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Abstract: Climate change and climate variability are projected to alter the geographic suitability of 
lands for crop cultivation. Early awareness of the future climate of the current cultivation areas for 
a perennial tree crop like coconut is needed for its adaptation and sustainable cultivation in 
vulnerable areas. We analyzed coconut’s vulnerability to climate change in India, based on climate 
projections for the 2050s and the 2070s under two Representative Concentration Pathways (RCPs): 
4.5 and 8.5. Based on the current cultivation regions and climate change predictions from seven 
ensembles of Global Circulation Models, we predict changes in relative climatic suitability for 
coconut cultivation using the MaxEnt model. Bioclimatic variables Bio 4 (temperature seasonality, 
34.4%) and Bio 7 (temperature annual range, 28.7%) together contribute 63.1%, which along with 
Bio 15 (precipitation seasonality, 8.6%) determined 71.7% of the climate suitability for coconuts in 
India. The model projected that some current coconut cultivation producing areas will become 
unsuitable (plains of South interior Karnataka and Tamil Nadu) requiring crop change, while other 
areas will require adaptations in genotypic or agronomic management (east coast and the south 
interior plains), and yet in others, the climatic suitability for growing coconut will increase (west 
coast). The findings suggest the need for adaptation strategies so as to ensure sustainable cultivation 
of coconut at least in presently cultivated areas. 
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1. Introduction 
Coconut (Cocos nucifera L.) is an environmentally friendly smallholder palm of the 

tropical environment, cultivated in more than 94 countries in the world over 11.99 M ha, 
producing 67.04 billion nuts with a productivity of 5592 nuts ha−1 [1]. Indonesia is the 
largest coconut-producing country followed by the Philippines, while India, with 2.1 
million ha and 2.73 million t copra, occupies third place in area and second place in 
production. Around 80 million people depend directly on coconut for their livelihood [2]. 
The coconut industry, which traditionally relied upon copra and coconut oil, and to some 
extent coir, is experiencing a tremendous transformation towards product diversification, 
high value product development, by-product utilization, and more importantly, is now 
being used as health drink [3]. Of late, the nutraceutical and functional food properties of 
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tender coconut water, virgin coconut oil [4], and inflorescence sap [5,6] are being 
harnessed for a diversity of health products and preventive medicine applications [7–9]. 
The health benefits of coconut are driving its sales. As a result of this, since 2000, a steady 
annual increment has been seen for coconut and coconut products and this is predicted to 
continue increasing further [10]. 

To strike a balance between future demand and supply, production has to be 
augmented either through increased productivity or through cultivating a larger area. The 
global cultivation area of coconut clearly indicates that no significant area expansion has 
taken place during the 2010 to 2015 period. Meanwhile, during the last decade, coconut 
growing regions experienced frequent severe weather events like drought and flood and 
numerous pests and diseases infestations, as a result productivity declined, and global 
coconut production stagnated [11]. Hence, it may be a great challenge to increase the 
expected production unless adoptive measures against the predicted threat of climate 
change are addressed. 

Climate variables such as temperature, precipitation, and salinity have enormous 
impacts on the growth and development of coconut as in other species, and these factors 
had restricted its cultivation to southern geographical regions of India [12–15]. These 
variables alter the physiology, phenology, behavior, and ecological interactions of the 
crops [16–18] and affect the production faster than expected [19]. High temperature, to a 
large extent, had offset the otherwise positive effect of the rising atmospheric CO2 on 
coconut seedlings, which occurs in many C3 crops [20]. This suggests that climate change 
variables must be assessed together to ascertain how a changing climate will impact 
coconut [21]. The type of combinatorial experiments that study the effects of both 
warming and elevated CO2 on coconut at different stages of growth are very much limited. 
Coconut grows well in north India, but when the summer temperature goes up (Tmax > 40 
°C) under low humidity nut production is severely dented. Pollen germination on stigma 
[22] and pollen tube growth through style [23] in coconut is highly sensitive to high 
temperature resulting in poor fertilization and nut set. Similar to high temperature, water 
limitation is another common limitation in coconut ecosystems; more than 60% of the crop 
is grown under rainfed condition. The interaction effects of rising CO2, warming, and 
water deficit in coconut is not well studied, but is well studied in other perennials like 
grassland [24,25] or cocoa [26]. The lack of sufficient data on the response of coconut to 
climatic variables led us to use the correlative model MaxEnt to assess the coconut 
suitability/unsuitability of a region. 

In order to predict resulting changes in the relative climatic suitability of crop-
growing regions under future climate scenarios, MaxEnt is widely used and can run with 
presence data alone [27]. MaxEnt is considered to be the best method among the species 
distribution modeling (SDM) techniques [27,28] due to its higher success rate and 
excellent results even with a low sample size [29]. It is an important aid in understanding 
the influence of climate change on species distributions [30–32]. MaxEnt was used to 
predict the change in climate of some of the plantation growing areas like areas growing 
cocoa in African countries [33,34], coffee in Zimbabwe [35], and other agricultural crops 
[36–38]. Despite the important role of coconut in safeguarding the livelihood of millions 
of people in the south Indian region, the literature shows that there has been little research 
into the future climate suitability of the region for coconut cultivation. The present study 
aims to evaluate the potential impacts of climate change on the suitability of a habitat for 
coconut cultivation and fill this key research gap. We used the MaxEnt model with the 
kuenm framework in R software [39]. The specific objectives of this study were to (a) 
determine the potential impacts of environmental variables on coconut cultivation; (b) 
model the current and future suitability for coconut cultivation under two climate 
scenarios (RCP 4.5 and RCP 8.5) for the years 2050 and 2070; and (c) identify the potential 
changes in the suitability of the land for coconut cultivation. We also suggest adaptation 
measures to reduce the vulnerability of coconut to the projected changes. 
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2. Methods 
2.1. Study Area 

The coconut palm in India is grown under varying climatic and soil conditions 
mostly between 8°4′ N and 20° N latitudes. The study area and coconut occurrence points 
are shown in Figure 1. Major coconut growing states and their district-wise area and 
climate and soil characteristics are presented in Table 1. During the 1960s, the west coast 
of India, i.e., Kerala and coastal Karnataka, were the traditional coconut cultivation areas. 
Out of the total area, the major share of nearly 70% was in Kerala followed by 13.65% in 
Karnataka, only 7.6% in TN (Tamil Nadu), and 4.8% in AP (Andhra Pradesh). Over the 
years, cultivation has spread to the plains of Karnataka and TN, resulting in increase in 
the Karnataka and TN share to 28% and 20.3%, respectively, with only a marginal increase 
in AP (5.2%) and a sharp decline in the Kerala share to 35% (CDB; 
https://www.coconutboard.gov.in, accessed on 22 June 2021). The west coast, with its high 
rainfall (annual rainfall is >2000 mm) and moderate temperature (Tmax, maximum 
temperature of 34 to 36 °C), is ideal for coconut cultivation. However, on the east coast, 
the rainfall is low (around 1000 to 1200 mm) and Tmax reaches a maximum of 40 to 42 °C 
in some of the coconut growing regions. 

 
Figure 1. (a) Map showing the spatial distribution of coconut in different regions of India. State-wise and district-wise area 
data 2018-19 obtained from https:// coconutboard.nic.in/Statistics.aspx, accessed on 7 January 2021 Numbers on the map 
show the coconut growing states viz. Kerala (1), Karnataka (2), Goa (3), Maharashtra (4), Gujarat (5), Tamil Nadu (6), 
Andhra Pradesh (7), Odisha (8), West Bengal (9), and Assam (10); and (b) the red point indicates the coconut occurrence 
points used in model running. 

 

https://www.coconutboard.gov.in/
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Table 1. Characteristics of some of the major coconut growing districts of India from which the occurrence data was collected as input to MaxEnt model. Humidity is the 
range shown for the summer months (March, April, and May). Occurrence points are the number of points for each location after model rarefaction. 

State 
Area 

(000 ha) 
Major Districts 

Area 
(000 ha) 

Latitude Longitude Soil Type 
Temperature Range 

(°C) Humidity (%) 
(Range) 

Precipitation 
(mm) 

Occurrence 
Points 

Minimum Maximum 

Kerala 761. 

Kozhikode 112.80 11.2588° N 75.7804° E Alluvial, lateritic 16.9–24 28.2–36 46–92 3592 51 
Malappuram 105.09 11.0510° N 76.0711° E Loamy  12–24.2 23.7–36 44–94 2877 60 

Kannur 85.97 11.8745° N 75.3704° E Sandy loam to clay 18.1–23.8 30–36 45–95 3831 51 
Thrissur 80.58 12.4996° N 74.9869° E Sandy loam to sandy 17–24.2 29.8–34 53–99 3162 44 

Kasaragod 67.08 12.4996° N 74.9869° E Red sandy loam, sandy 20.2–23.8 31.5–36 36–93 4245 38 

Karnata
ka 

619 

Tumkur 157.37 13.3379° N 77.1173° E Red loamy & black  15–17.4 31–37.1 11–90 554 89 
Hassan 52.32 13.0033° N 76.1004° E -do- 14.8–17.7 30–36 34–94 1276 36 

Chikkmagaluru 40.93 13.3161° N 75.7720° E Clay loam 11.8–18.3 28–36 33–93 2019 28 
Chitradurga 40.80 14.2251° N 76.3980° E Red sandy loam 15.7–17.8 33.9–38 11–90 508 27 
D. Kannada 20.39 12.8438° N 75.2479° E Laterite & sandy loam  13.9–23.2 28–35.2 36–93 4089 10 

Tamil 
Nadu 

436 

Coimbatore 87.41 11.0168° N 76.9558° E Sandy loam 10.2–20.9 23.7–38 23–95 1149 48 
Thiruppur 60.33 11.1085° N 77.3411° E Loamy & alluvial  10.2–20.9 23.7–38 23–95 1149 30 
Thanjavur 37.33 10.7870° N 79.1378° E Sandy 21.1–23.3 34.4–41 30–91 850 24 
Dindigul 29.22 10.3624° N 77.9695° E Loamy & Sandy loam  8.6–20.5 22.5–41 29–90 1015 25 

Kanyakumari 24.10 8.0883° N 77.5385° E Saline & Coastal,  16.4–24.2 25.7–36 47–95 1254 15 
Andhra 
Prades

h 

111 E. Godavari 52.30 17.3213° N 82.0407° E Red clay & alluvial  13–22.2 31.3–42 30–93 1274 12 

 W. Godavari 22.09 16.9174° N 81.3399° E Alluvial & sandy alluvial 15.6–21.3 34.5–43 49–98 1166 36 
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2.2. Coconut Occurrence Data 
The data on major coconut growing states and districts was sourced from the 

Coconut Development Board (CDB; https://www.coconutboard.gov.in, accessed on 7 
January 2021) website. From the list, the districts with a large area under coconut 
cultivation were selected for the study. From each of these districts, the names and areas 
of the village with extensive coconut cultivation were obtained from the 
agriculture/horticulture officer of the respective district. In addition to these, the district 
and village level data for the state of Karnataka was sourced from the crop survey website 
(www.cropsurvey.karnataka.gov.in, accessed on 23 February 2021). In India, a village is a 
clustered human settlement or community, larger than a hamlet but smaller than a town, 
with a population typically ranging from a few hundred to a few thousand. Villages are 
the smallest unit for which the coconut cropped areas and production records are 
maintained by the agricultural or horticultural offices. Through this process, nearly 3000 
coconut occurrence points were collected from different coconut growing regions, 
followed by manual verification using Google Earth map. The Google Earth platform 
provides high-resolution images of coconut orchards and it is, therefore, suitable for 
identifying coconut cultivation areas. These data, along with the point data collected using 
Global Positioning System (GPS) in previous studies, constituted the occurrence points 
(Figure 1b). To reduce the issue of spatial sampling biases caused by multiple 
autocorrelated locations, the coconut occurrence points were spatially rarefied at 5 km 
using the SDM Toolbox 2.0 [40] in ArcGIS v. 10 (Registration Number EFL431708926). The 
final coconut occurrence dataset used for building SDMs included 1008 occurrence 
records. Figure 1b presents the final coconut records utilized for the modeling exercise. 

2.3. Selection of Environmental Variables 
As environmental predictors, we used 19 bioclimatic variables (Table 2) from 

Paleoclim.org [41] for historical (1979–2013) and current climate (baseline) data and from 
the World Clim.v1.4 database (http://www.worldclim.org/download, accessed on 15 
March 2020) [42] for the future climate data for the 2050s (average for 2041–2060) and 
2070s (average for 2061–2080). Variables representing the two future scenarios 
((representative concentration pathway RCP 4.5 (intermediate scenario) and RCP 8.5 (very 
high emission scenario)) were an ensemble of 7 GCM Models (BCC-CSM1-1, GFDL-CM3, 
HadGEM2-ES, MIROC5, MIROC-CHEM, MIROC-ESM, NorESM1-M), because of their 
good predictive ability of climate for India [43,44]. Predictors were obtained at two-and-
a-half-minute spatial resolution (approximately 5 km2 per pixel), which is an adequate 
resolution for ecological niche models based only on climate variables [29]. 

It is recommended to include non-climatic variables to enhance the predictive 
performance of SDMs [45,46]. Hence, we included soil and two topographical variables 
elevation and land cover (Table 2), which have a considerable influence on coconut 
cultivation in India. Soil data were downloaded from FAO (http://www.fao.org/soils-
portal/data-hub/soil-maps-and databases/harmonized-world-soil-database-v12/en/, 
accessed on 22 May 2020), and elevation data were sourced from the shuttle radar 
topography mission dataset (https://cgiarcsi.community/data/srtm-90m-digital-
elevation-database-v4-1/, accessed 22 May 2020). The source of land cover data was Glob 
Cover 2009 (http://due.esrin.esa.int/page_globcover.php, accessed on 22 May 2020). All 
the data were converted into two-and-half minute spatial resolutions (approximately 5 
km2 per pixel), the same as that of climate variables. 

To select a distinct set of variables that contributed the most to the models, we used 
the correlation analysis of the SDM Toolbox 2.0 by eliminating one variable per pair with 
correlations of (r > 0.85) (Table 3). Seven highly correlated climate variables were 
eliminated and the remaining 12 bioclimatic variables, along with 2 topographical 
variables and soil were selected for the model calibration. 

https://www.coconutboard.gov.in/
http://www.cropsurvey.karnataka.gov.in/
http://www.worldclim.org/download
https://cgiarcsi.community/data/srtm-90m-digital-elevation-database-v4-1/
https://cgiarcsi.community/data/srtm-90m-digital-elevation-database-v4-1/
http://due.esrin.esa.int/page_globcover.php
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Table 2. Bioclimatic and topographic variables (in bold texts) used for predicting habitat suitability for coconut in India and their contribution to habitat suitability. 

Category Units Sources Variables Abbreviations Units % Contribution 
Bioclimatic 

WorldClim—Global Climate 
Data 

http://www.worldclim.org/, accessed on 22 May 
2020 

Paleoclim.org 

Annual mean temperature BIO1  °C 1.0 
 Mean diurnal range BIO2 °C 3.1 
 Isothermality BIO3 unitless 5.6 
 Temperature seasonality BIO4 unitless 34.4 
 Max. temperature of warmest month BIO5 °C  

 Min. temperature of coldest month BIO6 °C 4.4 
 Temperature annual range BIO7 °C 28.7 
 Mean temp of wettest quarter BIO8 °C  

 Mean temp of driest quarter BIO9 °C  

  Mean temp of warmest quarter BIO10 °C  

  Mean temp of coldest quarter BIO11 °C  
  Annual precipitation BIO12 mm 2.0 
  Precipitation of wettest month BIO13 mm  
  Precipitation of driest month BIO14 mm 4.2 
  Precipitation seasonality BIO15 unitless 8.6 
  Precipitation of wettest quarter BIO16 mm  
  Precipitation of driest quarter BIO17 mm  
  Precipitation of warmest quarter BIO18 mm 1.1 
  Precipitation of coldest quarter BIO19 mm 2.2 

Topographical 

http://www.fao.org/soils, accessed on 22 May 2020 Soil  unitless 0.4 
http://due.esrin.esa.int/page_globcover.php, 

accessed on 22 May 2020 
Land cover  unitless 0.7 

https://cgiarcsi.community/data/srtm, accessed on 
22 May 2020 

Elevation  meter 3.5 

  

http://www.worldclim.org/
http://due.esrin.esa.int/page_globcover.php
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Table 3. Correlation coefficients (Rs) between 19 environmental variables, 2 topographical variables (elevation, land cover) and soil using the SDM Tool box 2.0. 

Layer Bio 1 Bio 2 Bio 3 Bio 4 Bio 5 Bio 6 Bio 7 Bio 8 Bio 9 Bio 10 Bio 11 Bio 12 Bio 13 Bio 14 Bio 15 Bio 16 Bio 17 Bio 18 Bio 19 Soil Land Cover Elevation 
Bio 1 1.000                      

Bio 2 0.178 1.000                     

Bio 3 0.359 0.117 1.000                    

Bio 4 −0.322 0.325 −0.798 1.000                   

Bio 5 0.848 0.620 0.257 −0.075 1.000                  

Bio 6 0.820 −0.197 0.649 −0.761 0.537 1.000                 

Bio 7 −0.051 0.827 −0.450 0.751 0.405 −0.553 1.000                

Bio 8 0.787 0.137 −0.120 0.190 0.622 0.396 0.185 1.000               

Bio 9 0.864 0.117 0.651 −0.614 0.707 0.895 −0.272 0.480 1.000              

Bio 10 0.936 0.397 0.173 −0.058 0.944 0.631 0.248 0.782 0.739 1.000             

Bio 11 0.886 0.026 0.657 −0.706 0.698 0.968 −0.359 0.454 0.939 0.741 1.000            

Bio 12 −0.362 −0.563 −0.277 −0.021 −0.569 −0.207 −0.338 −0.199 −0.368 −0.464 −0.303 1.000           

Bio 13 −0.226 −0.433 −0.119 −0.167 −0.389 −0.067 −0.311 −0.167 −0.172 −0.335 −0.126 0.913 1.000          

Bio 14 −0.303 −0.529 −0.040 −0.038 −0.524 −0.091 −0.419 −0.218 −0.300 −0.403 −0.237 0.289 0.041 1.000         

Bio 15 0.183 0.393 −0.085 0.131 0.338 −0.056 0.395 0.253 0.167 0.264 0.067 0.016 0.315 −0.560 1.000        

Bio 16 −0.249 −0.464 −0.163 −0.128 −0.419 −0.094 −0.311 −0.171 −0.213 −0.351 −0.162 0.946 0.993 0.090 0.256 1.000       

Bio 17 −0.309 −0.556 −0.164 0.056 −0.536 −0.149 −0.367 −0.156 −0.363 −0.398 −0.296 0.343 0.062 0.948 −0.582 0.120 1.000      

Bio 18 −0.537 −0.371 −0.457 0.389 −0.664 −0.528 −0.084 −0.156 −0.613 −0.543 −0.613 0.666 0.393 0.400 −0.265 0.456 0.447 1.000     

Bio 19 0.001 −0.339 0.262 −0.395 −0.162 0.244 −0.425 −0.149 0.148 −0.142 0.178 0.452 0.541 0.039 0.094 0.535 0.017 −0.039 1.000    

Soil −0.361 −0.158 −0.302 0.242 −0.315 −0.318 0.034 −0.205 −0.383 −0.304 −0.376 0.083 0.030 0.218 −0.103 0.039 0.257 0.099 −0.043 1.000   

Land 
Cover 

−0.267 −0.086 −0.147 0.151 −0.290 −0.269 0.004 −0.118 −0.270 −0.277 −0.290 0.237 0.167 0.160 0.046 0.182 0.163 0.266 0.102 0.061 1.000  

Elevation −0.809 0.051 0.017 0.032 −0.555 −0.537 0.034 −0.902 −0.556 −0.727 −0.563 0.039 −0.003 0.108 −0.197 0.002 0.056 0.165 −0.005 0.239 0.128 1.000 
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2.4. Model 
The climate suitability for the cultivation of coconut under the future climate was 

studied using MaxEnt 3.4.1 [27]. This software is based upon the maximum entropy 
principle, which is freely available at 
(url:http://biodiversityinformatics.amnh.org/open_source/MaxEnt/, accessed on 21 
November 2021), and holds anything with the maximum entropy closest to its real state 
under known conditions [47]. The MaxEnt model is used to estimate the target probability 
distribution by finding the probability distribution of the maximum entropy (i.e., that 
which is most spread out or closest to uniform) that is subject to a set of constraints that 
represent our incomplete information regarding the target distribution [48,49]. 

2.5. Model Calibration 
The kuenm R package is used for the detailed calibration of the MaxEnt model, its 

selection, final model creation, and evaluation [39]. The occurrence data is split into 75–25 
subsets for model calibration and internal testing, respectively, using the kuenm_occ_split 
function. The kuenm varComb function was used to generate 16 sets of environmental 
predictors for calibration, with the minimum number of variables taken as 14. The model 
chose variable predictor set 6 (which excluded Bio 5) for final model running. The 
variables used for the final model running with their description are listed in Table 2, and 
a detailed description of each variable is available in O’Donnell and Ignizio [50]. We 
created 2480 candidate models by combining 16 sets of environmental predictors, 5 values 
of regularization multiplier (0.1, 0.2, 0.3, 0.4, 0.5), and 31 combinations of feature classes 
(l, q, p, t, h, lq, lp, lt, lh, qp, qt, qh, pt, ph, th, lqp, lqt, lqh, lpt, lph, lth, qpt, qph, qth, pth, 
lqpt, lqph, lqth, lpth, qpth, lqpth). The candidate model performance was evaluated based 
on significance (partial ROC, with 500 iterations and 50% of data for bootstrapping), 
omission rates (E = 5%), and model complexity (AICc). Final model selected is the one 
with the lowest omission rate and delta AICc values of ≤2. After the creation of the final 
model with the parameter sets selected as best, the model projections were made for RCP 
4.5 and 8.5 for the years 2050 and 2070 using the kuenm_mod function. The free 
extrapolation transfer was selected for future projections. 

2.6. Model Evaluation 
The area under the curve (AUC) or receiver operating characteristics (ROC) was used 

as the MaxEnt predictive performance metric under the ROC curve. The AUC was an 
effective threshold independent index that could evaluate a model’s ability to 
discriminate presence from absence (or background) [51]. The MaxEnt output provides 
an AUC or sensitivity vs 1-specificity graph, which describes the accuracy and fit of the 
predicted model. An AUC value of 0.5 indicated that the model performance was no better 
than random, while values close to 1.0 indicated better model performance [51]. The closer 
the AUC was to 1, the better the model performance. 

2.7. Threshold Selection 
The logistic output format ranging from 0 (unsuitable) to 1 (maximum suitability) 

was adopted for the model results, which indicates climate suitability for the cultivation 
of coconut (probability of presence) [52]. Binary model predictions from each scenario 
were overlapped in Arc-GIS v. 10.0 to map the current climatic range and potential future 
expansion and contraction. The binary suitable/unsuitable area was calculated for each 
scenario (current, RCP 4.5, and RCP 8.5), using ‘maximum training sensitivity plus 
specificity’ as the logistic threshold cut off value [53] to give an objective numerical 
overview of potential climatic suitability contraction and expansion. Maximizing the sum 
of the specificity and sensitivity logistic threshold was used to differentiate between 
presences and absences, as is recommended for models that use presence-only and 

http://biodiversityinformatics.amnh.org/open_source/MaxEnt/
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background data (e.g., MaxEnt). It minimizes the mean of the error rate for positive 
observations and the error rate for negative observations [54]. 

The present and future suitability maps produced by the model ranged from 0 to 1. 
These maps were reclassified into five suitability classes, i.e., ‘Barely’ (0–0.05), ‘Very Low 
Suitability’ (0.05–0.25), ‘Low Suitability’ (0.25–0.45), ‘Moderate Suitability’ (0.45–0.65), 
‘High Suitability’ (0.65–0.85), and ‘Very High Suitability’ (0.85–1.0). Binary rasters were 
used to analyze the predicted contraction and expansion areas using the SDM toolbox 2.0. 
‘Barely’ and ‘Very Low Suitability’ classes were considered to be unsuitable categories as 
per the threshold value, and remaining classifications are considered to be suitable 
categories. 

3. Results 
3.1. Outcome of Model Calibration 

The candidate models (2480) generated were statistically significant and better than 
null expectations (i.e., predictions from the models were in conformity with testing 
occurrence data more frequently than would be expected by random association of points 
and prediction of that areal extent) (Table 4). 

Table 4. Generated and selected candidate models and their fit and validation statistics. 

Criteria Number_of_Models 
All candidate models 2480 
Statistically significant models 2480 
Models meeting omission rate criteria 0 
Models meeting AICc criteria 2 
Statistically significant models meeting omission rate criteria 0 
Statistically significant models meeting AICc criteria 2 
Statistically significant models meeting omission rate and AICc 
criteria 

0 

Selected model M_0.1_F_qp 
Statistics of the selected model 

Mean AUC ratio 1.501 
Rate of omission > 0.05% 0.057 
AICc 18636.44 
Delta AICc 0 

Of the candidate models, none of the models met the omission rate criterion; 
however, two models had delta AICc values ≤2. Applying the three evaluation criteria 
together, one candidate model M_0.1_F_qp met the full suite of selection criteria for 
coconut (Figure 2). 

3.2. Model Evaluation 
The area under the curve (AUC) or receiver operating characteristics (ROC) was used 

to evaluate the MaxEnt model performance. The results of the model provided satisfactory 
output for the climate suitability prediction for coconut (AUC = 0.899 ± 0.002) (Figure 3). 
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Figure 2. Omission rates at 5% and AICc values for all, non-significant, and selected ‘best’ candidate 
models for coconut. Models were selected based on statistical significance, omission rates, and AICc 
values. 

 
Figure 3. The receiver operating characteristic (ROC) curve. The values shown are the average of 10 
replications. 
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3.3. Predictor Variable Influence 
The importance level of predictor variables utilized in the MaxEnt model were 

identified and highlighted in bold in Table 2. The potential distribution of coconut is more 
strongly influenced by bioclimatic factors than soil and topographic factors. Bio 4 
(temperature seasonality, 34.4%) had the greatest influence followed by Bio 7 
(temperature annual range, 28.7%). These two together contributed 63.1%, which along 
with Bio 15 (precipitation seasonality, 8.6%), determined 71.7% of climate suitability for 
coconut in India (Table 2). Bio 3 (isothermality), Bio 6 (min. temperature of coldest month), 
and Bio 14 (precipitation of driest month) are the other major environmental factors and 
had an influence of 5.6%, 4.4%, and 4.2% respectively. Topographical parameters like 
elevation, land cover, and soil did not have a marked influence on model prediction (<4%). 

The graph (Figure 4) depicts the quadratic relationship between bio variables and 
climate suitability. Temperature seasonality (Bio 4) was found to have the highest climate 
suitability at 3% and the relationship was inverse. With the increase in temperature 
seasonality, the climate suitability of coconut is rapidly decreasing. It ranges from value 3 
to 19 (greater than the 0.25-threshold value). Similarly, for temperature annual range (Bio 
7), the suitability was the highest at around 3 °C and gradually decreased (range 3 to 15 
°C). That is, the regions with low difference between the maximum temperature of the 
warmest month and the minimum temperature of the coldest month were more suitable 
for coconut cultivation. Precipitation seasonality (coefficient of variation) ranging from 
4% to 10% (>0.25 threshold value), showed higher suitability for coconut cultivation 
(Figure 4). 

 
Figure 4. The Response Curves show how each environmental variable affects the MaxEnt 
prediction. 



Plants 2022, 11, 731 12 of 23 
 

 

3.4. Regional Changes in Predictor Variables 
Table 5 shows the model simulated changes in predictor variables under the future 

scenarios RCP 4.5 and RCP 8.5 of 2050 and 2070 from the current scenarios of coconut 
cultivation regions. The mean annual temperature over the plantation growing regions of 
India is 25.64 °C under the present climate, and the model had predicted rise in 
temperature in all of the scenarios. RCP 4.5 and RCP 8.5 had projected an increase of 1.73 
°C and 2.21 °C by the 2050s and 2.1 °C and 3.3 °C during the 2070s, respectively (Table 5). 

Table 5. Annual mean temperature (Bio 1), Isothermality (Bio 3), Temperature Seasonality (Bio 4), 
Temperature Annual Range (Bio 7), and Precipitation Seasonality (Bio 15) for the current and future 
scenarios of the 2050s and 2070s under RCP 4.5 and RCP 8.5 of India and major coconut growing 
states. The values in brackets indicate change from the current value. 

Bio Variable Country/State Current 
RCP 4.5 RCP 8.5 

2050s 2070s 2050s 2070s 

Bio 1 (°C) 

India 25.64 27.37 (1.73) 27.78 (2.14) 27.85 (2.21) 28.94 (3.3) 
Andhra Pradesh (AP) 27.37 29.15 (1.77) 29.54 (2.16) 29.41 (2.04) 30.51 (3.14) 

Karnataka 25.55 27.05 (1.49) 27.40 (1.84) 27.53 (1.97) 28.64 (3.08) 
Tamil Nadu (TN) 27.26 28.96 (1.70) 29.30 (2.04) 29.43 (2.17) 30.44 (3.18) 

Kerala 26.13 27.59 (1.46) 27.94 (1.81) 28.08 (1.95) 29.00 (2.86) 

Bio 3 (%) 

India 40.79 47.44 (6.65) 47.64 (6.85) 47.60 (6.81) 47.30 (6.51) 
AP 42.33 46.79 (4.46) 47.32 (4.99) 46.92 (4.59) 46.39 (4.06) 

Karnataka 45.32 53.18 (7.86) 53.28 (7.96) 53.21 (7.89) 52.49 (7.17) 
TN 48.97 56.03 (7.06) 56.61 (7.64) 56.18 (7.21) 54.77 (5.80) 

Kerala 47.61 61.63 (14.02) 62.12 (14.51) 62.25 (14.64) 62.17 (14.56) 

Bio 4 (%) 

India 29.79 31.37 (1.58) 30.93 (1.14) 31.1 (1.31) 31.34 (1.55) 
AP 26.27 29.48 (3.21) 28.89 (2.62) 28.62 (2.35) 29.66 (3.39) 

Karnataka 20.85 21.96 (1.11) 21.84 (0.99) 22.27 (1.42) 23.39 (2.54) 
TN 19.37 21.39 (2.02) 20.83 (1.46) 21.3 (1.93) 22.28 (2.91) 

Kerala 10.76 11.74 (0.98) 11.64 (0.88) 11.87 (1.11) 12.35 (1.59) 

Bio 7 (°C) 

India 20.09 22.05 (1.96) 22.03 (1.91) 21.85 (1.76) 21.87 (1.78) 
AP 18.12 20.50 (2.38) 20.26 (2.14) 19.86 (1.75) 20.12 (2.00) 

Karnataka 18.20 19.45 (1.26) 19.27 (1.08) 19.33 (1.14) 19.56 (1.37) 
TN 14.64 16.10 (1.45) 15.80 (1.16) 15.96 (1.32) 16.42 (1.77) 

Kerala 10.72 11.88 (1.16) 11.65 (0.94) 11.71 (0.99) 11.86 (1.14) 

Bio 15 (%) 

India 103.8 106.3 (2.5) 104.3 (0.5) 105.6 (1.8) 107.7 (3.9) 
AP 88.59 92.54 (3.95) 91.45 (2.86) 92.14 (3.55) 94.41 (5.82) 

Karnataka 98.44 101.39 (2.95) 99.41 (0.97) 100.55 (2.11) 103.38 (4.94) 
TN 76.81 83.24 (6.43) 79.65 (2.84) 81.5 (4.69) 84.65 (7.84) 

Kerala 90.35 87.02 (−3.33) 83.02 (−7.33) 85.79 (−4.56) 87.01 (−3.34) 

Bio 4 variability, the bioclimatic variable, was at its lowest for the west coast (Kerala 
followed by Karnataka) compared with the east coast (TN and AP) (Table 5). The 
variability was 1.59%, 2.54%, 2.91%, and 3.39% for Kerala, Karnataka, TN, and AP 
respectively for RCP 8.5, 2070. The trend was similar during the 2050s for both the 
scenarios, but the increase was relatively less. The variability, however, was at its lowest 
with RCP 4.5, 2070 (0.88%, 0.99%, 1.46%, 2.62% for Kerala, Karnataka, TN, and AP 
respectively). Similar to Bio 4, the range of extreme temperature conditions (Bio 7) showed 
a higher fluctuation on the east coast ((2.38 °C for AP (RCP 4.5, 2050) and 1.77 °C for TN 
(RCP 8.5, 2070)) compared with the west coast ((1.37 °C for Karnataka (RCP 8.5, 2070) and 
1.16 °C for Kerala (RCP 4.5, 2050)). 

Precipitation seasonality (Bio 15) showed a relatively high increase under the future 
scenarios of AP and TN with a relatively smaller increase for Karnataka (Table 5). The 
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increase was high for RCP 8.5, 2070. While it was at its lowest for RCP 4.5, 2070. Kerala, 
under all of the scenarios, showed marginal decline in precipitation seasonality. 

3.5. Current and Future Projections 
The maps of potential distribution of coconut at a national level (in India) under the 

current climate and RCP 4.5 and 8.5 for 2050 and 2070 generated by the MaxEnt model are 
shown in Figure 5 and Table 6. The model projected that an area of 209,374 km² is suitable 
for coconut cultivation under the current climate, which is 15% of the study area in India. 
However, only 7% of this area is on the west coast and in South Interior Karnataka (Figure 
6), Kerala (Figure 7), and TN (Figure 8) has moderate to high suitability, while the east 
coast and northeast have low to very low suitability. The area suitable for coconut 
cultivation in India has dropped to 11.6%, 12.1%, 12.4%, and 12% for RCP 4.5, 2050, RCP 
4.5, 2070, RCP 8.5, 2050, and RCP 8.5, 2070, respectively (Table 6). The maximum decline 
was seen in the south interior regions. 

 
Figure 5. Climatically suitable areas for coconut production in India under the current and future 
climates of the 2050s and 2070s for RCP 4.5 and RCP 8.5 as modeled by MaxEnt. 
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Table 6. Climatically suitable and unsuitable areas for growing coconut under the current and the 
future climate of RCP 4.5 and RCP 8.5 and the range expansion and contraction (the values in 
brackets are the difference in percentage from total study area) as modeled by MaxEnt for India and 
major coconut growing states. 

Country/State Category 
Area (km2) 

Current 
RCP 4.5 RCP 8.5 

2050 2070 2050 2070 

India 
(Study area) 

Range expansion  52,617 (3.8%) 61,642 (4.4%) 75,383 (5.4%) 65,164 (4.7%) 
Unsuitable 1,184,077 (85%) 1,131,238 (81.2%) 1,122,212 (80.5%) 1,108,471 (79.6%) 1,118,691 (80.3%) 

Suitable 209,374 (15%) 161,776 (11.6%) 168,738 (12.1%) 173,169 (12.4%) 172,036 (12%) 
Range contraction  47,578 (3.4%) 40,616 (2.9%) 36,184 (2.6%) 37,317 (2.7%) 

Karnataka 

Range expansion   27,956 (14.5%) 28,348 (14.7%) 38,858 (20.2%) 24,880 (12.9%) 
Unsuitable 11,4714 (60) 86,759 (45.1%) 86,366 (44.9%) 75,857 (39.4%) 89,835 (46.7%) 

Suitable 77,591 (40) 60,723 (31.6%) 62,994 (32.8%) 67,846 (35.3%) 63,448 (33.0%) 
Range contraction   16,869 (8.8%) 14,597 (7.6%) 9745 (5.1%) 14,143 (7.4%) 

Kerala 

Range expansion   1051 (2.8%) 798 (2.2%) 1009 (2.7%) 1807 (4.9%) 
Unsuitable 7439 (20%) 6388 (17.3%) 6640 (17.9%) 6430 (17.4%) 5631 (15.2%) 

Suitable 29,565 (80%) 28,599 (77.3%) 28,641 (77.4%) 28,536 (77.1%) 28,998 (78.4%) 
Range contraction   967 (2.6%) 925 (2.5%) 1030 (2.8%) 567 (1.5%) 

Tamil Nadu 

Range expansion   9804 (7.5%) 15,346 (11.8%) 15,283 (11.7%) 16,144 (12.4%) 
Unsuitable 54,141 (42%) 44,337 (34.0%) 38,795 (29.7%) 38,858 (29.8%) 37,998 (29.1%) 

Suitable 76,289 (58%) 67,997 (52.1%) 71,356 (54.7%) 71,041 (54.5%) 72,531 (55.6%) 
Range contraction  8292 (6.4%) 4933 (3.8%) 5248 (4.0%) 3758 (2.9%) 

 
Figure 6. Climatically suitable areas for coconut production in Karnataka under the current and 
future climates of the 2050s and 2070s for RCP 4.5 and RCP 8.5 as modeled by MaxEnt. 
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Figure 7. Climatically suitable areas for coconut production in Kerala under the current and future 
climates of the 2050s and 2070s for RCP 4.5 and RCP 8.5 as modeled by MaxEnt. 
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Figure 8. Climatically suitable areas for coconut production in Tamil Nadu under the current and 
future climates of the 2050s and 2070s for RCP 4.5 and RCP 8.5 as modeled by MaxEnt. 

3.6. Changes in Coconut Habitat Suitability 
In general, the habitat suitability for coconut cultivation at a national level (in India) 

remained more or less constant at the future climates of RCP 4.5 and 8.5 of the 2050s and 
2070s (Figure 9, Table 6). It is roughly 15% with 8% in the low category, 5% in the moderate 
category, and 2% in the high suitability category (Figures 5 and 9). However, there is a 
shift in climate suitability category across the coconut cultivation regions of India under 
the future climate. Karnataka, which has, at present, 22% in the low category, 18% in the 
moderate category, and 1% in the high suitability category may shift to have 31% to 33% 
in the low category, 11% to 12% in the moderate category, and 2% to 3% in the high 
category across the scenarios (Figure 9). The west coast has high suitability, while the 
south interior moves to the low suitability category (Figure 6). Kerala, on the other hand, 
which has large area in high suitability category (45%) at current climate will shift to have 
low suitability and low suitability areas will increase from the current 7% to 16% to 18% 
under the future climate (Figure 9). South Interior Tamil Nadu (Figure 8) would have 8% 
to 12% high suitability areas under future scenarios from the present 4% (Figure 9). Area 
expansion is mostly seen in the barely suitable category, which is not considered for 
climate suitable area calculation. 
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Figure 9. Percentage of total predicted area under different classes for the current and future climate 
of the study area of India and the regional levels of Karnataka, Kerala, and Tamil Nadu. 

4. Discussion 
This study was the first to explore the impacts of global climate change on the 

geographical range and environmental suitability of the habitat of the coconut in India 
using MaxEnt modeling. As coconut is grown across different agro-ecological zones of 
India, evaluating the impacts of climate change scenarios on the potential cultivable area 
will be helpful in understanding the relationships between coconut niches and the 
corresponding environment, identifying priority cultivation areas and planning 
adaptation strategies [55–57]. Species distribution models like MaxEnt are extensively 
used to predict the change in climate of some of the plantation growing areas like areas 
growing cocoa in African countries [33,34], coffee in Zimbabwe [35], and other 
agricultural crops [36–38]. In our study, for model calibration, we could generate 2480 
candidate models involving environmental predictors and regularization multiplier and 
feature classes using the kuenm-R package and select the best candidate model 
(M_0.1_F_qp) for prediction based on significance, omission rates, and complexity [39]. 
The results show that the MaxEnt model prediction for coconut, having the mean AUC 
values of 0.899 +0.002 and indicating the model prediction, comes under the excellent 
category, which is consistent with previous studies [29,57,58]. 

The MaxEnt model showed that future coconut cultivation is mostly determined by 
bioclimatic variables, while the effects of topographical and soil variables were rather 
small. In 29 African palm species, the belief that the climate is the most important factor 
determining palm distribution, and that habitat and human intervention are not, was 
extensively studied and reported [59,60]. As in our studies, temperature seasonality, 
which contributed most to the habitat suitability along with cold temperatures, was found 
to constrain palm species cultivated [61]. In India, the majority of coconut cultivation area 
is within an elevation of 600 m, and the topographic effect on palms is generally seen at 
higher elevation of around 2500 m [62]. Though the contribution of soil, a topographic 
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factor, is rather small (0.4%); however, its inclusion in the model made the prediction more 
accurate as seen in other species [63], otherwise, the model would have predicted more 
suitable area than currently exists for the actual current coconut distribution. Thus, as seen 
in previous studies, we have confirmed the dominant role of the climate in the natural 
cultivation of coconut [29,58]. 

As coconut is a tropical plant, its cultivation is mainly determined by the 
temperature. Optimal temperature for its growth and yield is 27 °C ± 5 °C and optimum 
humidity of >60%. The plant grows well up to an elevation of 600 m above MSL. However, 
near the equator, productive coconut orchards can be established up to an elevation of 
about 1000 m above MSL, providing that temperature is not a limitation. A well-
distributed rainfall of about 200 cm per year is the best for proper growth and higher yield 
[64–67]. South India, comprising the states of Kerala, Karnataka, Tamil Nadu, and Andhra 
Pradesh, occupies >90% of the total coconut cultivation area in the country. All along the 
west coast is relatively ideal for coconut cultivation where rainfall is >200 cm, humidity is 
high, and Tmax reaches as high as 36 °C during the summer (March, April, May). In the 
south interior, where rainfall is around 60 cm, Tmax reaches as high as 40 °C, and summer 
humidity is low, coconut grows well wherever there are irrigation facilities. However, in 
this region, large areas are under rainfed conditions. On the other hand, in the eastern 
region mostly, coconut is cultivated under irrigation conditions where the rainfall is 
around 100 cm and Tmax reaches as high as 43 °C. A high temperature (Tmax > 34 °C) 
decreases the photosynthesis of the coconut seedlings [68] during the reproductive stage. 
This affects the progamic phase, i.e., causes poor pollen germination [22] and restricts 
pollen tube growth through style [23]. As a result, there was poor fertilization and nut set. 
In the field condition, it was observed that a prevailing high temperature (Tmax ≥ 33 °C) 
during the first three months of inflorescence opening severely reduced the nut set of an 
inflorescence during the summer months both in India and Sri Lanka [69–71]. 
Furthermore, when water is limited, as is common in coconut ecosystems because more 
than 60% of the water supply is rainfed, the interaction effects of rising CO2 and warming 
with water deficit are not known. Therefore, for a crop like coconut, temperature, water, 
CO2, and their interactions are the important climatic factors determining the suitability 
of a given region. 

The MaxEnt model has predicted that the climate of the region between 8°4′ north 
and 20° south of the equator under current the conditions is ideal for coconut palm in 
India, consistent with previous findings [67]. At a national level (in India), the model had 
predicted that 15% of the total area would be suitable for coconut cultivation under the 
current climate with the climate being placed in the high suitability category all along the 
west coast (Karnataka and Kerala), in the moderate suitability category in some parts of 
South Interior Karnataka and TN, while the rest of the south interior would be placed in 
the low suitability category and the eastern region (TN, AP, Odisha, West Bengal) and 
Northeastern states would be placed in the low to very low suitability category, which is 
in agreement with the actual spread of coconut as in Figure 1a. 

Previous studies had concluded that global warming had greatly influenced the 
climate of the region, thereby causing expansions, shifts, or contractions in the area under 
cultivation [72,73]. From Figure 9, it is clear that the majority of the area expansion is 
happening in the barely suitable category, which has <0.25 value of the maximum training 
sensitivity plus specificity and is, therefore, not taken into account for suitable area 
calculation. Our predictions showed that under the future climate, at a national level (in 
India), the total area suitable for coconut cultivation would remain constant (15%). 
However, at the regional level, the areas with a potentially suitable climate for coconut 
will shift from different categories like low, moderate, and high suitability. The west coast 
will be placed in the high suitability category, the south interior will be placed in the 
moderate to high suitability category, and the east coast will be placed in the low 
suitability category for coconut cultivation. These results were consistent with previous 
studies showing that the habitat suitability of plant species was predicted to become 
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vulnerable in some regions under climate change conditions [coffee could be replaced by 
cocoa in Mesoamerica [74], cocoa in Latin America [75], cocoa in West Africa [34], coffee 
in Zimbabwe [76], and C. tinctorius in China [73]. 

Even under high concentration scenarios, the model projection of high climate 
suitability for coconut all along the west coast showed a high probability of its cultivation. 
In the south interior, the climate of some of the current areas of high probable occurrence 
may change to moderate suitability, moderate to low suitability, and low suitability to 
unsuitable. In the eastern region, the climate is less suitable, and the areas with a suitable 
climate were found towards the west, especially in TN. Small changes in the temperature 
and precipitation seasonality could be the reason for low climate vulnerability to climate 
change for coconut in the west coast. The south interior regions are low rainfall areas, even 
though the predicted precipitation is less variable, still, the temperature-induced rise in 
evapotranspiration might subject the plants to drought in areas without irrigation 
facilities. This is further exasperated by the prevailing low humidity during the summer 
months. High temperature under low humidity is more detrimental to fertilization [23]. 
In the eastern region, where the summer temperature is already high (Tmax > 40 °C), the 
projected temperature rise of 2 °C to 3 °C would make the crop more vulnerable. These 
regions showed high variability in temperature (Bio 4) and precipitation seasonality (Bio 
15) from the current climate. Therefore, the proposed contraction to the area with a 
suitable will be a potential threat to the increasing demand for coconut and coconut 
products worldwide. The market demand of coconut is rather great in India due to the 
rich nutrients and oil provided the coconut, as well as the latest discoveries of its 
nutraceutical benefits [9]. 

The suitable area available for the cultivation of coconut will gradually decrease 
because of urban development and other social causes. Furthermore, there is more area 
becoming vulnerable under the future climate. Together, these factors add pressure to 
produce more from each unit land area to meet the growing demand. Therefore, more 
attention and additional protective measures should be given to extensive coconut 
cultivation areas in the south interior regions so as to ensure the sustainable cultivation of 
coconut, at least in presently cultivated areas. In these regions, high temperatures and low 
humidity are the major problem. The effect of high temperatures, to a certain extent, could 
be alleviated either by planting genotypes with wider adaptability for water deficit and 
high temperatures or by adopting some of the agro techniques of fertigation along with 
soil moisture conservation practices like mulching, bunding, and cropping systems [77]. 
Soil moisture retention, summer irrigation, drip irrigation, and fertilizer application are 
only a few of the agronomic adaptations that can not only reduce losses but also boost 
productivity in the majority of coconut-growing areas because the availability of water to 
the palms can help them in canopy cooling by transpiration and can partially offset the 
adverse influences of high temperatures [67]. In the eastern regions, where Tmax is the 
major issue, adopting genotypes with wider adaptability to high temperatures may 
sustain the crop under the future climate. 

5. Conclusions 
Coconut, an important plantation crop grown in coastal belts and plains, is highly 

vulnerable to climate change, and there is urgent need for its appropriate protection and 
management. In this study, we used the MaxEnt model to evaluate the bioclimatic 
variables determining the suitable habitat for coconut cultivation and to predict the 
regions with a climate that is potentially suitable under the future climate conditions. The 
MaxEnt model is popularly used for species-distribution due its prediction accuracy even 
with incomplete data and a small sample size, but it has some limitations, such as 
underestimating the influence of parameters and spatial bias in the occurrence data and 
the possibility of overfitting and the lack of its capacity to generalize results from 
independent data. In addition, the MaxEnt outputs gives environmental suitability rather 
than predicted probability of occurrence. Considering that we have limited data on 
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coconut, the MaxEnt model was used to obtain an overall understanding of the suitability 
in different regions of India. Our results have shown that coconut will contract its suitable 
climate area size and will face a high risk of unfavorable climate in the southern interior 
and eastern regions of India in response to global climate change. There is shift in climate 
suitability from high to moderate, moderate to low and low to unsuitable under the future 
climate. Effective coordination amongst all stakeholders is essential to develop and 
implement adaptation strategies so as to ensure sustainable cultivation of coconut at least 
in presently cultivated areas. Future research should be focused on collecting robust data 
at more granular and complete datasets and use them for modeling the impacts of climate 
change and their impact on crop yield with better mechanistic models. In addition, using 
an ensemble of models rather than one single model will improve accuracy of predictions. 
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