distribution of
the maximum entropy (i.e., that which is most spread out or closest to uniform) that is
subject to a set of constraints that represent our incomplete information regarding the target
distribution [48,49].

2.5. Model Calibration

The kuenm R package is used for the detailed calibration of the MaxEnt model, its selec-
tion, final model creation, and evaluation [39]. The occurrence data is split into 75–25 subsets
for model calibration and internal testing, respectively, using the kuenm_occ_split function.
The kuenm varComb function was used to generate 16 sets of environmental predictors for
calibration, with the minimum number of variables taken as 14. The model chose variable
predictor set 6 (which excluded Bio 5) for final model running. The variables used for the
final model running with their description are listed in Table 2, and a detailed description of
each variable is available in O’Donnell and Ignizio [50]. We created 2480 candidate models
by combining 16 sets of environmental predictors, 5 values of regularization multiplier
(0.1, 0.2, 0.3, 0.4, 0.5), and 31 combinations of feature classes (l, q, p, t, h, lq, lp, lt, lh, qp,
qt, qh, pt, ph, th, lqp, lqt, lqh, lpt, lph, lth, qpt, qph, qth, pth, lqpt, lqph, lqth, lpth, qpth,
lqpth). The candidate model performance was evaluated based on significance (partial
ROC, with 500 iterations and 50% of data for bootstrapping), omission rates (E = 5%), and
model complexity (AICc). Final model selected is the one with the lowest omission rate
and delta AICc values of ≤2. After the creation of the final model with the parameter sets
selected as best, the model projections were made for RCP 4.5 and 8.5 for the years 2050
and 2070 using the kuenm_mod function. The free extrapolation transfer was selected for
future projections.

2.6. Model Evaluation

The area under the curve (AUC) or receiver operating characteristics (ROC) was used
as the MaxEnt predictive performance metric under the ROC curve. The AUC was an
effective threshold independent index that could evaluate a model’s ability to discriminate
presence from absence (or background) [51]. The MaxEnt output provides an AUC or
sensitivity vs 1-specificity graph, which describes the accuracy and fit of the predicted
model. An AUC value of 0.5 indicated that the model performance was no better than
random, while values close to 1.0 indicated better model performance [51]. The closer the
AUC was to 1, the better the model performance.

2.7. Threshold Selection

The logistic output format ranging from 0 (unsuitable) to 1 (maximum suitability) was
adopted for the model results, which indicates climate suitability for the cultivation of
coconut (probability of presence) [52]. Binary model predictions from each scenario were
overlapped in Arc-GIS v. 10.0 to map the current climatic range and potential future expan-
sion and contraction. The binary suitable/unsuitable area was calculated for each scenario
(current, RCP 4.5, and RCP 8.5), using ‘maximum training sensitivity plus specificity’ as
the logistic threshold cut off value [53] to give an objective numerical overview of potential
climatic suitability contraction and expansion. Maximizing the sum of the specificity and
sensitivity logistic threshold was used to differentiate between presences and absences, as
is recommended for models that use presence-only and background data (e.g., MaxEnt).
It minimizes the mean of the error rate for positive observations and the error rate for
negative observations [54].

http://biodiversityinformatics.amnh.org/open_source/MaxEnt/
http://biodiversityinformatics.amnh.org/open_source/MaxEnt/
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The present and future suitability maps produced by the model ranged from 0 to 1.
These maps were reclassified into five suitability classes, i.e., ‘Barely’ (0–0.05), ‘Very Low
Suitability’ (0.05–0.25), ‘Low Suitability’ (0.25–0.45), ‘Moderate Suitability’ (0.45–0.65),
‘High Suitability’ (0.65–0.85), and ‘Very High Suitability’ (0.85–1.0). Binary rasters were
used to analyze the predicted contraction and expansion areas using the SDM toolbox 2.0.
‘Barely’ and ‘Very Low Suitability’ classes were considered to be unsuitable categories
as per the threshold value, and remaining classifications are considered to be suitable
categories.

3. Results
3.1. Outcome of Model Calibration

The candidate models (2480) generated were statistically significant and better than
null expectations (i.e., predictions from the models were in conformity with testing occur-
rence data more frequently than would be expected by random association of points and
prediction of that areal extent) (Table 4).

Table 4. Generated and selected candidate models and their fit and validation statistics.

Criteria Number_of_Models

All candidate models 2480
Statistically significant models 2480
Models meeting omission rate criteria 0
Models meeting AICc criteria 2
Statistically significant models meeting omission rate criteria 0
Statistically significant models meeting AICc criteria 2
Statistically significant models meeting omission rate and AICc criteria 0
Selected model M_0.1_F_qp

Statistics of the selected model

Mean AUC ratio 1.501
Rate of omission > 0.05% 0.057
AICc 18,636.44
Delta AICc 0

Of the candidate models, none of the models met the omission rate criterion; however,
two models had delta AICc values ≤2. Applying the three evaluation criteria together, one
candidate model M_0.1_F_qp met the full suite of selection criteria for coconut (Figure 2).

3.2. Model Evaluation

The area under the curve (AUC) or receiver operating characteristics (ROC) was used
to evaluate the MaxEnt model performance. The results of the model provided satisfactory
output for the climate suitability prediction for coconut (AUC = 0.899 ± 0.002) (Figure 3).
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3.3. Predictor Variable Influence

The importance level of predictor variables utilized in the MaxEnt model were iden-
tified and highlighted in bold in Table 2. The potential distribution of coconut is more
strongly influenced by bioclimatic factors than soil and topographic factors. Bio 4 (tem-
perature seasonality, 34.4%) had the greatest influence followed by Bio 7 (temperature
annual range, 28.7%). These two together contributed 63.1%, which along with Bio 15
(precipitation seasonality, 8.6%), determined 71.7% of climate suitability for coconut in
India (Table 2). Bio 3 (isothermality), Bio 6 (min. temperature of coldest month), and Bio
14 (precipitation of driest month) are the other major environmental factors and had an
influence of 5.6%, 4.4%, and 4.2% respectively. Topographical parameters like elevation,
land cover, and soil did not have a marked influence on model prediction (<4%).

The graph (Figure 4) depicts the quadratic relationship between bio variables and
climate suitability. Temperature seasonality (Bio 4) was found to have the highest climate
suitability at 3% and the relationship was inverse. With the increase in temperature
seasonality, the climate suitability of coconut is rapidly decreasing. It ranges from value 3 to
19 (greater than the 0.25-threshold value). Similarly, for temperature annual range (Bio 7),
the suitability was the highest at around 3 ◦C and gradually decreased (range 3 to 15 ◦C).
That is, the regions with low difference between the maximum temperature of the warmest
month and the minimum temperature of the coldest month were more suitable for coconut
cultivation. Precipitation seasonality (coefficient of variation) ranging from 4% to 10%
(>0.25 threshold value), showed higher suitability for coconut cultivation (Figure 4).
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3.4. Regional Changes in Predictor Variables

Table 5 shows the model simulated changes in predictor variables under the future
scenarios RCP 4.5 and RCP 8.5 of 2050 and 2070 from the current scenarios of coconut
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cultivation regions. The mean annual temperature over the plantation growing regions of
India is 25.64 ◦C under the present climate, and the model had predicted rise in temperature
in all of the scenarios. RCP 4.5 and RCP 8.5 had projected an increase of 1.73 ◦C and 2.21 ◦C
by the 2050s and 2.1 ◦C and 3.3 ◦C during the 2070s, respectively (Table 5).

Table 5. Annual mean temperature (Bio 1), Isothermality (Bio 3), Temperature Seasonality (Bio 4),
Temperature Annual Range (Bio 7), and Precipitation Seasonality (Bio 15) for the current and future
scenarios of the 2050s and 2070s under RCP 4.5 and RCP 8.5 of India and major coconut growing
states. The values in brackets indicate change from the current value.

Bio Variable Country/State Current
RCP 4.5 RCP 8.5

2050s 2070s 2050s 2070s

Bio 1 (◦C)

India 25.64 27.37 (1.73) 27.78 (2.14) 27.85 (2.21) 28.94 (3.3)
Andhra Pradesh (AP) 27.37 29.15 (1.77) 29.54 (2.16) 29.41 (2.04) 30.51 (3.14)

Karnataka 25.55 27.05 (1.49) 27.40 (1.84) 27.53 (1.97) 28.64 (3.08)
Tamil Nadu (TN) 27.26 28.96 (1.70) 29.30 (2.04) 29.43 (2.17) 30.44 (3.18)

Kerala 26.13 27.59 (1.46) 27.94 (1.81) 28.08 (1.95) 29.00 (2.86)

Bio 3 (%)

India 40.79 47.44 (6.65) 47.64 (6.85) 47.60 (6.81) 47.30 (6.51)
AP 42.33 46.79 (4.46) 47.32 (4.99) 46.92 (4.59) 46.39 (4.06)

Karnataka 45.32 53.18 (7.86) 53.28 (7.96) 53.21 (7.89) 52.49 (7.17)
TN 48.97 56.03 (7.06) 56.61 (7.64) 56.18 (7.21) 54.77 (5.80)

Kerala 47.61 61.63 (14.02) 62.12 (14.51) 62.25 (14.64) 62.17 (14.56)

Bio 4 (%)

India 29.79 31.37 (1.58) 30.93 (1.14) 31.1 (1.31) 31.34 (1.55)
AP 26.27 29.48 (3.21) 28.89 (2.62) 28.62 (2.35) 29.66 (3.39)

Karnataka 20.85 21.96 (1.11) 21.84 (0.99) 22.27 (1.42) 23.39 (2.54)
TN 19.37 21.39 (2.02) 20.83 (1.46) 21.3 (1.93) 22.28 (2.91)

Kerala 10.76 11.74 (0.98) 11.64 (0.88) 11.87 (1.11) 12.35 (1.59)

Bio 7 (◦C)

India 20.09 22.05 (1.96) 22.03 (1.91) 21.85 (1.76) 21.87 (1.78)
AP 18.12 20.50 (2.38) 20.26 (2.14) 19.86 (1.75) 20.12 (2.00)

Karnataka 18.20 19.45 (1.26) 19.27 (1.08) 19.33 (1.14) 19.56 (1.37)
TN 14.64 16.10 (1.45) 15.80 (1.16) 15.96 (1.32) 16.42 (1.77)

Kerala 10.72 11.88 (1.16) 11.65 (0.94) 11.71 (0.99) 11.86 (1.14)

Bio 15 (%)

India 103.8 106.3 (2.5) 104.3 (0.5) 105.6 (1.8) 107.7 (3.9)
AP 88.59 92.54 (3.95) 91.45 (2.86) 92.14 (3.55) 94.41 (5.82)

Karnataka 98.44 101.39 (2.95) 99.41 (0.97) 100.55 (2.11) 103.38 (4.94)
TN 76.81 83.24 (6.43) 79.65 (2.84) 81.5 (4.69) 84.65 (7.84)

Kerala 90.35 87.02 (−3.33) 83.02 (−7.33) 85.79 (−4.56) 87.01 (−3.34)

Bio 4 variability, the bioclimatic variable, was at its lowest for the west coast (Kerala
followed by Karnataka) compared with the east coast (TN and AP) (Table 5). The variability
was 1.59%, 2.54%, 2.91%, and 3.39% for Kerala, Karnataka, TN, and AP respectively for
RCP 8.5, 2070. The trend was similar during the 2050s for both the scenarios, but the
increase was relatively less. The variability, however, was at its lowest with RCP 4.5, 2070
(0.88%, 0.99%, 1.46%, 2.62% for Kerala, Karnataka, TN, and AP respectively). Similar to
Bio 4, the range of extreme temperature conditions (Bio 7) showed a higher fluctuation
on the east coast ((2.38 ◦C for AP (RCP 4.5, 2050) and 1.77 ◦C for TN (RCP 8.5, 2070))
compared with the west coast ((1.37 ◦C for Karnataka (RCP 8.5, 2070) and 1.16 ◦C for Kerala
(RCP 4.5, 2050)).

Precipitation seasonality (Bio 15) showed a relatively high increase under the future
scenarios of AP and TN with a relatively smaller increase for Karnataka (Table 5). The
increase was high for RCP 8.5, 2070. While it was at its lowest for RCP 4.5, 2070. Kerala,
under all of the scenarios, showed marginal decline in precipitation seasonality.



Plants 2022, 11, 731 13 of 23

3.5. Current and Future Projections

The maps of potential distribution of coconut at a national level (in India) under the
current climate and RCP 4.5 and 8.5 for 2050 and 2070 generated by the MaxEnt model
are shown in Figure 5 and Table 6. The model projected that an area of 209,374 km2 is
suitable for coconut cultivation under the current climate, which is 15% of the study area in
India. However, only 7% of this area is on the west coast and in South Interior Karnataka
(Figure 6), Kerala (Figure 7), and TN (Figure 8) has moderate to high suitability, while the
east coast and northeast have low to very low suitability. The area suitable for coconut
cultivation in India has dropped to 11.6%, 12.1%, 12.4%, and 12% for RCP 4.5, 2050, RCP
4.5, 2070, RCP 8.5, 2050, and RCP 8.5, 2070, respectively (Table 6). The maximum decline
was seen in the south interior regions.
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Table 6. Climatically suitable and unsuitable areas for growing coconut under the current and the
future climate of RCP 4.5 and RCP 8.5 and the range expansion and contraction (the values in brackets
are the difference in percentage from total study area) as modeled by MaxEnt for India and major
coconut growing states.

Country/
State Category

Area (km2)

Current RCP 4.5 RCP 8.5

2050 2070 2050 2070

India
(Study
area)

Range expansion 52,617 (3.8%) 61,642 (4.4%) 75,383 (5.4%) 65,164 (4.7%)
Unsuitable 1,184,077 (85%) 1,131,238 (81.2%) 1,122,212 (80.5%) 1,108,471 (79.6%) 1,118,691 (80.3%)

Suitable 209,374 (15%) 161,776 (11.6%) 168,738 (12.1%) 173,169 (12.4%) 172,036 (12%)
Range contraction 47,578 (3.4%) 40,616 (2.9%) 36,184 (2.6%) 37,317 (2.7%)

Karnataka

Range expansion 27,956 (14.5%) 28,348 (14.7%) 38,858 (20.2%) 24,880 (12.9%)
Unsuitable 11,4714 (60) 86,759 (45.1%) 86,366 (44.9%) 75,857 (39.4%) 89,835 (46.7%)

Suitable 77,591 (40) 60,723 (31.6%) 62,994 (32.8%) 67,846 (35.3%) 63,448 (33.0%)
Range contraction 16,869 (8.8%) 14,597 (7.6%) 9745 (5.1%) 14,143 (7.4%)

Kerala

Range expansion 1051 (2.8%) 798 (2.2%) 1009 (2.7%) 1807 (4.9%)
Unsuitable 7439 (20%) 6388 (17.3%) 6640 (17.9%) 6430 (17.4%) 5631 (15.2%)

Suitable 29,565 (80%) 28,599 (77.3%) 28,641 (77.4%) 28,536 (77.1%) 28,998 (78.4%)
Range contraction 967 (2.6%) 925 (2.5%) 1030 (2.8%) 567 (1.5%)

Tamil
Nadu

Range expansion 9804 (7.5%) 15,346 (11.8%) 15,283 (11.7%) 16,144 (12.4%)
Unsuitable 54,141 (42%) 44,337 (34.0%) 38,795 (29.7%) 38,858 (29.8%) 37,998 (29.1%)

Suitable 76,289 (58%) 67,997 (52.1%) 71,356 (54.7%) 71,041 (54.5%) 72,531 (55.6%)
Range contraction 8292 (6.4%) 4933 (3.8%) 5248 (4.0%) 3758 (2.9%)
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3.6. Changes in Coconut Habitat Suitability

In general, the habitat suitability for coconut cultivation at a national level (in India)
remained more or less constant at the future climates of RCP 4.5 and 8.5 of the 2050s and
2070s (Figure 9, Table 6). It is roughly 15% with 8% in the low category, 5% in the moderate
category, and 2% in the high suitability category (Figures 5 and 9). However, there is a
shift in climate suitability category across the coconut cultivation regions of India under
the future climate. Karnataka, which has, at present, 22% in the low category, 18% in
the moderate category, and 1% in the high suitability category may shift to have 31% to
33% in the low category, 11% to 12% in the moderate category, and 2% to 3% in the high
category across the scenarios (Figure 9). The west coast has high suitability, while the
south interior moves to the low suitability category (Figure 6). Kerala, on the other hand,
which has large area in high suitability category (45%) at current climate will shift to have
low suitability and low suitability areas will increase from the current 7% to 16% to 18%
under the future climate (Figure 9). South Interior Tamil Nadu (Figure 8) would have 8%
to 12% high suitability areas under future scenarios from the present 4% (Figure 9). Area
expansion is mostly seen in the barely suitable category, which is not considered for climate
suitable area calculation.
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4. Discussion

This study was the first to explore the impacts of global climate change on the ge-
ographical range and environmental suitability of the habitat of the coconut in India
using MaxEnt modeling. As coconut is grown across different agro-ecological zones of
India, evaluating the impacts of climate change scenarios on the potential cultivable area
will be helpful in understanding the relationships between coconut niches and the cor-
responding environment, identifying priority cultivation areas and planning adaptation
strategies [55–57]. Species distribution models like MaxEnt are extensively used to predict
the change in climate of some of the plantation growing areas like areas growing cocoa
in African countries [33,34], coffee in Zimbabwe [35], and other agricultural crops [36–38].
In our study, for model calibration, we could generate 2480 candidate models involv-
ing environmental predictors and regularization multiplier and feature classes using the
kuenm-R package and select the best candidate model (M_0.1_F_qp) for prediction based
on significance, omission rates, and complexity [39]. The results show that the MaxEnt
model prediction for coconut, having the mean AUC values of 0.899 + 0.002 and indicating
the model prediction, comes under the excellent category, which is consistent with previous
studies [29,57,58].

The MaxEnt model showed that future coconut cultivation is mostly determined by
bioclimatic variables, while the effects of topographical and soil variables were rather
small. In 29 African palm species, the belief that the climate is the most important factor
determining palm distribution, and that habitat and human intervention are not, was
extensively studied and reported [59,60]. As in our studies, temperature seasonality, which
contributed most to the habitat suitability along with cold temperatures, was found to
constrain palm species cultivated [61]. In India, the majority of coconut cultivation area
is within an elevation of 600 m, and the topographic effect on palms is generally seen at
higher elevation of around 2500 m [62]. Though the contribution of soil, a topographic
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factor, is rather small (0.4%); however, its inclusion in the model made the prediction more
accurate as seen in other species [63], otherwise, the model would have predicted more
suitable area than currently exists for the actual current coconut distribution. Thus, as seen
in previous studies, we have confirmed the dominant role of the climate in the natural
cultivation of coconut [29,58].

As coconut is a tropical plant, its cultivation is mainly determined by the temperature.
Optimal temperature for its growth and yield is 27 ◦C ± 5 ◦C and optimum humidity
of >60%. The plant grows well up to an elevation of 600 m above MSL. However, near
the equator, productive coconut orchards can be established up to an elevation of about
1000 m above MSL, providing that temperature is not a limitation. A well-distributed
rainfall of about 200 cm per year is the best for proper growth and higher yield [64–67].
South India, comprising the states of Kerala, Karnataka, Tamil Nadu, and Andhra Pradesh,
occupies >90% of the total coconut cultivation area in the country. All along the west coast
is relatively ideal for coconut cultivation where rainfall is >200 cm, humidity is high, and
Tmax reaches as high as 36 ◦C during the summer (March, April, May). In the south interior,
where rainfall is around 60 cm, Tmax reaches as high as 40 ◦C, and summer humidity is low,
coconut grows well wherever there are irrigation facilities. However, in this region, large
areas are under rainfed conditions. On the other hand, in the eastern region mostly, coconut
is cultivated under irrigation conditions where the rainfall is around 100 cm and Tmax
reaches as high as 43 ◦C. A high temperature (Tmax > 34 ◦C) decreases the photosynthesis
of the coconut seedlings [68] during the reproductive stage. This affects the progamic
phase, i.e., causes poor pollen germination [22] and restricts pollen tube growth through
style [23]. As a result, there was poor fertilization and nut set. In the field condition, it was
observed that a prevailing high temperature (Tmax ≥ 33 ◦C) during the first three months of
inflorescence opening severely reduced the nut set of an inflorescence during the summer
months both in India and Sri Lanka [69–71]. Furthermore, when water is limited, as is
common in coconut ecosystems because more than 60% of the water supply is rainfed, the
interaction effects of rising CO2 and warming with water deficit are not known. Therefore,
for a crop like coconut, temperature, water, CO2, and their interactions are the important
climatic factors determining the suitability of a given region.

The MaxEnt model has predicted that the climate of the region between 8◦4′ north
and 20◦ south of the equator under current the conditions is ideal for coconut palm in
India, consistent with previous findings [67]. At a national level (in India), the model had
predicted that 15% of the total area would be suitable for coconut cultivation under the
current climate with the climate being placed in the high suitability category all along the
west coast (Karnataka and Kerala), in the moderate suitability category in some parts of
South Interior Karnataka and TN, while the rest of the south interior would be placed in
the low suitability category and the eastern region (TN, AP, Odisha, West Bengal) and
Northeastern states would be placed in the low to very low suitability category, which is in
agreement with the actual spread of coconut as in Figure 1a.

Previous studies had concluded that global warming had greatly influenced the
climate of the region, thereby causing expansions, shifts, or contractions in the area under
cultivation [72,73]. From Figure 9, it is clear that the majority of the area expansion
is happening in the barely suitable category, which has <0.25 value of the maximum
training sensitivity plus specificity and is, therefore, not taken into account for suitable
area calculation. Our predictions showed that under the future climate, at a national level
(in India), the total area suitable for coconut cultivation would remain constant (15%).
However, at the regional level, the areas with a potentially suitable climate for coconut will
shift from different categories like low, moderate, and high suitability. The west coast will
be placed in the high suitability category, the south interior will be placed in the moderate
to high suitability category, and the east coast will be placed in the low suitability category
for coconut cultivation. These results were consistent with previous studies showing that
the habitat suitability of plant species was predicted to become vulnerable in some regions
under climate change conditions [coffee could be replaced by cocoa in Mesoamerica [74],
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cocoa in Latin America [75], cocoa in West Africa [34], coffee in Zimbabwe [76], and
C. tinctorius in China [73].

Even under high concentration scenarios, the model projection of high climate suit-
ability for coconut all along the west coast showed a high probability of its cultivation. In
the south interior, the climate of some of the current areas of high probable occurrence
may change to moderate suitability, moderate to low suitability, and low suitability to
unsuitable. In the eastern region, the climate is less suitable, and the areas with a suitable
climate were found towards the west, especially in TN. Small changes in the temperature
and precipitation seasonality could be the reason for low climate vulnerability to climate
change for coconut in the west coast. The south interior regions are low rainfall areas, even
though the predicted precipitation is less variable, still, the temperature-induced rise in
evapotranspiration might subject the plants to drought in areas without irrigation facilities.
This is further exasperated by the prevailing low humidity during the summer months.
High temperature under low humidity is more detrimental to fertilization [23]. In the
eastern region, where the summer temperature is already high (Tmax > 40 ◦C), the projected
temperature rise of 2 ◦C to 3 ◦C would make the crop more vulnerable. These regions
showed high variability in temperature (Bio 4) and precipitation seasonality (Bio 15) from
the current climate. Therefore, the proposed contraction to the area with a suitable will be a
potential threat to the increasing demand for coconut and coconut products worldwide.
The market demand of coconut is rather great in India due to the rich nutrients and oil
provided the coconut, as well as the latest discoveries of its nutraceutical benefits [9].

The suitable area available for the cultivation of coconut will gradually decrease be-
cause of urban development and other social causes. Furthermore, there is more area
becoming vulnerable under the future climate. Together, these factors add pressure to
produce more from each unit land area to meet the growing demand. Therefore, more
attention and additional protective measures should be given to extensive coconut cul-
tivation areas in the south interior regions so as to ensure the sustainable cultivation of
coconut, at least in presently cultivated areas. In these regions, high temperatures and low
humidity are the major problem. The effect of high temperatures, to a certain extent, could
be alleviated either by planting genotypes with wider adaptability for water deficit and
high temperatures or by adopting some of the agro techniques of fertigation along with
soil moisture conservation practices like mulching, bunding, and cropping systems [77].
Soil moisture retention, summer irrigation, drip irrigation, and fertilizer application are
only a few of the agronomic adaptations that can not only reduce losses but also boost
productivity in the majority of coconut-growing areas because the availability of water to
the palms can help them in canopy cooling by transpiration and can partially offset the
adverse influences of high temperatures [67]. In the eastern regions, where Tmax is the
major issue, adopting genotypes with wider adaptability to high temperatures may sustain
the crop under the future climate.

5. Conclusions

Coconut, an important plantation crop grown in coastal belts and plains, is highly
vulnerable to climate change, and there is urgent need for its appropriate protection and
management. In this study, we used the MaxEnt model to evaluate the bioclimatic variables
determining the suitable habitat for coconut cultivation and to predict the regions with a
climate that is potentially suitable under the future climate conditions. The MaxEnt model
is popularly used for species-distribution due its prediction accuracy even with incomplete
data and a small sample size, but it has some limitations, such as underestimating the
influence of parameters and spatial bias in the occurrence data and the possibility of over-
fitting and the lack of its capacity to generalize results from independent data. In addition,
the MaxEnt outputs gives environmental suitability rather than predicted probability of
occurrence. Considering that we have limited data on coconut, the MaxEnt model was used
to obtain an overall understanding of the suitability in different regions of India. Our results
have shown that coconut will contract its suitable climate area size and will face a high risk
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of unfavorable climate in the southern interior and eastern regions of India in response to
global climate change. There is shift in climate suitability from high to moderate, moderate
to low and low to unsuitable under the future climate. Effective coordination amongst all
stakeholders is essential to develop and implement adaptation strategies so as to ensure
sustainable cultivation of coconut at least in presently cultivated areas. Future research
should be focused on collecting robust data at more granular and complete datasets and
use them for modeling the impacts of climate change and their impact on crop yield with
better mechanistic models. In addition, using an ensemble of models rather than one single
model will improve accuracy of predictions.
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