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Abstract: Increased map density and transferability of markers are essential for the genetic analysis
of fruit quality and stress tolerance in interspecific grapevine populations. We used 1449 GBS
and 2000 rhAmpSeq markers to develop a dense map for an interspecific F2 population (VRS-F2)
that was derived by selfing a single F1 from a Vitis riparia x ‘Seyval blanc’ cross. The resultant
map contained 2519 markers spanning 1131.3 cM and was highly collinear with the Vitis vinifera
‘PN40024’ genome. Quantitative trait loci (QTL) for berry skin color and flower type were used to
validate the map. Four rhAmpSeq transferable markers were identified that can be used in pairs (one
pistillate and one hermaphroditic) to predict pistillate and hermaphrodite flower type with ≥99.7%
accuracy. Total and individual anthocyanin diglucoside QTL mapped to chromosome 9 near a 5-O-
GLUCOSYLTRANSFERASE candidate gene. Malic acid QTL were observed on chromosome 1 and 6
with two MALATE DEHYRDROGENASE CYTOPLASMIC 1 and ALUMINUM-ACTIVATED MALATE
TRANSPORTER 2-LIKE (ALMT) candidate genes, respectively. Modeling malic acid identified a
potential QTL on chromosome 8 with peak position in proximity of another ALMT. A first-ever
reported QTL for the grassy smelling volatile (E)-2-hexenal was found on chromosome 2 with
a PHOSPHOLIPID HYDROPEROXIDE GLUTATHIONE PEROXIDASE candidate gene near peak
markers.

Keywords: anthocyanin diglucoside; berry volatile; (E)-2-hexenal; malic acid; grapevine; Vitis riparia;
‘Seyval blanc’; QTL

1. Introduction

Grapevine [Vitis sp.] is a perennial woody fruit crop species with high economic
and nutritional value [1]. Typical grapevine primary breeding objectives include greater
yield and higher quality, tolerance to biotic and abiotic stresses, and desirable plant growth
habits [1]. However, the heterozygosity and long generation cycle of Vitis present a breeding
challenge [1–3]. Molecular mapping with transferable markers provides the opportunity to
reduce the time needed to study interspecific populations by facilitating quantitative trait
loci (QTL) identification, marker assisted selection, and candidate gene discovery [1,3,4].
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The results of QTL mapping vary among populations (size and genetic background) and
marker type; therefore, the development of a genetic map with strong marker transferability
is a timely requirement for grapevine breeding [4].

Restriction enzyme-based GBS methods strongly influenced genetic map construction
over the past ten years and have several advantages such as, the possibility to apply
to any species without prior genomic knowledge, simultaneous marker discovery and
genotyping, low cost, high throughput, and scalability [5–7]. Limitations are that GBS
marker development requires high-quality DNA to prevent heterozygous genotypes being
wrongly called as homozygous (heterozygous under calling), generally targets gene-rich
regions, and interspecific marker transferability can be as low as 2% [5,6,8]. In contrast,
development of rhAmpSeq core genome markers needs diverse species genome sequences
to target collinear regions with moderate polymorphism and produces fewer markers than
GBS technology; however, these local haplotype markers are more informative and have
high transferability across the Vitis genus [8].

Grapevine breeding and trait mapping have proceeded rapidly with the availability
of genome sequences, molecular marker implementation and evolution, and increased
use of interspecific crosses for the introgression of economic traits [6]. Berry skin color,
a qualitative trait, has been mapped to a major locus on chromosome 2 and associated
with MYBA1 gene [4,9–14]. Anthocyanins (concentration and type) influence berry color
and contribute to wine quality and have been mapped to chromosome 2, 7, 12, 13, and
14 [15–17]. Another qualitative trait, flower type, also maps to chromosome 2 [8,18–24].
Thus, berry color and flower type provide well studied reference points for validating and
comparing genetic maps and genome-wide association studies in populations generated
from V. vinifera L., V. rotundifolia Michx., and interspecific crosses [4,10,25].

Quantitative traits that are of high value for molecular assisted selection (disease
resistance, agronomic traits, and berry chemistry) are rapidly being assessed to identify
their relevant loci and candidate genes [11]. With many breeding programs focused on
increased disease resistance, the introgression of non-vinifera species has also increased
the emphasis on berry chemistry traits as non-vinifera species can contribute different
fruit characters that may impact product quality. QTL analyses for standard fruit harvest
parameters (berry acids, soluble solids, and pH) show multiple loci varying with population
and year [26–30]. Fewer volatile QTL have been identified in berries, although many genes
and enzymes associated with volatile development in berries have been detected [31]. The
methoxypyrazines (3-isobutyl-2-methoxypyrazine (IBMP), isopropyl methoxypyrazine
(IPMP)) and C6 volatiles (hexanal, hexenal) are of particular interest as these herbaceous
volatiles are found at high concentrations in wild Vitis spp. and can contribute positive and
negative odors depending on their concentrations [32–35]. For example, IBMP contributes
vegetable-like aromas that may be a positive attribute in some white wines (i.e., ‘Sauvignon
blanc’) but are typically considered negative in red wines (i.e., ‘Cabernet Sauvignon’,
‘Cabernet Franc’, and ‘Merlot’) [36]. Five QTL explaining 40% of the grapevine leaf IBMP
are found in a V. vinifera ‘Cabernet Sauvignon’ x V. riparia ‘Riparia Gloire Montpelier’
population [37]. A F2 population derived from Cabernet Sauvignon and Pinot noir shows
a berry IBMP locus and candidate genes located on chromosome 3 [38]. In contrast, no
QTL are reported for the herbaceous C6 aldehyde volatiles, which are products of the fatty
acid break-down through the lipoxygenase pathway, although several enzymes have been
identified for the development of C6 aldehyde and alcohol products [31].

The greater use of non-vinifera species in breeding programs provides the opportunity
and challenge to identify the genetics of positive and negative fruit attributes to promote
capture or removal of the traits through marker assisted selection. The objectives of
this study were to: (1) construct a high-density linkage map using GBS and rhAmpSeq
molecular markers for genetic studies in an interspecific F2 population, (2) validate this
integrated map using the stable traits of flower type and color, and (3) determine berry
anthocyanin, malic acid, titratable acidity (TA), and volatile QTL and associated candidate
genes in an interspecific F2 population.
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2. Results
2.1. Segregation Distortion Analysis and Distortion Threshold Estimation for VRS-F2 Population

Genotype frequency plots for markers in the linkage map showed deviation from
an expected 1:2:1 ratio for many markers associated with chromosomes 5, 7, 11, and 15
(Figures 1 and S1). The AA genotype was more frequent and BB genotype less frequent
than the expected 1:2:1 Mendelian ratio (Figure 1). While segregation distortion typi-
cally was in the middle of the chromosome, distortion for chromosome 15 was at the end
(Figure 2, Table S1). This confirmed the presence of some chromosomal regions with natu-
ral segregation distortion patterns that needed to be preserved in the map. Analysis of a
series of p-values indicated > 1210 markers would be removed at the adjusted p-value 0.05
(Figure S2). To conserve markers representative of the natural genetic character of the
VRS-F2 population, the threshold (adjusted p-value) was set at <10–21 for this F2 popu-
lation and pairwise marker linkage analysis was conducted. No marker ordering errors
were identified in this final map (Figure 3). A total of 677 non-informative markers and
232 distorted markers were identified and removed during map curation and the final map
contained 2519 markers (Table 1).

Figure 1. Genotype frequency plots for chromosomes 5, 7, 11, and 15. Horizontal lines represent
expected genotype count 128 (for AA (red) and BB (blue), dotted) and 256 (for AB (green), dotdash)
under 1:2:1 Mendelian ratio.

The overall genome coverage of mapped markers (96.3%) and collinearity (99.9%)
relative to the V. vinifera PN40024 12X V2 genome indicated high genetic map quality
(Tables 1 and 2, Figure S3). All chromosomes had >93% genome coverage except for
chromosome 15 with 61.5% coverage (Table S1). Eighty-nine markers were tested for
chromosome 15, of which 41 were non-informative and 14 were distorted resulting in only
34 markers for this chromosome. The resultant VRS-F2 GBS-rhAmpSeq integrated map
had a total length of 1131.3 cM and an average distance of 0.5 cM between markers (Table 1
and Figure S4).
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Figure 2. Marker segregation distortion at four separate chi-square adjusted p-value threshold levels for
chromosome 5, 7, 11, and 15. The lines represent negative log scale adjusted p-value < 5 × 10−2 (dot),
1 × 10−5 (dot-dash), 1 × 10−10 (dash), and 1 × 10−21 (solid). The rhAmpSeq (red) and GBS (black)
markers show distorted marker type at each threshold level. Markers above −log(1 × 10−100) are not in
the figures.

Figure 3. Pair-wise recombination fractions and LOD of the VRS-F2 genetic map. Vertical and
horizontal lines indicate the borders of the linkage groups. The estimated recombination fractions
(r) between markers are in the upper left and the LOD are in the lower right of each linkage group
rectangle. High correlation between markers indicates marker linkage (yellow, low r̂ or high LOD)
and blue (high r̂ or low LOD) represents low correlation values indicating unlinked markers.
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Table 1. Integrated VRS-F2 GBS-rhAmpSeq map statistics.

Parameter Value

Number of F2 genotypes 514
Total (GBS and rhAmpSeq) markers used in map curation 3428

Markers in LGs 2519
GBS markers in LGs 1449

rhAmpSeq markers in LGs 1070
LGs 19

Distortion threshold 1 × 10−21

Number of markers that formed different LG 0
Mismapped markers in LG 0

Markers not in any LG 0
Problematic markers in LG 0
Non-informative marker 677

Distorted marker numbers 232
Genetic map size (cM) 1131.3

Genome-wide recombination rate (cM/Mb) 2.5
Average distance between markers (cM) 0.5

Genome coverage (%) 96.3
Largest gap (cM) 11.3

LG, linkage group; cM, centimorgan; Mb, mega base pairs; %, percentage genome coverage, % coverage relative
to V. vinifera ‘PN40024’ 12X V2 genome.

Table 2. Chromosome summary of the VRS-F2 genetic map.

Chromosome Number of
Markers

Chromosome Genetic
Length (cM)

Average Spacing
(cM)

Maximum
spacing (cM)

Correlation
(Spearman)

1 150 65.3 0.4 4.7 0.9999 *
2 112 52.2 0.5 4.2 0.9998 *
3 97 48.2 0.5 5.3 0.9996 *
4 181 62.7 0.3 2.3 0.9999 *
5 193 62.5 0.3 2.0 0.9999 *
6 131 60.1 0.5 4.9 0.9998 *
7 176 79.1 0.5 8.1 0.9999 *
8 145 59.3 0.4 2.8 0.9994 *
9 117 60.0 0.5 4.2 0.9999 *

10 88 55.9 0.6 11.3 0.9997 *
11 105 63.9 0.6 4.4 0.9996 *
12 124 56.5 0.5 3.3 0.9999 *
13 153 68.7 0.5 4.9 0.9999 *
14 161 68.9 0.4 3.1 0.9999 *
15 34 18.9 0.6 2.1 0.9997 *
16 114 55.5 0.5 3.1 0.9994 *
17 140 59.4 0.4 4.6 0.9998 *
18 192 79.9 0.4 8.5 0.9999 *
19 106 54.3 0.5 4.8 0.9999 *

Overall 2519 1131.3 0.5

cM, centimorgan; Spearman, Spearman correlation coefficient; *, significant at p-value < 0.0001; Average spacing
(cM) refers to the average genetic distance between two adjacent markers in each chromosome; Maximum spacing
(cM) refers to the maximum genetic distance between two adjacent markers in each chromosome. Correlation
refers to the relationship between genetic and physical length of the map.

2.2. Map Validation with Berry Skin Color and Flower Type

Two well-studied binary traits were used to validate the VRS-F2 GBS-rhAmpSeq
map: grapevine berry skin color and flower type (pistillate, hermaphroditic). There were
22 white and 78 black fruited genotypes observed in the fruiting field vines. Chi-squared
test did not reject the hypothesis of a 3:1 ratio of black:white (chi-squared value = 0.56
and p-value = 0.46) consistent with a single locus and black being dominant over white
skin color. Berry skin color mapping identified a significant QTL on chromosome 2 with
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22.8 LOD value and peak position at 13.5 Mb position in the map (Table 3). The QTL confi-
dence interval contained many MYB family genes including the MYBA1 gene associated
with berry color. Flower type was mapped to chromosome 2 using 97 genotypes. The VRS-
F2 parent (16_9_2) was heterozygous (Hf) for the dominant hermaphroditic flower type
and analysis of the F2 progeny field vines flower type indicated 81:16 hermaphroditic (HH
or Hf): pistillate (ff) supporting the expected 3:1 ratio (chi-squared value = 2.61 and p-value
= 0.11). A flower type QTL was detected on chromosome 2 at 4.65 (Mb) with 17.2 LOD and
a very narrow 95% Bayesian interval (Table 3). Seven markers including markers within the
QTL confidence interval (rh_2_4497054, GBS_2_4567885, rh_2_4599939, GBS_2_4650201),
two markers nearby the confidence interval (rh_2_4703733 and GBS_2_5352479), and a
previously reported marker (rh_2_4825658) were used to predict flower type phenotype
based on genotype. These markers predicted that the 358 unknown individuals were
potentially 1:1:2 homozygous pistillate, homozygous hermaphroditic, and heterozygous
hermaphroditic, respectively (Table S2). The training set of 97 individuals showed vary-
ing marker accuracy depending on flower type. Four markers showed 100% prediction
accuracy for the pistillate phenotype and prediction for hermaphroditic types ranged from
96 to 99% accuracy across the seven markers (Figure S5). A test data set of 59 newly iden-
tified flower type phenotypes gathered in greenhouse-grown vines was used to validate
the accuracy of genotype prediction and a 100% accuracy was obtained for the pistillate
phenotype in comparison to the genotype prediction for all seven markers. The accuracy
for the hermaphroditic phenotype was similar with 95 to 98% accuracy depending on
the marker. Transferable marker pairs, one pistillate (rh_2_4497054 or rh_2_4599939) and
one hermaphroditic (rh_2_4703733 or rh_2_4825658) could be used for pistillate (ff) and
hermaphroditic (HH or Hf) identification with 100 and 99.7% overall accuracy, respectively.

Table 3. QTL for berry color, flower type, titratable acidity, malic acid, total anthocyanin, mono- and
diglucoside anthocyanins and (E)-2-hexenal.

Trait Chromosome LOD Peak Position (Physical
Position (Mb)) R2 Physical (Mb) Position at

95% Bayesian Interval

Berry color 2 22.8 14.11 NP 11.00:17.48
Flower type 2 17.2 4.65 NP 4.50:4.70

Total anthocyanin 2013 2 9.4 13.54 NP 6.97:17.85
Total anthocyanin 2018 2 10.2 13.54 NP 6.97:17.85
Total anthocyanin 2013 18 3.4 6.94 NP 6.23:10.21

Total monoglucosides 2013 2 12.2 9.13 NP 8.58:14.87
Total monoglucosides 2018 2 3.8 5.87 NP 2.99:16:74

Total diglucosides 2013 2 5.7 8.11 NP 7.41:9.07
Total diglucosides 2013 9 4.8 6.19 NP 0.89:6.99
Total diglucosides 2018 9 3.2 6.52 NP 3.74:9.57

Malic acid 2013 6 4.5 11.92 28.2 2.31:15.48
Malic acid 2016 6 4.1 7.86 23.8 2.55:18.52

Malic acid 2018 a 6 3.8 5.59 22.9 0.91:8.28
Malic acid 2018 1 5.2 20.62 31.0 18.88:23.67

Titratable acidity 2016 a 1 3.8 6.29 22.5 0.97:8.38
Titratable acidity 2018 1 4.5 19.66 29.1 7.24:23.7
Titratable acidity 2013 6 4.8 15.25 29.7 2.85:16.63
Titratable acidity 2016 6 4.2 7.86 24.4 2.76:18.14
Titratable acidity 2018 6 4.1 5.59 28.1 0.28:18.52

(E)-2-hexenal 2013 2 4.4 7.47 29.4 5.35:18.70
(E)-2-hexenal 2018 a 2 4.0 4.83 27.8 0.18:17.48

a indicates significant at alpha test of 0.1 threshold, all others are significant at alpha test of 0.05 threshold; R2,
percentage variation explained by the QTL; NP, parametric test was not conducted for this trait. Physical position
Mb relative to PN40024 12X V2 genome.
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2.3. Berry Anthocyanin, Acid, and Volatile Analyses

The total anthocyanins and total mono- and diglucoside anthocyanins concentrations
in the F2 progeny ranged from less than that of 16_9_2 (parent of VRS-F2 population) to a
concentration about as great as that of the V. riparia female grandparent (Table S3). Total
anthocyanin QTL peak positions on chromosome 2 were close to the berry skin color QTL
peak position (Table 3). In contrast, the total mono- and diglucosides QTL peak positions
were upstream of the total anthocyanin peak position and only malvidin and petunidin
3-glucoside QTL occurred on chromosome 2 in two years (Table S4). Delphinidin, malvidin
and petunidin 3,5-diglucosides QTL were present on chromosome 2 in 2013 only. However,
the cyanidin, malvidin, peonidin, and petunidin 3,5 diglucoside QTL were collocated on
chromosome 9 in both years (Figure 4 and Table S4). The peak marker for the diglucosides
is near the 5-O-GLUCOSYLTRANSFERASE (Vitvi09g00582) candidate gene at 6.52 Mb in V.
vinifera PN40024 12XV2. V. riparia ‘Manitoba 37’ is homozygous for increased diglucoside
concentration and ‘Seyval blanc’, which contains V. rupestris Scheele in its pedigree, is
heterozygous for the marker rh_9__6523189 at the 5-O-GLUCOSYLTRANSFERASE gene.
Protein alignment of Vitvi09g00582 with the corresponding V. riparia Michx (Accession
#XP_034695482.1), V. amurensis Rupr. (Accession #AHL68667.1), and V. rotundifolia (Acces-
sion #ALS55360.1) indicate that Vitvi09g000582 has an early truncation; whereas, the three
native species contain an additional segment with 51 amino acids (Figure S6).

Figure 4. Individual anthocyanin diglucosides and total diglucoside LOD scores for 2013.

Malic acid concentration ranged from 1.5 to 29.0 g/L across years and generations
(Table S3). In the F2 population, mean malic acid content ranged from 10.6 to 12.0 g/L across
years. Correlation analysis showed strong, positive, and significant pairwise correlations
for malic acid for most years (Table S5). QTL for malic acid were detected on chromosome 6
in all years and on chromosome 1 for 2016 and 2018 (Tables 3 and S5). Collocated potential
malic acid QTL (overlapping confidence intervals) were observed on chromosome 8 in
2016 and 2018 and these were significant in the malic acid model (Figure S7, Table S6).
QTL modeling in 2016 indicated a significant interaction was observed between QTL on
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chromosome 1 and 8 (Table S6). Additive modeling of QTL on chromosomes 1, 6, and 8
explained more than 50% of the malic acid variation. Collocation of the TA and malic acid
QTL was observed on chromosome 6 at 7.86 Mb in 2016 and on chromosome 1 at 5.59 Mb
in 2018. Mean trait effect plots by genotypes for malic acid peak positions on chromosome
1 and chromosome 6 indicated V. riparia ‘Manitoba 37’ was the responsible grandparent for
high malic acid in all years (Figure 5). Two MALATE DEHYDROGENASE (Vitvi01g002239
and Vitvi01g002240) and one MALATE DEHYDROGENASE PRECURSOR (Vitvi01g01744)
were identified as candidate genes within the 95% confidence interval for the chromosome
1 malic acid QTL. Two ALUMINUM-ACTIVATED MALATE TRANSPORTER 2-LIKE genes
(Vitvi06g00922, Vitvi06g00928) were identified as candidate genes for malic acid QTL
on chromosome 6. In addition, modeling of malic acid identified a potential QTL on
chromosome 8 in 2016 and 2018. An ALUMINUM ACTIVATED MALATE TRANSPORT
8-LIKE (Vitvi08g00636) was also identified in the confidence interval of that QTL. The
Vitvi08g00636 and Vitivi08g00142 genes are closest to QTL peak positions.

Figure 5. Effect plots for chromosome 6 (2013, 2016) and chromosome 1 (2018) malic acid QTL peak
position markers. x-axis is the genotype for each marker and y axis is the malic acid concentration.
The V. riparia ‘Manitoba 37’ (pistillate grandparent) genotype contributing to high malic acid is
indicated in parenthesis on x-axis.

The mean TA ranged from 12.88 to 28.28 g/L across three years (2013, 2016, and
2018) and generations (grandparents, parent, and F2 population mean) (Table S3). The
VRS-F2 TA had strong positive correlations across three years (0.82 to 0.89) and there was
a strong correlation with malic acid (Table S5). Five significant QTL were observed for
TA, on chromosome 6 for all three years and on chromosome 1 in 2016 and 2018 (Table 3).
Temperature data (June through August) shows that 2013 was cooler in early season than
2016 and 2018 (Table S7).

Berry volatiles varied by year and no hexanal, IBMP or IPMP QTL were identified
although there was variation in concentration of these volatiles (Table S3). A QTL was
identified for berry volatile compound (E)-2-hexenal on chromosome 2 in 2013 and 2018
(Table 3, Figure 6A,B). Analysis of 13 markers between peak positions of 2013 and 2018
QTL indicated that the ‘Seyval blanc’ grandparent contributes to the greater (E)-2-hexenal
concentration in this population (Figure 6C,D). The 95% confidence intervals for the (E)-2-
hexenal QTL were large and contained many fatty acid metabolism genes. It is noteworthy
however, that a PHOSPHOLIPID HYDROPEROXIDE GLUTATHIONE PEROXIDASE
gene (Vitvi02g00663) was found near the peak markers for 2016 and 2018. Two additional
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PHOSPHOLIPID HYDROPEROXIDE GLUTATHIONE PEROXIDASE genes were found
within the 2018 confidence interval.

Figure 6. Genome-wide LOD for (E)-2-hexenal in 2013 (A) and 2018 (B). Black and red dashed line
represent 1000 permutation at alpha of 0.1 and 0.05, respectively. (E)-2-hexenal averaged across
13 markers between peak positions for 2013 (C) and 2018 (D). V. riparia ‘Manitoba 37’ grandparent
(pistillate) is AA for all markers. ‘Seyval blanc’ (staminate) is BB for 11 markers and AB for 2 of
the markers.

3. Discussion
3.1. Natural Segregation Distortion Was Significant in F2 Population

The current VRS-F2 GBS-rhAmpSeq integrated map includes markers that deviate
from Mendelian segregation 1:2:1 ratio for chromosome 5, 7, 11, and 15. The addition of
some of the distorted markers did not show any effect on marker order or recombination
percentage, suggesting that marker segregation distortion is natural in these chromosomal
regions for this F2 grapevine population [39,40]. The inclusion of these markers increased
marker density and filled long gaps in the genetic map on chromosomes 5, 7, 11, and 15.
Within the distorted regions, several reproductive related genes (multiple reproductive
(Vitvi05g00109, Vitvi07g00910, Vitvi07g00921), male-sterility (Vitvi07g00807, Vitvi07g00814,
Vitvi07g00822) and embryo development (Vitvi05g01066, Vitvi07g01429, Vitvi15g00642,
Vitvi15g01065, Vitvi15g01084, Vitvi15g01085, Vitvi15g01122) were identified. Selection
pressure operating against one of the parental alleles at meiosis cell division or zygote level
has been suggested as a reason for natural segregation distortion in wheat [40]; however, it
is not possible to determine whether this is a factor in this study. Segregation distortion can
also be related to non-biological reasons, such as a small sampling population or genotype
errors [41]. However, the mapping population size (514 individuals), advanced marker
techniques, and the continuous blocks of segregation distortion suggest that biological, not
technical, factors caused the segregation distortion in the VRS-F2 population. Awareness
of the distorted regions may help in planning crosses; however, further investigations are
necessary to identify the mechanism(s) causing the segregation distortion.
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3.2. The VRS-F2 GBS-rhAmpSeq Integrated Map Provides Greater Marker Transferability to
Other Populations

Genetic maps play an important role in the identification of QTL, candidate genes, and
marker assisted selection. Despite technological advances, low marker density and quality,
high cost, and low marker transferability across populations remain as challenges in genetic
map construction. Previous genetic maps for this VRS-F2 grapevine population developed
using SSR and GBS markers had large gaps in coverage [42,43]. In this study rhAmpSeq
markers, which have the potential of high marker transferability to other Vitis germplasm,
were used in combination with GBS markers to construct a high-density integrated genetic
map for the interspecific F2 population. The current integrated genetic map showed
improvements over the previous GBS map for this population, with an increased marker
density (74%) and increased genomic coverage. In addition, the inflated length of the
previous GBS genetic map was reduced from 2424 to 1131 cM. Correlation with the V.
vinifera PN40024 12X V2 genome was higher than 98% for 18 of the 19 chromosomes
in the integrated map. Chromosome 15 had lower correlation coefficient and coverage;
however, this VRS-F2 GBS-rhAmpSeq integrated map increased the chromosome 15 marker
density (by 62% or 13 markers) relative to the previous GBS map [43]. The integrated map
incorporates 1070 rhAmpSeq markers that were developed using multiple Vitis species [8].
The rhAmpSeq markers identified for traits in this population can thus be used for marker-
assisted selection if the GBS markers fail in other interspecific populations.

3.3. Confirmation of Berry Skin Color and Flower Type Loci

Berry color is produced by synthesis and accumulation of anthocyanins in the berry
skin and MYB and bHLH family genes have been identified as contributing to skin color
development [17,44,45]. The VvMYBA1 gene on chromosome 2 has been identified as one of
the main genes for berry color [9]. In the integrated VRS-F2 GBS-rhAmpSeq integrated map,
the QTL peak position 14.11 Mb is close to the VvMYBA1 gene. Several studies, in different
grapevine genetic backgrounds, place the flower type locus on chromosome 2 [21,22,46].
Recently, a 150 kb flower type determination region was described on chromosome 2
that contains a proposed pistillate sterility locus (VviYABBY) and staminate sterility locus
(VviINP) [24,47]. A QTL for pistillate flower type in this VRS-F2 population at 4.65 Mb is
close to a rhAmpSeq marker (rh_2_4825658) identified by GWAS analysis of interspecific
crosses [6]. It is also upstream of the C region of the proposed flower type determining
region containing the putative staminate sterility gene VviINP [24,47]. A survey of the
markers on either side of QTL peak marker GBS_2_4650201 indicated the three upstream
markers (rh_2_4497054, GBS_2_4567885, rh_2_4599939) predicted pistillate flower type
more accurately than those downstream. Thus, in addition to two GBS markers, there
are four rhAmpSeq markers, two for pistillate (rh_2_4497054 and rh_2_4599939), and two
for hermaphroditic flower types (rh_2_4703733 and rh_2_4825658) that can be used in
combination to accurately predict these flower types. A genome-wide association study
identified one transferable marker [6].

3.4. Individual Diglucoside Anthocyanin QTL Colocate

Anthocyanin pigment content and composition are critical to the color of berries and
resultant wines. The major anthocyanidins (i.e., the aglycone component) found in grapes
are malvidin, cyanidin, peonidin, petunidin, and delphinidin, which may exist in both
mono- and diglucoside forms [48]. Anthocyanin diglucosides are at negligible concentra-
tions in V. vinifera, but they are commonly found in wild Vitis spp. and their hybrids [48].
Diglucosides are generally considered undesirable for wine grapes because they are less
able to form stable polymeric pigment; therefore, their presence is used as a bio-marker to
identify unallowable interspecific hybrids in certain wine regions [16,49]. Costantini et al.
2015 [50] reported several minor QTL on multiple chromosomes which are not observed in
this study. Individual and total diglucoside QTL were detected with a peak position near
the V. vinifera 5-O-GLUCOSYLTRANSFERASE (Vitvi09g000582) candidate gene at 6.52 Mb.
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This gene, described by Jánváry et al 2009 [51], lacks 51 amino acids due to a premature
stop codon and is non-functional in V. vinifera, resulting in the absence of anthocyanin
3,5-diglucosides in most V. vinifera. The 3,5- diglucoside anthocyanins are found in many
of the other Vitis species including V. riparia. Protein alignment of Vitvi09g000582 with the
corresponding V. riparia, V. amurensis and V. rotundifolia sequences (Figure S6) indicates
these native American species contain 51 amino acids in the region necessary for digluco-
side development. Characterization of the V. amurensis 5-O-GLUCOSYLTRANSFERASE
(Va5GT) in vitro shows that it can synthesize diglucosidic anthocyanins [52]. There were
no genotypes with black berries without diglucosides; however, several black fruited VRS-
F2 individuals were identified with very low concentration of diglucoside anthocyanins,
providing opportunity for genotype selections for future crosses.

3.5. QTL Mapping Identified Malic Acid Dehydrogenase Candidate Gene on Chromosome 1 and
Suggests Potential Temperature Influence

Most wild Vitis spp. are known to have higher TA and malic acid berry concentrations
than V. vinifera, resulting in excessively sour wines and lower wine quality [53]. In this
study, there was a significantly high correlation (ranging from 0.71 to 0.96, p-value < 0.0001)
between the TA and malic acid concentration in all years, indicating that variation in the
TA in this population can largely be explained by the variation in malic acid. Malic acid is
mainly synthesized through Krebs cycle/sugar metabolism and degrades during ripening
through the TCA cycle and respiration [54]. The activity of several enzymes critical to
malate respiration, including malate dehydrogenase, are known to increase with higher
temperature. In this study of 30-day post-veraison berries, a QTL on chromosome 1 in 2018
and 2016 (LOD > 3) contributed significantly to the malic acid models, although no QTL for
chromosome 1 was detected in 2013. It is noted that 2013 had lower preveraison tempera-
tures than did 2016 and 2018; however, mean malic acid concentrations were similar across
all three years, likely because these differences in temperature occurred before respiration
commenced. The chromosome 1 QTL in VRS-F2 contained three candidate genes; two
MALATE DEHYRDROGENASE CYTOPLASMIC 1 genes (Vitvi01g02239, Vitvi01g02240)
are located near the QTL peak position on chromosome 1 and a third gene (MALATE
DEHYROGENASE PRECURSOR, Vitvi01g01744) is within the Bayesian confidence interval.

The malic acid QTL on chromosome 6 was stable in the VRS-F2 population across the
three years. The QTL confidence interval contains ALMT candidate genes (Vitvi06g00922,
Vitvi06g00928), first identified with single year data in the GBS map [43]. The ALMT gene
plays a role in malate and tartrate accumulation [43,55]. The ALMT genes are located
with other genes that regulate cytoplasmic and apoplastic pH and it is noted that ALMT
activity is limited by temperature and ripening processes [56]. The modeling of malic acid
also detected a potential QTL on chromosome 8, the position of the peaks (10.3 Mb, 2016
and 11.0 Mb, 2018) was close to another ALMT gene. In addition, the peak positions of
the potential chromosome 8 malic acid QTL in VRS-F2 are within the physical confidence
interval reported for a malic acid QTL in a ‘Norton’ x ‘Cabernet Sauvignon’ population [30],
thus providing support for the potential QTL identified here.

Several previous studies also report lack of consistent QTL for malic acid, TA, and
numerous other grapevine berry quality traits [26,57–59]. In V. vinifera and V. aestivalis
Michx. derived populations, malic acid QTL have been found on chromosome 6 and 8 in
multiple years. However, several other malic acid QTL, with varying degrees of stability
from year to year, have been identified in grapevine populations with at least one on every
chromosome [28–30]. This study reports multiple QTL for malic acid and TA in the same
growing season with additive QTL modeling of QTL on chromosome 1, 6 and 8 explaining
>50% of the malic acid variation. The difference in QTL relative to season GDD supports
the suggestion that different physiological mechanisms in different interspecific population
may influence the number and stability of QTL found in interspecific populations [29].
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3.6. Berry Volatiles and (E)-2-Hexenal QTL

The VRS-F2 population varied in volatile compound concentrations across generations
and years tested. This study focused on methoxypyrazines (IBMP, IPMP) and C6 aldehyde
volatiles, as previous work has shown that these herbaceous and undesirable odorant
classes are at higher concentrations in wild Vitis spp. [33]. IBMP was not detected in berries
in 2018 and was present in only 27% of genotypes in 2013. The mean IPMP concentrations
in V. riparia ‘Manitoba 37’ pistillate grandparent and VRS-F2 were greater than those
previously reported for V. riparia; however, several VRS-F2 genotypes had concentrations
in the range reported for V. riparia [33]. In V. vinifera, methoxypyrazines decrease markedly
(~90%) during berry maturation, and the high IPMP values observed in this study may
also be because berries were sampled at 30 days post-veraison rather than at post-veraison
intervals more typical of commercial wine production (~60 days) [60]. The IPMP content
in the VRS-F2 population varied consistently in 2013 and 2018; however, no QTL was
identified for this berry volatile.

The C6 aldehydes, hexanal and (E)-2-hexenal, were present in the post-veraison berries
of all generations. A novel (E)-2-hexenal QTL located on chromosome 2 was observed
in 2013 and 2018. The (E)-2-hexenal QTL were located adjacent to the upper end of the
anthocyanin QTL confidence intervals. The (E)-2-hexenal volatile concentrations varied
among years and were similar to those in post-veraison ‘Cabernet Sauvignon’ berries but
higher than observed in Chinese wild grape cultivars and ‘Seyval blanc’ [32,61,62]. In
‘Cabernet Sauvignon’, both hexanal and (E)-2-hexenal were present from fruit set through
ripening and concentrations peaked post-veraison with C6 alcohols peaking during late
ripening [32]. Several enzymes and genes have been identified in the lipoxygenase pathway
leading to the development of C6 aldehyde products after crushing [31,32]. In ‘Cabernet
Sauvignon’, volatile concentrations were suggested to be controlled by a tight regulation
of the alcohol dehydrogenase, alcohol acetyl transferase, and enal isomerase enzymes
in the lipoxygenase pathway during berry development, with the C6 aldehyde products
being most prevalent in the veraison and post-veraison and alcohols in the late ripening
stage [32]. However, none of the genes identified previously for the lipoxygenase pathway
were found on chromosome 2 [31]. The examination of the genes underlying the (E)-2-
hexenal QTL in this study showed a PHOSPHOLIPID HYDROPEROXIDE GLUTATHIONE
PEROXIDASE gene near the peak markers for 2016 and 2018. Phospholipid hydroperoxide
glutathione peroxidases enzymes are reactive oxygen species (ROS) scavengers responsible
for reducing hydroperoxides generated in the oxidation of fatty acids by lipoxygenase
hydroperoxide lyase [63]. It is noted that ROS scavenging enzymes increase at veraison,
and the phospholipid hydroperoxide glutathione peroxidase enzyme may play a role in
regulating the accumulation of (E)-2-hexenal [64]. In this study, the genotype effect plot
for the markers surrounding the PHOSPHOLIPID HYDROPEROXIDE GLUTATHIONE
PEROXIDASE gene indicated that the pollen grandparent ‘Seyval blanc’ contributed to
the higher concentration of (E)-2-hexenal. It is possible that a higher activity or other
differences in this phospholipid hydroperoxide glutathione peroxidase enzyme in V. riparia
could limit the production of C6 aldehydes in contrast to the mechanism in ‘Seyval blanc’.
However, further characterization of this enzyme in the grandparents, parent, and high
and low concentration F2 is needed to determine whether phospholipid hydroperoxide
glutathione peroxidase activity has a role in modulating the herbaceous volatile in the
VRS-F2 population.

4. Materials and Methods
4.1. Plant Materials

Phenotypic data which comprise berry anthocyanin (2013 and 2018), malic acid and TA
(2013, 2016, and 2018), and volatiles (2013 and 2018) were collected at 30 days post-veraison
using three generations including grandparents, the F1 parent, and the VRS-F2 mapping
population. The diploid VRS-F2 population was produced by selfing a single F1 (16_9_2)
developed from a cross between V. riparia (seed parent, ‘Manitoba 37’, PI# 588289) and
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‘Seyval blanc’ (pollen parent, VIVC#11558) [65]. The parent of the population (16_9_2) is a
hermaphroditic genotype (having perfect flowers) with black berries, the grandparent V.
riparia ‘Manitoba 37’ (USDA PI588259) is pistillate and produces black fruit while ‘Seyval
blanc’, the pollen grandparent, is a hermaphroditic white-fruited wine grape. The initial
113 VRS-F2 progeny that were used to develop a previously reported SSR map are noted as
field vines [65]. These 113 VRS-F2 vines, the parent, and pistillate grandparent, V. riparia
‘Manitoba 37’, were clonally propagated and planted in the vineyard at the N. E. Hansen
Research Center, Brookings, SD (44.31◦ N, 96.80◦ W). Soils at the site were clay loam with
2% slopes. The vines were established in 2008 and spaced at 1.8 m apart in rows that were
3 m apart. Rows were oriented East–West with 48 vines per row. Weed, disease, and pest
control were managed according to South Dakota industry standards. Due to low pressure,
no fungicide or insecticide applications were conducted during the experimental period.
Weed-free strips (0.6 m wide) were maintained below the vine rows with pre-emerge
(Flumioxazin, Chateau®, Valent USA, San Ramon, CA, USA) and post-emerge (Glufosinate,
Rely®, BASF, Florham Park, NJ, USA) herbicide applications. Red fescue (Festuca rubra)
and clover (Trifolium repens) were grown between rows as a ground cover. Annual petiole
tests were used in the vineyard to determine fertilizer applications.

4.2. VRS-F2 GBS-rhAmpSeq Integrated Genetic Map Construction

The VRS-F2 population was genotyped using the 2000 rhAmpSeq marker panel as
described in Zou et al. 2020 [6], and 1970 pertinent rhAmpSeq markers were used with
1449 GBS markers Yang et al. 2016 [43] for this VRS-F2 GBS-rhAmpSeq-integrated map
construction. The genotype frequencies of each marker were plotted (ggplot in R) against
position on the genome for all chromosomes to identify regions of segregation distortion.
The deviation from the expected Mendelian ratio (1:2:1) was then estimated using chi-
square test p-values to detect individual marker segregation distortion. An appropriate
threshold p-value for this population was then determined by testing eight p-values (0.05
(traditional p-value), 5 × 10−3, 1 × 10−5, 1 × 10−10, 1 × 10−15, 1 × 10−21, 1 × 10−25,
1 × 10−30) and visualizing marker loss relative to the adjusted p-value. JoinMap (version
5, Kyazma B. V., Wageningen, Netherlands) was used for GBS-rhAmpSeq integrated map
construction [66]. After removing non-informative and distorted markers (chi-square
adjusted p-value < 1 × 10−21), 1449 GBS and 1070 rhAmpSeq markers were used for map
construction. Allele-calling errors were checked prior to map construction and suspect
loci were manually corrected. A logarithm of odds (LOD) of five was used to establish
linkage groups and Kosambi map function were used for map distance (in centimorgans,
cM) calculations. Linkage group orientation was corrected using invert function if any
inversions were found. Finally, the VRS-F2 GBS-rhAmpSeq linkage map was formatted
into R/qtl ABH format in MS Excel, where ‘A’ and ‘B’ allele, respectively, represent major
and minor homozygous alleles and ‘H’ is the heterozygous allele. To evaluate the VRS-F2
GBS-rhAmpSeq map, collinearity between the linkage map and the V. vinifera PN40024
12X V2 genome was measured by Spearman correlation coefficient (cor.test function in R)
and visualized using correlation plot (ggplot function in R). A pair-wise recombination
fraction heat map was generated using plotRF function (qtl package in R) to test marker
order correctness. VRS-F2 GBS-rhAmpSeq linkage map imaging was performed using
MapChart (2.32 version) [67].

4.3. Flower, Fruit, and Temperature Data

Berry skin color was identified for 100 of the field sub-population vines. Berry quality
data were collected using fruit harvested 30 days post-veraison in three different years.
The berries were cut from the cluster leaving the peduncle attached. A random sample
of 500 grams was collected from all harvested berries for each individual genotype, sepa-
rated into two 250 g samples (one aliquot for TA, malic acid, and anthocyanins, and the
other for volatiles) and stored at −20 ◦C until processing. Flower type was identified
for 97 individuals from the field vines and used for QTL analysis. The markers identi-
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fied in QTL were validated with a new set of flower type phenotypes collected in 2021
from 59 genotypes. The validated markers were used for the prediction of flower type
in 358 additional genotypes with unknown flower type. Temperature data were collected
from Brookings South Dakota Mesonet station for 2013, 2016 and 2018 growing seasons
(June through August) covering flowering through harvest [68]. Growing degree days were
calculated using hourly minimum and maximum temperatures and 50 ◦F base temperature.

4.4. Berry Titrable Acidity, Malic Acid, Anthocyanins, and Volatile Measurements

Replicate frozen berry samples (25 g) of frozen whole berries were destemmed and
macerated for one min using a chilled 250 mL blender (Waring Laboratory Science, Stanford,
CT, USA). Two 10 g portions transferred to 15 mL tubes and frozen at −20 ◦C for further
use. TA at an endpoint of pH = 8.2 was determined by autotitrator (Titrino Plus 848 with
a 869 autosampler, Metrohm, Riverview, FL, USA.). TA and malic acid were quantified
for 2013, 2016 and 2018. Malic acid was quantified using a 10 g frozen berry macerate
aliquot, which was thawed and centrifuged (5 min, 10,000× g) by a previously reported
method. Briefly, a 10 g frozen berry macerate aliquot was thawed and centrifuged (5 min,
10,000× g). Juice samples were then injected onto an HPLC system (Agilent 1260; Santa
Clara, CA, USA) consisting of a Bio-Rad micro-guard cation-H refill cartridge followed
by a Bio-Rad Aminex HPX-87H ion exclusion column (Hercules, CA, USA). Malate was
quantified by UV/VIS diode array detector at 210 nm. Calibrations were performed with
malate acid standards, and repeatability (%RSD) was <3%. The 2013 malic acid phenotype
was used previously in GBS map testing [43]; however, the 2013 malic acid results were
incorporated in this manuscript to expand malic acid analyses by modeling the malic acid
in three separate years (2013, 2016, and 2018). Anthocyanin extraction and quantitation for
2013 and 2018 samples were based on a method described by Manns and Mansfield [69]. A
10 g frozen berry macerate aliquot was thawed and centrifuged (5 min, 10,000× g), and the
anthocyanin fraction isolated by solid-phase extraction (SPE) as described elsewhere [69].
HPLC analyses were performed on Agilent Model 1260 Infinity series on a Kinetex C18
column (100 mm × 4.6 mm, 2.6 µm particle size) fitted with a KrudKatcher guard filter
(Phenomenex, Torrance, CA, USA). Mobile phase A was 0.5% w/v phosphoric acid in
H2O, and mobile phase B was 0.5% phosphoric acid in methanol. The flow rate was
0.2 mL/min, and the gradient program was initially 15% B. Then, the flow rate increased
linearly to 30% B at 15 min, then increased linearly to 60% B at 25 min, held at 60% B
until 27 min, and then decreased linearly to 15% B at 30 min, after which the column was
equilibrated for 10 min prior to the next injection. The column temperature was 45 ◦C.
From the full UV/VIS spectrum (190–640 nm), absorbance data at 520 nm were used for
anthocyanin quantitation. Anthocyanin identification was based on authentic standards
for malvidin-3,5-diglucoside and malvidin-3-glucoside (Extrasynthese; Genay, France).
For other anthocyanins (delphinidin-3,5-diglucoside, delphinidin-3-glucoside, cyanidin-
3,5-diglucoside, cyanidin-3-glucoside, petunidin-3,5-diglucoside, petunidin-3-glucoside,
peonidin-3,5-diglucoside, peonidin-3-glucoside), tentative identification was based on
comparison of retention times to previously analyzed samples on the same instrument and
using the same method, as described in an earlier report [69]. Previous work had established
that this method achieved baseline resolution (Rf > 1.5) for all anthocyanins except for
delphinidin-3-glucoside and petunidin-3,5-diglucoside (Rf ~0.8), with no evidence of other
interferences in real samples. The method repeatability was evaluated by running malvidin-
3-glucoside and malvidin-3,5-diglucoside standards at the start of run sets, and typical
precisions were <1% RSD.

Quantification of herbaceous volatiles (hexanal, (E)-2-hexenal, and 3-isopropyl-2-
methoxypyrazine (IPMP), in 2013 and 2018 berry samples was carried out by headspace
solid phase microextraction (HS-SPME; LEAP CombiPALAutosampler Carrboro, NC. USA)
coupled to a Shimadzu gas chromatograph-mass spectrometer (GC-MS) (GC2010 Plus
w/TQ8040 MS; Nakagyo-ku, Kyoto, Japan) by adapting a method described by Burzynski-
Chang et al. 2018 [70]. Frozen whole berries (25–50 g) were destemmed and macerated
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for one min using a chilled 250 mL stainless steel Waring blender. Berry macerates (5 g
per vial, performed in duplicate) were transferred to 20 mL amber SPME vials (Sigma-
Aldrich, St Louis, MO, USA) along with 3 g of NaCl, 5 mL 0.1 M pH 7.0 phosphate buffer,
and 50 µL internal standard cocktail (initial concentrations prior to dilution = 118 mg/L
d12-hexanal (CDN Isotopes, >98% purity; 99.1% isotopic purity), 8 mg/L d2-(E)-2-hexenal
(Sigma-Aldrich, St. Louis, MO, USA), >90% purity; >99% isotopic purity), 9 µg/L d3-IPMP
(aromaLAB), >98% purity; >99% isotopic purity). Identification of native compounds
was performed with commercially purchased hexanal (Sigma-Aldrich, ≥97% purity),
(E)-2-hexenal (Sigma-Aldrich, ≥95% purity), and 2-isopropyl-3-methoxypyrazine (IPMP)
(Sigma-Aldrich, 97% purity). HS SPME analyses were performed using a 1 cm, 50/30 µm
divinylbenzene-carboxen-polydimethylsiloxane (DVB/CARB/PDMS; Supleco, Bellafonte,
PA, USA) with a pre-extraction incubation temperature of 60 ◦C for 15 min followed by a
15 min HS-SPME extraction. The SPME fiber was desorbed for 3 min in a split/splitless
injector in splitless mode at a constant temperature of 230 ◦C, a purge time of 3 min
and a purge flow of 50 mL/min. The GC column was a Varian Factor Four VF-WAXms
(30 m × 0.25 mm × 0.25 µm) (Varian, Palo Alto, CA, USA) with helium as a carrier gas at
a flow rate of 0.76 mL/min. The GC oven was held for 5 min at 40 ◦C, then ramped to
195 ◦C at 5 ◦C/min, then ramped to 240 ◦C at 20 ◦C/min and held for 5 min. The MS
was operated in EI mode with an ionization energy of 70 eV. MS data were collected from
m/z 25–250. Data processing was performed using Shimadzu GCMS Solutions Post-Run
Analysis software. Concentrations of each volatile were calculated by determining the peak
area ratio of the native analyte to its respective deuterated standard, and assuming that
the response factor for the native compound was identical to its deuterated analogue. The
quantifier ions as follows: for (E)-2-hexenal, m/z 83; for d2-(E)-2-hexenal, m/z 85; hexanal,
m/z 72; for d12-Hexanal, m/z 79; for IPMP, m/z 152; and for d3-IPMP, m/z 155. To confirm
selectivity, the ratios of the quantifier ion to the next two major ions (qualifier ions) were
compared against the ratios for the authentic standards. To evaluate repeatability, selected
samples (n = 5) were run in duplicate, and %RSD values < 30% were observed.

4.5. Statistical Data Analysis

Trait descriptive analysis was performed using psych [71] library in R statistical
software [72]. Trait correlation analysis (Pearson) was conducted for berry acid traits using
the stats library in R. Statistical significance was determined at p-value < 0.05 for descriptive
and correlation analysis.

QTL mapping was performed using the VRS-F2 GBS-rhAmpSeq genetic map with
2519 markers across 19 chromosomes using R/qtl [73]. First, map validation was conducted
using flower type and berry color phenotypes with binary QTL mapping method. QTL
analyses were performed for malic acid, TA, total anthocyanin, total monoglucoside, total
diglucoside, individual anthocyanins, and hexanal and (E)-2-hexenal volatiles. The nor-
mal model was used for quantitative traits meeting normality assumptions (as is or after
transformation); however, if transformation of data did not meet normality assumptions,
non-parametric QTL analysis was conducted. Normality evaluations and data transfor-
mation were performed using mass [74], gvlma [75] packages in R. Interval mapping was
performed using the scanone function for each trait separately, using R/qtl package with
three marker covariates, Kosambi mapping function, Haley-Knott regression and permuta-
tion test (1000, at alpha 0.1 and 0.05) to determine significant genome wide LOD thresholds
for each trait analyzed. The confidence interval for each QTL was calculated using Bayesian
method in R/qtl package at 95% confidence interval. The variation explained by each QTL
was determined for each QTL using fitqtl function in R/qtl. Malic acid models were built
for each year using all malic acid QTL identified, as well as testing peaks with LOD > 3
using makeqtl function in R/qtl. QTL interactions were tested in modeling and significant
interactions at 0.05 alpha were added to the model. Candidate gene protein alignment was
conducted with Clustal Omega Multiple sequence alignment [76].
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5. Conclusions

This study constructed a high-density, integrated VRS-F2 GBS-rhAmpSeq genetic map
with 2519 markers across the 19 grapevine chromosomes. Natural segregation distortion
was identified on chromosomes 5, 7, 11, and 15 during map development and marker
testing. The inclusion of many markers that were identified as distorted at the standard
0.05 p-value provided a VRS-F2 GBS-rhAmpSeq map that was truer to the genetic structure
of the inbred population. The greater marker density and rhAmpSeq markers provided
greater opportunity to map traits and make comparisons with other interspecific popu-
lations. The map presented here identified remarkably narrow confidence intervals and
candidate for qualitative traits, such as berry skin color (6.5 Mb) and flower type (0.2 Mb).
Two transferable marker pairs ((one pistillate (rh_2_4497054 or rh_2_4599939) and one
hermaphroditic (rh_2_4703733 or rh_2_4825658)) were identified to predict flower type
in VRS-F2. Total anthocyanin and monoglucoside QTL occur on chromosome 2, with the
monoglucoside peak marker located upstream of the berry color and total anthocyanins
QTL peak positions. Total and individual diglucosides QTL were located on chromosome
9 with 5-O-GLUCOSYLTRANSFERASE candidate gene (Vitvi09g00582) in repeat years.
Our findings confirmed the presence of multiple acidity-related (malic acid and TA) QTL
in one growing season. The malic acid QTL on chromosome 1 in 2016 and 2018 identi-
fied two additional malic acid related candidate genes (MALATE DEHYDROGENASE,
Vitvi01g01744, Vitvi01g02239, Vitvi01g02240). The three seasons also confirmed stable QTL
on chromosome 6, and ALMT (Vitvi06g00922, Vitvi06g00928) was the candidate gene in this
interval. Modeling the QTL indicated multiple malic acid related genes on chromosome
1, 6, and 8 and explained >50% of the variation in 2016 and 2018. This study provides
the first report of a volatile QTL and candidate gene PHOSPHOLIPID HYDROPEROXIDE
GLUTATHIONE PEROXIDASE for (E)-2-hexenal, a grassy-smelling volatile that can have a
negative herbaceous aroma at high concentrations.
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